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LLanguage models in Speech Recognition

Speech recognition is formulated as an optimization
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Statistical language models

m a probability distribution over sequences of words

B Intuitively, we should assign the grammatical or common sentences a
higher probability, and assign the ungrammatical or uncommon sentences
a lower probability.

p(I saw a red house) > p(housered a saw I)

B Language modeling is essentially sequence modeling.



Directed graphical models

All previous words

SN
P(wy,wy, W) = HP(Wi|W1;°",Wi—1)
i=1

mapping function

l
~ HP(WL|¢(W1' ”';Wi—l) )
=1

n-gram P(Wq, oo, Wi_1) = Wi_pt1, o) W1
Assuming the current words only depending on the previous n — 1 words

RNN/LSTM ¢ (wy, ..., w;_7) is defined by a recurrent neural networks

» The language models are commonly optimized to maximize the likelihood on
the training set



Limitation of directed graphical models

® |n human language, a word may depend on the following words.
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» \Nord dependence in a sentence is not a chain structure, but a tree structure.
The following is a dependence tree.
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Undirected graphical modeling approébhés

P(wy,wy, -, wp) =?

m Dominant: Directed graphical approaches / Conditional models
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p(Wi|W1; EEEDY Wi—l)

m Alternative: Undirected graphical approaches / Random field models

Apply the a potential function to
¢ (wy wy) decode arbitrary features

P, oy W) = €0 |
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Trans-dimensional random fields (TRFs)

m Assume the sentences of length [ are distributed from an
exponential family model:

1 T o1
1. 7) — Mrx) 1=1,..,1
pl(x ,/1) Zl(/,De max

x! is a word sequence with length [;

A= (A4, ...,24)7 is the parameter vector; >
T

f(xh) = (fl(xl), ...,fd(xl)) is the feature vector;

Zi(AD) =) le’le(xl) is the normalization constant. —» B el 2 J
l X

m Assume the length lis associated with probability ;.
Therefore the pair (1, x!) is jointly distributed as:

p(l,x52) =m - pi(xh2)



Feature definition

1

ATF(x1)
Z; (1) °

pi(xh2) =

m f(xl) return the count of specific phrase observed in the input
sentence x*

x! = he is a teacher and he is also a good father.

fhe l-s(xl) = count of “he is” observed in x! = 2

fa teacher (xl) = count of “a teacher” observed in x! = 1

fshe is(xl) = count of “she is” observed in x! = 0

m  Only the phrases (including n-gram and skip n-gram of order
ranging from 1 to 10) observed in the training set are added to the
features.



Model Estimation (1) : parameter A

F
1
Recall Pz(xl;/l) = ZeXp Z/lifi(xl)
i=1

* Objective 1: maximize the log-likelihood on the training set

1 ‘max (Dl is the subset of the h
max | = — z Z lognlpl(xl;/l) training set, containing all
A, e ), the sentence of length [,

andn; = Dy, n =2y my y
ny
n=—,
n

lmax lmax

D IDIWICOEDWTENCIET.
=1 xleD, =1
/\_ /\

Expectation on Expectation under
training set model distribution pl(xl; /1) 5




Model Estimation (2): normalization constants

Z
Define { = log—l L=1, .., lnax
Zy

B Define ¢; as hypothesized values of the true {; and ¢ = ({3, ..., ;. ).
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Rewite  p(x34,0) = 7o) D Afi(x) 1= 1, s
i=1

B The marginal probability of length L is :

T e_(l'l'(ik f _ ¥
P20 = ) p(Lahag) =— 6=
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B Obijective 2:
szp(l,xl;/l, () =my, l=1,. Ly

For more details, see
Z. Tan, “Optimally adjusted mixture sampling and locally weighted histogram analysis,” Journal
of Computational and Graphical Statistics, 2017. "




Stochastic apprOX|mat|on (SA)

I Zlmax T: Ep (x42) [f(x )] lmax Zx Ele(xl)
N estimate the parameter A

Intractable!!

ny

_lep(l,xl;/l, {)=m = — 1=1, ., lnax

estimate the normalization constants ¢

m Introduction to Stochastic Approximation (SA)

Problem: The objective is to find a solution 8 to Ey_¢(.. g)[H(Y; 8)] = a, where
6 € R%, noisy observation H(Y; 8) € R%

Method:

(1) Generate Y;~K(Y;_q, ; 6:—1), a Markov transition kernel that admits

f(; 6,_1) as the invariant distribution.
(2) Setf; = O0;_\+yela — H(Y;; 0c-1)}

(1, x"): sentences of varying lengths
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Trans-dimensional mixture sampllng

Step 1: local jump
« change the sequence length
« Metropolis-Hastings method

— O000 @&,xH

propose a new length j

compute the
acceptance rate

Step 2: Markov move

» change the values at each position
* Gibbs method
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Augmented Stochastic Approximation

» Perform the trans-dimensional mixture sampling leaving p(l,xl; A) as the
stationary distribution, and get the sample set BY). (K = |BW])

t—1 t t+1
| T I |
[XKX]I—['[XX]—{XXX]—{ :CXXX]J—r 0000
|
1L B |

> Calculate the feature expectation on B to update A:

Feature expectation on

lmax
1 1
20 = (=1 4 Yaeo {E E E f(xl) - E f(xl) sample set B(®)
\ (1xD)eB® ;

=1 xlEDl .. .
the empirical variance of
features
> Calculate the length expectation on B to update ¢:
g P P
(t) (t)
((t_%) = ((t—l) +y {51(8 ) 5m(B )} 61(8(0) denotes the
¢t Foerrr _
1 T frequency of length in
_1 sample set B(®
7 = ((t‘z) ((t )
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Experiment 1.
Speech recognition on PTB-WSJ dataset

LM dataset — Penn Treebank part of WSJ dataset
— Vocabulary : 10K words
— Training data : 887K words, 42K sentences
— Development data : 70K words

Test speech — WSJ’92 test set ( 330 utterances )
— by rescoring the 1000-best list (oracle WER=0.93)

Language models
— 5-gram LMs with modified Kneser-Ney smoothing (KN5)
— Recurrent neural network (RNN) with 250 hidden units

— Long-Short Term Memory (LSTM) with 2 hidden layers and
250 units for each layer

— Trans-dimensional random field (TRF) language models

14
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Experiment 1. (
Speech recognition on PTB-WSJ datase
Vot VRt dep [ PP o) e

8.78 284.4 2.3M
RNN 7.91 257.6 5.1M
LSTM(2layer*250) 7.87 306.3 6.0M
TRF 7.89840.07 253.95+8.84 6.9M
RNN+KN5 7.996
LSTM+KN5 8.089

*TRF results are means over 10 independent
LSTM+TRF 7.585+0.06 | AugSA training runs, + standard deviation.

* TRF outperforms KN5 with 10% relative reduction.
* Results of TRF is close to RNN and LSTM. But TRF
Improves the rescoring efficiency, as it avoids the

computation of Softmax. The rescoring times for the

Type | Features

1000-best list of one utterance are:

w | (w_sw_2w_1wo)(w_2w_1wo)(w_1wo)(wo)

c (c_ac_ac_1¢0)(c_2c_1c0)(c_1¢0)(c0) TRF: 0.16s (CPU used)

ws | (w_gwo)(w_sw_swo)(w_zw_rwo)(w_swo) RNN: 40s (CPU used)
= LSTM: 105 (GPU used)

csh | (c_aco) (c—5¢c0) » Interpolated TRF and LSTM achieves the lowest WER
cpw_| (e—3c—2e—1wo) (c-2c_1wo)(c-1w0) 7.585. The relative reduction is 13.6% over KN5 and
tied ((_ 9:—6 ((J) (UJ g;_b‘-.,w(})

3.6% over LSTM, and 6.2% over LSTM+KN4



Experiment 2: -
Speech Recognition on Google 1-billion dataset

m Dataset: Google 1-billion dataset

— Training set contains 99 files and each file contains about 8
million words.

— The held-out set contains 50 files and each files contains about
160K words.

m Configuration
— We increase the training set gradually from 8M to 32M words.
— Both the developing set and the test set contain about 160K words.

m Testspeech— WSJ’92 test set ( 330 utterances )
— by rescoring the 1000-best list (oracle WER=0.93)

m LMs
— KNn: n-gram LMs with Kneser-Ney smoothing
— LSTM: with 2 hidden layers and each layer contains 250 units

16
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Experiment 2:
Speech Recognition on Google 1-billion dataset

We increase the training set gradually from 8M to
32M words and the WERs are shown in the
following figures.

_mmm LSTM+TRF trained on 32M

8.24 826 7.66 corpus achieves 6.33 WER, which
NN represents relative reduction:
747 e U « 17.4% over KN5
LSTM 7.19 6.88 6.69 e 54% over LSTM
RNN+KNg 7.60 7.66 7.43
LSTM+KNg5  7.14 6.82 6.59
RNN+TRF 7.08 7.27 6.93

LSTM+TRF  6.76 6.72 6.33

17



Qi:ﬂ;f Tsinghua University
Neural trans-dimensional random field

m Incorporate the neural network to automatic extract features

A neural network (with parameter 9),
whose output is a read number.

g

d(xq, s x1560)
. !

1
pl(xl; ey X 6) = Z—e¢(x1,...,xl;9)
l

m The log-likelihood is not a convex function with respect to the
parameter 6
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:I linear layer

summation over time

_ Pl(x 0) — ie(p(xl 9)

1 CNN-stack
az a, ] . .
H+ E B weighted summation WER(%) #param inference time
as (M) (seconds)

: CNN layer-3 8.78 0.06
— LSTM-2x200 7.96 4.6 6.36
CNN layer-2
- LSTM-2x650 7.66 19.8 6.36
| | ONN layer-1 LSTM-2x1500 7.36 66.0 9.09
; s discrete TRF 7.92 6.4 0.16
e S S CNN-bank
neural TRF 7.60 4.0 0.40

7 o LSTM-2x1500

/ max-pooling with

// width 2 and stride 1 + 7.17
7 / _ neural TRF
ltipl rolutional .
7|\ filters with varying Our neural TRF perform slightly better than

widths LSTM LMs with only 1/5 parameters and
16x faster inference efficiency.

‘G | projection layer

Bin Wang, and Zhijian Ou. "Language modeling with
Neural trans-dimensional random fields." IEEE

word embedding Automatic Speech Recognition and Understanding
Workshop (ASRU), 2017.
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Summary and future works

m Contributions

— Propose the trans-dimensional random field (TRF) models
and develop the AugSA training algorithm.

— Evaluate the TRF and AugSA on speech recognition task.
TRFs outperform the n-gram LMs and perform competitive
with NN-based LMs but being much faster in calculating
sentence probabilities.

m Future works
— Accelerate the mixture sampling.
— Incorporate other features, such as tree-structure features.
— Investigate unsupervised training
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