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Abstract
End-to-end speaker verification systems have received increas-
ing interests. The traditional i-vector approach trains a gen-
erative model (basically a factor-analysis model) to extract i-
vectors as speaker embeddings. In contrast, the end-to-end ap-
proach directly trains a discriminative model (often a neural
network) to learn discriminative speaker embeddings; a cru-
cial component is the training criterion. In this paper, we use
angular softmax (A-softmax), which is originally proposed for
face verification, as the loss function for feature learning in end-
to-end speaker verification. By introducing margins between
classes into softmax loss, A-softmax can learn more discrimi-
native features than softmax loss and triplet loss, and at the same
time, is easy and stable for usage. We make two contributions
in this work. 1) We introduce A-softmax loss into end-to-end
speaker verification and achieve significant EER reductions. 2)
We find that the combination of using A-softmax in training
the front-end and using PLDA in the back-end scoring further
boosts the performance of end-to-end systems under short utter-
ance condition (short in both enrollment and test). Experiments
are conducted on part of Fisher dataset and demonstrate the
improvements of using A-softmax.
Index Terms: speaker verification, A-softmax, PLDA

1. Introduction
Speaker verification is a classic task in speaker recognition,
which is to determine whether two speech segments are from
the same speaker or not. For many years, most speaker verifica-
tion systems are based on the i-vector approach [1]. The i-vector
approach trains a generative model (basically a factor-analysis
model) to extract i-vectors as speaker embeddings, and relies
on variants of probabilistic linear discriminant analysis (PLDA)
[2] for scoring in the back-end.

End-to-end speaker verification systems have received in-
creasing interests. The end-to-end approach directly trains a
discriminative model (often a neural network) to learn discrim-
inative speaker embeddings. Various neural network structures
have been explored. Some studies use RNNs to extract the iden-
tity feature for an utterance [3][4][5][6][7]. Usually, the output
at the last frame from the RNN is treated as the utterance-level
speaker embedding. Various attention mechanisms are also in-
troduced to improve the performance of RNN-based speaker
verification systems. There are also some studies based on
CNNs [3][6][8][9][10], where the f-bank features are fed into
the CNNs to model the patterns in the spectrograms.

In addition to exploring different neural network architec-
tures, an important problem in the end-to-end approach is to ex-
plore different criteria (loss functions), which drive the network
to learn discriminative features. In early studies, the features ex-
tracted by the neural networks are fed into a softmax layer and
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Figure 1: Speech Utterances are represented by small yellow
blocks. Each row represents a speaker with a number of utter-
ances. The above illustrates the verification task, which con-
sists of feature extraction and scoring. The speakers used for
training the feature extractor usually do not appear in testing.
The bottom shows the classification task. The speakers used for
training the classifier appear in testing. Namely, in testing, ut-
terances from the same set of training speakers are presented
for classification.

the cross entropy is used as the loss function. This loss is gener-
ally referred to as “softmax loss”. But the softmax loss is more
suitable for classification tasks (classifying samples into given
classes). In contrast to classification, verification is an open-
set task. Classes observed in the training set will generally not
appear in the test set. Figure 1 shows the difference between
the classification and verification tasks. A good loss for verifi-
cation should push samples in the same class to be closer, and
meanwhile drive samples from different classes further away.
In other words, we should make inter-class variances larger and
intra-class variances smaller. A number of different loss func-
tions have been proposed to address this problem [6][11][12].

Triplet loss [13] is recently proposed to take inter-class and
intra-class variances into consideration. Triplet loss based train-
ing requires a careful triplet selection procedure, which is both
time-consuming and performance-sensitive. There are some in-



teresting efforts to improve the triplet loss based training, such
as generating triplets online from within a mini-batch [13], do-
ing softmax pre-training [6]. However, training with the triplet
loss remains to be a difficult task. Our experiment of using
triplet loss yields inferior performance, compared to the i-vector
method.

Angular softmax (A-softmax) loss [14] is recently proposed
to improve the softmax loss in face verification. It enables end-
to-end training of neural networks to learn angularly discrim-
inative features. A-softmax loss introduces a margin between
the target class and the non-target class into the softmax loss.
The margin is controlled by a hyper-parameter m. The larger
m is, the better the network will perform. Compared with the
triplet loss, A-softmax is much easier to tune and monitor.

In this paper, we introduce A-softmax loss into end-to-end
speaker verification, as the loss function for learning speaker
embeddings. In [14], cosine distance is used in the back-end
scoring. Beyond of this, we study the combination of using A-
softmax in training the front-end and using PLDA in the back-
end scoring. Experiments are conducted on part of the Fisher
dataset. The neural network structure is similar to that used
by the Kaldi xvector [15]. Using A-softmax performs signifi-
cantly better than using softmax and triplet loss. The EERs of
A-softmax system are the best on almost all conditions, except
that both the enroll and the test utterances are long. It is known
that the i-vector based system performs well under such long
utterance condition [12, 8]. We also find that under short utter-
ance condition (short in both enrollment and test), using PLDA
in the back-end can further reduce EERs of the A-softmax sys-
tems.

2. Method
A-softmax loss can be regarded as an enhanced version of soft-
max loss. The posterior probability given by softmax loss is:

pi =
eW

T
i x+bi∑

j e
WT

j x+bj

where x is the input feature vector. Wi and bi are the weight
vector and bias in the softmax layer corresponding to class i,
respectively.

To illustrate A-softmax loss, we consider the two-class
case. It is trivial to generalize the following analysis to multi-
class cases. The posterior probabilities in the two-class case
given by softmax loss are:
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T
1 x+b1

eW
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The predicted label will be assigned to class 1 if p1 ≥ p2
and class 2 if p1 < p2. The decision boundary is (WT

1 −
WT

2 )x = 0, which can be rewritten as ( ‖W1‖ cos( θ1) −
‖W2‖ cos( θ2) ) ‖x‖ = 0. Here θ1, θ2 are the angles between
x and W1, W2 respectively.

There are two steps of modifications in defining A-softmax
[14]. First, when using cosine distance metric, it would be better
to normalize the weights and and zero the biases, i.e. ‖W1‖ =
‖W2‖ = 1 and b1 = b2 = 0. The decision boundary then be-
comes angular boundary, as defined by cos( θ1) − cos( θ2) =

0. However, the learned features are still not necessarily dis-
criminative. Second, [14] further proposes to incorporate angu-
lar margin to enhance the discrimination power. Specifically,
an integer m (m ≥ 2) is introduced to quantitatively con-
trol the size of angular margin. The decision conditions for
class 1 and class 2 become cos(mθ1) − cos( θ2) > 0 and
cos(mθ2) − cos( θ1) > 0 respectively. This means when
cos(mθ1) > cos( θ2) , we assign the sample to class 1; when
cos(mθ2) > cos( θ1) , we assign the sample to class 2.

Such decision conditions in A-softmax are more stringent
than in the standard softmax. For example, to correctly clas-
sify a sample x from class 1, A-softmax requires cos(mθ1) >
cos(θ2), which is stricter than cos(θ1) > cos(θ2) as required
in the standard softmax. Because that the cosine function is
monotonically decreasing in [0, π], when θ1 is in [0, π

m
], we

have cos(θ1) > cos(mθ1) > cos(θ2). It is shown in [14] that
when all training samples are correctly classified according to
A-softmax, the A-softmax decision conditions will produce an
angular margin of m−1

m+1
Θ, where Θ denotes the angle between

W1 and W2.
By formulating the above idea into the loss function, we

obtain the A-softmax loss function for multi-class cases:

L =
1
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where N is the total number of training samples. x(n) and y(n)

denote the input feature vector and the class label for the n-th
training sample respectively. θ

(n)
j is the angle between x(n)

and Wj , and thus θ(n)yn denotes the angle between x(n) and the
weight vector Wyn .

Note that in the above illustration, θ(n)yn is supposed to be in
[0, π

m
]. To remove such restriction, a new function is defined to

replace the cosine function as follows:

φ( θ(n)yn ) = (−1) k cos(mθ(n)yn ) − 2k

for θ(n)yn ∈ [ kπ
m
, (k+1)π

m
] and k ∈ [0,m− 1]. So the A-softmax

loss function is finally defined as follow:

L =
1
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By introducing m, A-Softmax loss adopts different deci-
sion boundaries for different classes (each boundary is more
stringent than the original), thus producing angular margin. The
angular margin increases with larger m and would be zero if
m = 1. Compared with the standard softmax, A-softmax
makes the decision boundary more stringent and separated,
which can drive more discriminative feature learning. Com-
pared with the triplet loss, using A-softmax loss do not need to
sample triplets carefully to train the network.

Using A-softmax loss in training is also straightfor-
ward. During forward-propagation, we use normalized net-
work weights. To facilitate gradient computation and back-
propagation, cos(θ(n)j ) and cos(mθ

(n)
yn ) can be replaced by ex-

pressions only containing W and x(n), according to the defi-
nition of cosine and multi-angle formula1. In this manner, we
can compute derivatives with respect to W and x(n), which is
similar to using softmax loss in training.

1That is the reason why we need m to be an integer.



3. Experimental Setup
This section provides a description of our experimental setup
including the data, acoustic features, baseline systems and the
neural network architectures used in our end-to-end experi-
ments. We evaluate the traditional i-vector baseline and Kaldi
xvector baseline [12, 15], which is an end-to-end speaker veri-
fication system recently released as a part of Kaldi toolkit [16].
We also conduct triplet loss experiments for comparison.

3.1. Data and acoustic features

In our experiments, we randomly choose training and evalu-
ation data from Fisher dataset, following [8]. The training
dataset consists of 5000 speakers randomly chosen from the
Fisher dataset, including 2500 male and 2500 female. This
training dataset is used to train i-vector extractor, Kaldi xvector
network, PLDA and our own network. The evaluation dataset
consists of 500 female and 500 male speakers randomly chosen
from Fisher dataset. There is no overlap in speakers between
training and evaluation data.

The acoustic features are 23 dimensional MFCCs with a
frame-length of 25ms. Mean-normalization over a sliding win-
dow of up to 3 seconds is performed on each dimension of the
MFCC features. And an energy-based VAD is used to detect
speech frames. All experiments are conducted on the detected
speech frames.

3.2. Baseline systems

Two baseline systems are evaluated. The first baseline is a tradi-
tional GMM-UBM i-vector system, which is based on the Kaldi
recipe. Delta and acceleration are appended to obtain 69 di-
mensional feature vectors. The UBM is a 2048 component full-
covariance GMM. The i-vector dimension is set to be 600.

The second baseline is the Kaldi xvector system, which is
detailed in the paper [15] and the Kaldi toolkit. We use the de-
fault setting in the Kaldi script. Basically, the system use a feed-
forward deep neural network with a temporal pooling layer that
aggregates over the input speech frames. This enables the net-
work to be trained (based on the softmax loss) to extract a fix-
dimensional speaker embedding vector (called xvector) from a
varying-duration speech segment.

3.3. PLDA back-end

After extracting the speaker embedding vectors, we need a scor-
ing module, or say a back-end, to make verification decision.
Cosine distance and Euclidean distance are classic back-ends.
Recently, likelihood-ratio score based back-ends such as PLDA
(probabilistic linear discriminant analysis) have been shown to
achieve superior performance. In [17], PLDA and various re-
lated models are compared. For consistent comparisons, Kaldi’s
implementation of PLDA, including length normalization but
without LDA dimensionality reduction, is used in all PLDA-
related experiments in this paper.

3.4. Our network architecture

Basically, we employ the same network architecture to generate
speaker embedding vectors as in Kaldi’s xvector recipe. There
are two minor differences in experiments. First, we do not use
natural gradient descent [18] to optimize the network. Instead,
we use the classic stochastic gradient descent. In our experi-
ments, the minibatch size is 1000 chunks, and each chunk con-
tains 200 speech frames. The learning rate is initialized as 0.01

Table 1: Details of our network architecture. Numbers in paren-
theses denote the input and output dimensions in each layer.
TDNN is time-delayed neural network. FC is fully connected
neural network.

utterance level layers FC 2 (512→300)
FC 1 (3000→512)

statistic pooling layer mean and standard deviation

frame level layers

TDNN 5 (512×1→1500)
TDNN 4 (512×1→512)
TDNN 3 (512×3→512)
TDNN 2 (512×3→512)
TDNN 1 (23×5→512)

and then is multiplied by 0.9 after each epoch. The training
stops when the learning rate drops to be below 0.0001, which
roughly corresponds to 100 epochs of training. Second, we use
ReLU layer [19] after batch normalization layer [20], which is
found to be more stable in training than using the two layers in
the opposite order as employed in the Kaldi xvector network.
Details of our network architecture are shown in Table 1.

4. Experimental Results
4.1. Experiment with fixed-duration enroll utterances

In the first experiment, we fix the durations of enroll utterances
to be 3000 frames after VAD. The durations of test utterances
vary in {300, 500, 1000, 1500} frames after VAD. We choose 1
enroll utterance and 3 test utterances per speaker from the eval-
uation dataset. Together we have 1, 000×3, 000 = 3, 000, 000
trials, which consist of 3, 000 target trials and 2, 997, 000 non-
target trials. The results are given in Table 2 and Figure 2, which
shows the effect of different test durations on speaker verifica-
tion performance in the long enrollment case.

Some main observations are as follows. First, using triplet
loss yields inferior performance. We follow the triplet sampling
strategy in [7], which is also time consuming.

Second, for short test condition (300 and 500 frames), A-
softmax performs significantly better than both i-vector and
xvector baseline. When testing with longer utterances (1500
frames), i-vector system performs better, which is also observed
in [12, 8]. Similar observations can be seen from Figure 2,
which shows the DET curves under 300 and 1500-frame test
conditions.

Third, to preclude the effect of the differences in network
architecture in xvector system and our network, we can compare
the results from softmax and A-softmax, both using our own
network. A-softmax outperforms traditional softmax signifi-
cantly. Compared to softmax with PLDA back-end, A-softmax
with m = 3 and cosine back-end achieves 48.46%, 58.76%,
47.14% and 41.10% EER relative reductions under 300, 500,
1000 and 1500-frame test conditions, respectively.

Forth, ideally, larger angular marginm could bring stronger
discrimination power. In practice, this does not always hold due
to the complication of neural network training, as seen from
Table 2 and Figure 2.

4.2. Experiment with equal durations of enroll and test ut-
terances

In the second experiment, we set the durations of enroll and
test utterances to be equal, varying in {300, 500, 1000, 1500}



Table 2: EERs (%) for 3000-frame enroll utterances and differ-
ent durations of test utterances. m=2, 3, 4 are for A-softmax
with m=2, 3, 4. Cosine is for cosine distance. Euclidean is for
Euclidean distance.

Durations of test utterances

Model loss
(metric) 300 500 1000 1500

ivector -
(PLDA) 1.00 0.53 0.33 0.37

xvector softmax
(PLDA) 1.86 0.83 0.40 0.43

our
network

softmax
(cosine) 1.67 1.17 0.90 0.83

softmax
(PLDA) 1.30 0.97 0.70 0.73

triplet loss
(Euclidean) 2.17 1.63 1.17 1.23

our
network

m = 2
(cosine) 0.94 0.60 0.47 0.57

m = 3
(cosine) 0.67 0.40 0.37 0.43

m = 4
(cosine) 0.70 0.47 0.33 0.47

Figure 2: DET curves with 3000-frame enrollment, under 300-
frame test condition (left) and 1500-frame test condition (right).
The models can be our network (m = 2, 3, 4 and “soft-
max+PLDA”), i-vector and xvector.

frames after VAD. The trials are created, following the same
strategy as in the first experiment. The results are given in Table
3 and Figure 3, which show the effect of different enroll and test
durations on speaker verification performance.

Some main observations are as follows. First, in this exper-
iment, we add the results of A-softmax with PLDA back-end,
which should be compared to A-softmax with cosine back-end.
For short utterance condition (short in both enrollment and test,
with 300 frames), using PLDA back-end significantly reduce
EERs of the A-softmax systems. For m = 2, 3, 4, the EER rel-
ative reductions are 25.17%, 16.00% and 8.23% respectively.
For long utterance condition (long in both enrollment and test),
using PLDA back-end does not always improve the A-softmax
systems. A possible reason is that during training, we slice the
utterances into 200-frame chunks. Both the network and the
PLDA are trained over 200-frame chunks, which consequently
work best for short utterances.

Second, we do not include the inferior result of triplet loss

Table 3: EERs (%) with equal durations of enroll and test utter-
ances.

Durations of utterances

Model loss
(metric) 300 500 1000 1500

ivector -
(PLDA) 2.93 1.57 0.50 0.47

xvector softmax
(PLDA) 3.17 1.63 0.63 0.63

our
network

softmax
(PLDA) 3.43 2.40 1.20 1.07

our
network

m = 2
(cosine) 2.90 1.57 0.77 0.83

m = 2
(PLDA) 2.17 1.33 0.73 0.80

m = 3
(cosine) 2.50 1.23 0.73 0.56

m = 3
(PLDA) 2.10 1.33 0.70 0.77

m = 4
(cosine) 2.43 1.33 0.70 0.63

m = 4
(PLDA) 2.23 1.37 0.73 0.90

Figure 3: DET curves with equal durations of enroll and test,
300-frame condition (left) and 1500-frame condition (right).

in Table 3. Compared to the i-vector and xvector baseline, the
EERs of A-softmax system are the best on almost all condi-
tions, except that both the enroll and the test utterances are long
(1000 and 1500 frames). This agree with the result in the first
experiment and also in other papers [12, 8].

Third, when comparing softmax and A-softmax, both using
our own network, A-softmax outperforms traditional softmax
significantly on all conditions.

5. Conclusions
In this work, we introduce A-softmax loss into end-to-end
speaker verification, which outperforms softmax and triplet loss
significantly, under the same neural network architecture. Fur-
thermore, we use PLDA as back-end to improve A-softmax un-
der short utterance condition. Compared with Kaldi i-vector
baseline, A-softmax achieves better performance except for
long utterance condition.
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