Appendix: parameter estimation for PAT

Zhijian Ou
ozj@tsinghua.edu.cn
Yang Zhang zhangyangbill@gmail.com
Department of Electronic Engineering, Tsinghua University, Beijing 100084, China

Figure 1: Probabilistic graphical model of PAT

As has been mentioned in Section 2.4, the parameters of PAT

$$
\Theta \triangleq\left\{\mu_{c}, \Phi_{c}, \Psi, m_{c}, \sigma_{c}^{2}\right\}
$$

can be estimated using the EM algorithm. In this appendix, we provide the details of parameter estimation for PAT.

1 Notations

Operators and constants used in this appendix are defined in Table 1.
Table 1: Notations

Notation	Definition
$p(\cdot \mid \Theta)$	probability density function given parameters Θ
\wedge	re-estimated parameters
$'$	matrix transpose
$\langle\cdot\rangle_{p}$	the expectation operator with respect to the distribution p as specified in the subscript
$\bar{\cdot}$	two bars above means $\langle\cdot\rangle_{p\left(z_{t}, a_{t} \mid x_{t}, c_{t}, l_{t}\right)}$
$\operatorname{diag}[\cdot]$	extracting the diagonal elements of a matrix to form a diagonal matrix
$\operatorname{tr}[\cdot]$	the trace of a matrix
$\Gamma \cdot \mid$	the determinant of a matrix
T	the total number of frames
N	the dimension of observation vector x_{t}
M	the dimension of DCT vector z_{t}

2 Model Review

The probabilistic graphical model is shown in Figure 1. For detailed explanation, please refer to Section 2 in the paper. The joint probability distribution of a T-frame utterance is given as follows, where we use the Matlab notation to represent a set of variables, e.g. $x_{1: T} \triangleq x_{1}, \cdots, x_{T}$:

$$
\begin{align*}
& p\left(c_{1: T}, l_{1: T}, z_{1: T}, a_{1: T}, x_{1: T}\right)=\prod_{t} p\left(c_{t} \mid c_{t-1}\right) p\left(l_{t} \mid l_{t-1}, c_{t}\right) \cdot p\left(a_{t} \mid c_{t}\right) p\left(z_{t} \mid c_{t}, a_{t}\right) p\left(x_{t} \mid l_{t}, c_{t}, z_{t}\right) \\
& =\prod_{t} p\left(c_{t} \mid c_{t-1}\right) p\left(l_{t} \mid l_{t-1}, c_{t}\right) \cdot \mathcal{N}\left(a_{t} ; m_{c_{t}}, \sigma_{c_{t}}^{2}\right) \mathcal{N}\left(z_{t} ; a_{t} \mu_{c_{t}}, m_{c_{t}}^{2} \Phi_{c_{t}}\right) \mathcal{N}\left(x_{t} ; \Gamma_{l_{t}} z_{t}, m_{c_{t}}^{2} \Psi\right) \tag{1}
\end{align*}
$$

3 Auxiliary Function

The EM algorithm consists of two steps. In the E-step, the following auxiliary function is computed:

$$
\begin{equation*}
Q\left(\Theta \mid \Theta_{o l d}\right)=\sum_{c_{1: T}, l_{1: T}} \int_{z_{1: T}, a_{1: T}} d z_{1: T} d a_{1: T} p\left(c_{1: T}, l_{1: T}, z_{1: T}, a_{1: T} \mid x_{1: T}, \Theta_{o l d}\right) \cdot \log p\left(c_{1: T}, l_{1: T}, z_{1: T}, a_{1: T}, x_{1: T} \mid \Theta\right) \tag{2}
\end{equation*}
$$

where $\Theta_{o l d}$ is the old parameters estimated in the previous iteration. The auxiliary function is essentially the expectation of the complete log-likelihood

$$
\begin{equation*}
L(\Theta)=p\left(c_{1: T}, l_{1: T}, z_{1: T}, a_{1: T}, x_{1: T} \mid \Theta\right) \tag{3}
\end{equation*}
$$

over all hidden variables, with respect to the posteriori distribution $p\left(c_{1: T}, l_{1: T}, z_{1: T}, a_{1: T} \mid x_{1: T}, \Theta_{\text {old }}\right)$.
In the M-step, the auxiliary function is maximized to update the parameters, namely

$$
\begin{equation*}
\widehat{\Theta}=\operatorname{argmax}_{\Theta} Q\left(\Theta \mid \Theta_{\text {old }}\right) \tag{4}
\end{equation*}
$$

subject to the normalizing constraint

$$
\begin{equation*}
\mu_{c}^{\prime} \mu_{c}=1 \tag{5}
\end{equation*}
$$

In the following two sections, we introduce the details of the two steps. To make the results clearer and more straightforward, the M-step will be introduced first.

4 M-step

As is shown in Equ. (4) and (5), the M-step deals with a constrained maximization problem, which can be solved using Lagrange function:

$$
\begin{equation*}
J\left(\Theta \mid \Theta_{\mathrm{old}}\right)=Q\left(\Theta \mid \Theta_{\mathrm{old}}\right)+\sum_{c} \lambda_{c}\left(\mu_{c}^{\prime} \mu_{c}-1\right) \tag{6}
\end{equation*}
$$

where λ_{c} is Lagrange multiplier. Maximizing Equ. (6) gives the re-estimation formula for all parameters. The result is given as follows:

$$
\begin{equation*}
\hat{\mu}_{c}=\left(\sum_{t} \gamma_{t, c}\left\langle a_{t}^{2}\right\rangle_{p\left(a_{t} \mid x_{1: T}, c_{t}=c\right)} \mathbb{I}+2 \lambda_{c} \Phi_{c} \mathbf{1}^{\prime} \mathbf{1}\right)^{-1} \cdot \sum_{t} \gamma_{t, c}\left\langle a_{t} z_{t}\right\rangle_{p\left(a_{t}, z_{t} \mid x_{1: T}, c_{t}=c\right)} \tag{7}
\end{equation*}
$$

where $\gamma_{t, c} \triangleq p\left(c_{t}=c \mid x_{1: T}\right), \mathbf{1} \triangleq\{1\}_{M \times 1}$, \mathbb{I} denotes the identity matrix. λ_{c} can be solved by Equ. (7) together with the following constraint:

$$
\begin{gather*}
\hat{\mu}_{c}^{\prime} \hat{\mu}_{c}=1 \tag{8}\\
\widehat{\Phi}_{c}=\frac{\sum_{t} \gamma_{t, c}\left(\left(z_{t}-a_{t} \hat{\mu}_{c}\right)\left(z_{t}-a_{t} \hat{\mu}_{c}\right)^{\prime}\right\rangle_{p\left(z_{t}, a_{t} \mid x_{1: T}, c_{t}=c\right)}}{\sum_{t} \gamma_{t, c}} \tag{9}\\
\widehat{\Psi}=\frac{1}{T} \sum_{t} \operatorname{diag}\left[\left\langle\hat{m}_{c_{t}}^{-2}\left(x_{t}-\Gamma_{l_{t}} z_{t}\right)\left(x_{t}-\Gamma_{l_{t}} z_{t}\right)^{\prime}\right\rangle_{p\left(z_{t}, c_{t}, l_{t} \mid x_{1: T}\right)}\right] \tag{10}
\end{gather*}
$$

m_{c} is re-estimated by solving the following quartic equation:

$$
\begin{gather*}
0=\sum_{t}\left\langle\hat{\sigma}_{c}^{-2}\left(a_{t}-\widehat{m}_{c}\right)\right\rangle_{p\left(c_{t}=c, a_{t} \mid x_{1: T}\right)}-\left(M \sum_{t} \gamma_{t, c}\right) \widehat{m}_{c}^{-1}+\sum_{t}\left\langle\widehat{m}_{c}^{-3} \operatorname{tr}\left[\left(x_{t}-\Gamma_{l_{t}} z_{t}\right)\left(x_{t}-\Gamma_{l_{t}} z_{t}\right)^{\prime} \widehat{\Psi}^{-1}\right]\right\rangle_{p\left(z_{t}, c_{t}=c, l_{t} \mid x_{1: T}\right)}(\tag{11}\\
\hat{\sigma}_{c}^{2}=\frac{\sum_{t} \gamma_{t, c}\left\langle a_{t}^{2}-2 a_{t} \hat{m}_{c}\right\rangle_{p\left(a_{t} \mid x_{1: T}, c_{t}=c\right)}}{\sum_{t} \gamma_{t, c}}+\widehat{m}_{c}^{2} \tag{12}
\end{gather*}
$$

5 E-step

It can be derived from Equ. (1) that the conditional distributions $p\left(z_{t} \mid x_{t}, c_{t}, l_{t}, a_{t}\right), p\left(x_{t} \mid c_{t}, l_{t}, a_{t}\right)$ and $p\left(a_{t} \mid c_{t}, l_{t}, x_{t}\right)$ are all Gaussian distributions, whose conditional expectation and conditional covariance are given as follows:

$$
\begin{gather*}
\operatorname{Cov}\left(z_{t} \mid x_{t}, c_{t}, l_{t}, a_{t}\right)=\left(\Phi_{c_{t}}^{-1}+\Gamma_{l_{t}}^{T} \Psi^{-1} \Gamma_{l_{t}}\right)^{-1} \triangleq \Omega_{c l} \tag{13}\\
E\left(z_{t} \mid x_{t}, c_{t}, l_{t}, a_{t}\right)=\Omega_{c l}\left(\Gamma_{l_{t}}^{\prime} \Psi^{-1} x_{t}+a_{t} \Phi_{c_{t}}^{-1} \mu_{c_{t}}\right) \triangleq \zeta_{c l} \tag{14}\\
\operatorname{Cov}\left(x_{t} \mid c_{t}, l_{t}, a_{t}\right)=\Gamma_{l_{t}} \Phi_{c_{t}} \Gamma_{l_{t}}^{\prime}+\Psi \triangleq G_{c l} \tag{15}\\
E\left(x_{t} \mid c_{t}, l_{t}, a_{t}\right)=\Gamma_{l_{t}} \mu_{c_{t}} \triangleq f_{c l} \tag{16}\\
\operatorname{Cov}\left(a_{t} \mid c_{t}, l_{t}, x_{t}\right)=\left(f_{c l}^{\prime} G_{c l}^{-1} f_{c l}+\sigma_{c}^{-2}\right)^{-1} \triangleq K_{c l} \tag{17}\\
E\left(a_{t} \mid c_{t}, l_{t}, x_{t}\right)=K_{c l}\left(f_{c l}^{\prime} G_{c l}^{-1} x_{t}+\sigma_{c}^{-2} m_{c}\right) \triangleq j_{c l} \tag{18}
\end{gather*}
$$

The posteriori of c_{t} and l_{t} can be calculated using forward-backward algorithm:

$$
\begin{equation*}
p\left(c_{t}, l_{t} \mid x_{1: T}\right) \propto \alpha\left(c_{t}, l_{t}\right) \beta\left(c_{t}, l_{t}\right) \tag{19}
\end{equation*}
$$

where

$$
\begin{gather*}
\alpha\left(c_{t}, l_{t}\right) \triangleq p\left(c_{t}, l_{t}, x_{1: t}\right) \tag{20}\\
\beta\left(c_{t}, l_{t}\right) \triangleq p\left(x_{t+1: T} \mid c_{t}, l_{t}\right) \tag{21}
\end{gather*}
$$

$\alpha\left(c_{t}, l_{t}\right)$ and $\beta\left(c_{t}, l_{t}\right)$ can be derived recursively. To reduce computation cost, we perform Viterbi approximation:

$$
\begin{gather*}
\alpha\left(c_{t}, l_{t}\right)=\max _{c_{t-1}, l_{t-1}} \alpha\left(c_{t-1}, l_{t-1}\right) p\left(l_{t} \mid c_{t}, l_{t-1}\right) p\left(c_{t} \mid c_{t-1}\right) p\left(x_{t} \mid c_{t}, l_{t}\right) \tag{22}\\
\beta\left(c_{t}, l_{t}\right)=\max _{c_{t+1}, l_{t+1}} \beta\left(c_{t+1}, l_{t+1}\right) p\left(l_{t+1} \mid c_{t+1}, l_{t}\right) \cdot p\left(c_{t+1} \mid c_{t}\right) p\left(x_{t+1} \mid c_{t+1}, l_{t+1}\right) \tag{23}
\end{gather*}
$$

where $p\left(x_{t} \mid c_{t}, l_{t}\right)$ can be solved using Equ. (15)(16):

$$
\begin{gather*}
p\left(x_{t} \mid c_{t}, l_{t}\right)=\int_{a_{t}} d a_{t} p\left(a_{t} \mid c_{t}\right) p\left(x_{t} \mid c_{t}, l_{t}, a_{t}\right) \\
=\sigma_{c_{t}}^{-1} K_{c l}^{1 / 2}(2 \pi)^{-N / 2}\left|G_{c l}\right|^{-1 / 2} \exp \left[\frac{1}{2}\left(K_{c l}^{-1} j_{c l}^{2}-\sigma_{c_{t}}^{-2} m_{c_{t}}^{2}-x_{t}^{\prime} G_{c l}^{-1} x_{t}\right)\right] \tag{24}
\end{gather*}
$$

The recursions as shown in Equ. (22) and (23) are initialized as follows:

$$
\begin{gather*}
\alpha\left(c_{1}, l_{1}\right)=p\left(l_{1} \mid c_{1}\right) p\left(c_{1}\right) p\left(x_{1} \mid c_{1}, l_{1}\right) \tag{25}\\
\beta\left(c_{T}, l_{T}\right)=1 \tag{26}
\end{gather*}
$$

With these probability distributions, we can first compute several basic statistics, which is then used to derive the statistics for the M-step.

$$
\begin{gather*}
\overline{\overline{a_{t}}}=j_{c l} \tag{27}\\
\overline{\overline{a_{t}^{2}}}=j_{c l}^{2}+K_{c l} \tag{28}\\
\overline{\overline{z_{t}}}=\Omega_{c l}\left(\Gamma_{l_{t}}^{\prime} \Psi^{-1} x_{t}+j_{c l} \Phi_{c_{t}}^{-1} \mu_{c_{t}}\right) \tag{29}\\
\overline{\overline{z_{t} z_{t}^{\prime}}}=\Omega_{c l}+\Omega_{c l}\left\{K_{c l}\left(\Phi_{c_{t}}^{-1} \mu_{c_{t}}\right)\left(\Phi_{c_{t}}^{-1} \mu_{c_{t}}\right)^{\prime}\right\} \Omega_{c l} \tag{30}
\end{gather*}
$$

$$
\begin{equation*}
\overline{\overline{a_{t} z_{t}}}=\Omega_{c l}\left[j_{c l} \Gamma_{l_{t}}^{T} \Psi^{-1} x_{t}+\left(j_{c l}^{2}+K_{c l}\right) \Phi_{c_{t}}^{-1} \mu_{c_{t}}\right] \tag{31}
\end{equation*}
$$

Now we can calculate the statistics needed in M-step. Expectations in Equ. (7) are calculated as

$$
\begin{gather*}
\gamma_{t, c}\left\langle a_{t}^{2}\right\rangle_{p\left(a_{t} \mid x_{1: T}, c_{t}=c\right)}=\sum_{l} p\left(c_{t}=c, l_{t}=l \mid x_{1: T}\right) \overline{\overline{a_{t}^{2}}} \tag{32}\\
\gamma_{t, c}\left\langle a_{t} z_{t}\right\rangle_{p\left(a_{t}, z_{t} \mid x_{1: T}, c_{t}=c\right)}=\sum_{l} p\left(c_{t}=c, l_{t}=l \mid x_{1: T}\right) \overline{\overline{a_{t} z_{t}}} \tag{33}
\end{gather*}
$$

Expectation in Equ. (9) is calculated as

$$
\begin{gather*}
\gamma_{t, c}\left\langle\left(z_{t}-a_{t} \hat{\mu}_{c}\right)\left(z_{t}-a_{t} \hat{\mu}_{c}\right)^{\prime}\right\rangle_{p\left(z_{t}, a_{t} \mid x_{1: T}, c_{t}=c\right)} \\
=\sum_{l} p\left(c_{t}=c, l_{t}=l \mid x_{1: T}\right)\left(\overline{\overline{z_{t} z_{t}^{\prime}}}-\hat{\mu}_{c}{\overline{\overline{a_{t} z_{t}}}}^{\prime}-\overline{\overline{a_{t} z_{t}}} \hat{\mu}_{c}^{\prime}+\overline{\overline{a_{t}^{2}}} \hat{\mu}_{c} \hat{\mu}_{c}^{\prime}\right) \tag{34}
\end{gather*}
$$

Expectation in Equ. (10) is calculated as

$$
\begin{gather*}
\left\langle\hat{m}_{c_{t}}^{-2}\left(x_{t}-\Gamma_{l_{t}} z_{t}\right)\left(x_{t}-\Gamma_{l_{t}} z_{t}\right)^{\prime}\right\rangle_{p\left(z_{t}, c_{t}, l_{t} \mid x_{1: T}\right)} \\
=\sum_{c, l} p\left(c_{t}=c, l_{t}=l \mid x_{1: T}\right) m_{\mathrm{c}}^{-2}\left\{x_{t} x_{t}^{\prime}-\Gamma_{l} \overline{\overline{z_{t}} x_{t}^{\prime}}-x_{t}\left(\Gamma_{l} \overline{\overline{z_{t}}}\right)^{\prime}+\Gamma_{l} \overline{\overline{z_{t} z_{t}^{\prime}}} \Gamma_{l}^{\prime}\right\} \tag{35}
\end{gather*}
$$

Expectations in Equ. (11) are calculated as

$$
\begin{gather*}
\left\langle\hat{\sigma}_{c}^{-2}\left(a_{t}-\hat{m}_{c}\right)\right\rangle_{p\left(c_{t}=c, a_{t} \mid x_{1: T}\right)}=\sum_{l} p\left(c_{t}=c, l_{t}=l \mid x_{1: T}\right) \hat{\sigma}_{c}^{-2}\left(\overline{\overline{a_{t}}}-\widehat{m}_{c}\right) \tag{36}\\
\left.\left\langle\hat{m}_{c}^{-3} \operatorname{tr}\left[\left(x_{t}-\Gamma_{l_{t}} z_{t}\right)\left(x_{t}-\Gamma_{l_{t}} z_{t}\right)^{\prime} \widehat{\Psi}^{-1}\right]\right\rangle_{p\left(z_{t}, c_{t}=c, l_{t} \mid x_{1: T}\right.}\right) \\
=\sum_{l} p\left(c_{t}=c, l_{t}=l \mid x_{1: T}\right) m_{c}^{-3} \widehat{\Psi}^{-1}\left\{x_{t} x_{t}^{\prime}-\Gamma_{l} \overline{\bar{z}_{t}} x_{t}^{\prime}-x_{t}\left(\Gamma_{l} \overline{\overline{z_{t}}}\right)^{\prime}+\Gamma_{l} \overline{\overline{z_{t} z_{t}^{\prime}}} \Gamma_{l}^{\prime}\right\} \tag{37}
\end{gather*}
$$

Expectation in Equ. (12) is calculated as

$$
\begin{equation*}
\gamma_{t, c}\left\langle a_{t}^{2}-2 a_{t} \widehat{m}_{c}\right\rangle_{p\left(a_{t} \mid x_{1: T}, c_{t}=c\right)}=\sum_{l} p\left(c_{t}=c, l_{t}=l \mid x_{1: T}\right) \hat{\sigma}_{c}^{-2}\left(\overline{\overline{a_{t}^{2}}}-2 \overline{\bar{a}_{t}} \widehat{m}_{c}\right) \tag{38}
\end{equation*}
$$

