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Language models in Speech Recognition
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Decoding
I saw a red house

𝐹 𝑊

Word sequenceAcoustic feature vector sequence

argmax
𝑊

𝑃 𝑊|𝐹 = argmax
𝑊

𝑃 𝐹|𝑊 𝑃 𝑊

𝑃 𝐹

Language modelAcoustic model

Bayes' theorem

Speech recognition is formulated as an optimization 



Statistical language models
■ a probability distribution over sequences of words

……𝑤1 𝑤2 𝑤3 𝑤𝑙

𝑝 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑙

 Intuitively,  we should assign the grammatical or common sentences a 

higher probability, and assign the ungrammatical or uncommon sentences 

a lower probability.

𝑝 𝐼 𝑠𝑎𝑤 𝑎 𝑟𝑒𝑑 ℎ𝑜𝑢𝑠𝑒 𝑝 ℎ𝑜𝑢𝑠𝑒 𝑟𝑒𝑑 𝑎 𝑠𝑎𝑤 𝐼≫

 Language modeling is essentially sequence modeling.

3



Directed graphical models

n-gram 𝜙 𝑤1, … , 𝑤𝑖−1 = 𝑤𝑖−𝑛+1, … , 𝑤𝑖−1

Assuming the current words only depending on the previous 𝑛 − 1 words

RNN/LSTM 𝜙 𝑤1, … , 𝑤𝑖−1 is defined by a recurrent neural networks

𝑃 𝑤1, 𝑤2, ⋯ ,𝑤𝑙 =ෑ

𝑖=1

𝑙

𝑃 𝑤𝑖|𝑤1, ⋯ ,𝑤𝑖−1

≈ෑ

𝑖=1

𝑙

𝑃 𝑤𝑖|𝜙 𝑤1, ⋯ ,𝑤𝑖−1

Current word All previous words

mapping function
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 The language models are commonly optimized to maximize the likelihood on 

the training set



Limitation of directed graphical models
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 In human language, a word may depend on the following words.

上海 是 一座 名城国家 历史 文化

“一座”depends on the following“名城”

明珠一颗

上海 是 一座 名城国家 历史 文化

 Word dependence in a sentence is not a chain structure, but a tree structure. 

The following is a dependence tree.



Undirected graphical modeling approaches

■ Dominant: Directed graphical approaches / Conditional models
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𝑃 𝑤1, 𝑤2, ⋯ ,𝑤𝑙 =?

■ Alternative: Undirected graphical approaches / Random field models

𝑝 𝑤𝑖|𝑤1, … , 𝑤𝑖−1

𝑤𝑖𝑤1 … 𝑤𝑖−1

……𝑤1 𝑤2 𝑤3 𝑤𝑙

𝜙 𝑤1, … , 𝑤𝑙

𝑝 𝑤1, … , 𝑤𝑙 =
1

𝑍
𝑒𝜙 𝑤1,…,𝑤𝑙

Apply the a potential function to 

decode arbitrary features



Trans-dimensional random fields (TRFs)

■ Assume the sentences of length 𝒍 are distributed from an 
exponential family model:

𝑝𝑙 𝑥
𝑙; 𝜆 =

1

𝑍𝑙 𝜆
𝑒𝜆

𝑇𝑓 𝑥𝑙 𝑙 = 1,… , 𝑙𝑚𝑎𝑥

𝑥𝑙 is a word sequence with length 𝑙;

𝜆 = 𝜆1, … , 𝜆𝑑
𝑇 is the parameter vector;

𝑓 𝑥𝑙 = 𝑓1 𝑥𝑙 , … , 𝑓𝑑 𝑥𝑙
𝑇

is the feature vector;

𝑍𝑙 𝜆 = σ
𝑥𝑙 𝑒

𝜆𝑇𝑓 𝑥𝑙 is the normalization constant. 

need to be estimated

infeasible

■ Assume the length 𝒍 is associated with probability 𝝅𝒍. 
Therefore the pair (𝒍, 𝒙𝒍) is jointly distributed as:

𝑝 𝑙, 𝑥𝑙; 𝜆 = 𝜋𝑙 ∙ 𝑝𝑙 𝑥
𝑙; 𝜆
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Feature definition

■ 𝑓 𝑥𝑙 return the count of specific phrase observed in the input 
sentence 𝑥𝑙
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𝑝𝑙 𝑥
𝑙; 𝜆 =

1

𝑍𝑙 𝜆
𝑒𝜆

𝑇𝑓 𝑥𝑙

𝑥𝑙 = he is a teacher and he is also a good father.

𝑓ℎ𝑒 𝑖𝑠 𝑥
𝑙 = count of “he is” observed in 𝑥𝑙 = 2

𝑓𝑎 𝑡𝑒𝑎𝑐ℎ𝑒𝑟 𝑥𝑙 = count of “a teacher” observed in 𝑥𝑙 = 1

𝑓𝑠ℎ𝑒 𝑖𝑠 𝑥
𝑙 = count of “she is” observed in 𝑥𝑙 = 0

……

■ Only the phrases (including n-gram and skip n-gram of order 
ranging from 1 to 10) observed in the training set are added to the 
features.



Model Estimation (1) : parameter 𝜆

• Objective 1: maximize the log-likelihood on the training set

Recall 𝑝𝑙 𝑥
𝑙; 𝜆 =

1

𝑍𝑙
exp ෍

𝑖=1

𝐹

𝜆𝑖𝑓𝑖 𝑥
𝑙

𝐿 =
1

𝑛
෍

𝑙=1

𝑙𝑚𝑎𝑥

෍

𝑥𝑙∈𝐷𝑙

log 𝜋𝑙𝑝𝑙 𝑥
𝑙; 𝜆

𝐷𝑙 is the subset of the 
training set, containing all 
the sentence of length 𝑙, 
and 𝑛𝑙 = 𝐷𝑙 , 𝑛 = σ𝑙 𝑛𝑙

max

𝝀, 𝝅𝒍

𝜋𝑙 =
𝑛𝑙
𝑛
,

1

𝑛
෍

𝑙=1

𝑙𝑚𝑎𝑥

෍

𝑥𝑙∈𝐷𝑙

𝑓 𝑥𝑙 − ෍

𝑙=1

𝑙𝑚𝑎𝑥
𝑛𝑙
𝑛
𝐸𝑝𝑙 𝑥𝑙;𝜆 𝑓 𝑥𝑙 = 0

Expectation on 
training set

Expectation under 

model distribution 𝑝𝑙 𝑥
𝑙; 𝜆 9



Model Estimation (2): normalization constants

 Define 𝜁𝑙 as hypothesized values of the true 𝜁𝑙
∗ and 𝜁 = 𝜁1, … , 𝜁𝑙𝑚𝑎𝑥

. 

𝜁𝑙
∗ = log

𝑍𝑙
𝑍1

𝑙 = 1, … , 𝑙𝑚𝑎𝑥Define

𝑝𝑙 𝑥
𝑙; 𝜆, 𝜁 =

1

𝑍1𝑒
𝜁𝑙
exp ෍

𝑖=1

𝐹

𝜆𝑖𝑓𝑖 𝑥
𝑙 𝑙 = 1, … , 𝑙𝑚𝑎𝑥Rewrite

𝑝 𝑙; 𝜆, 𝜁 =෍

𝑥𝑙

𝑝 𝑙, 𝑥𝑙; 𝜆, 𝜁 =
𝜋𝑙𝑒

−𝜁𝑙+𝜁𝑙
∗

σ𝑗=1
𝑚 𝜋𝑙𝑒

−𝜁𝑗+𝜁𝑗
∗

if 𝜁𝑙 = 𝜁𝑙
∗

𝜋𝑙

σ
𝑥𝑙 𝑝 𝑙, 𝑥𝑙; 𝜆, 𝜁 = 𝝅𝒍,     𝒍 = 𝟏, … , 𝒍𝒎𝒂𝒙

 The marginal probability of length 𝑙 is :

 Objective 2:

For more details, see

Z. Tan, “Optimally adjusted mixture sampling and locally weighted histogram analysis,” Journal 

of Computational and Graphical Statistics, 2017. 10



Stochastic approximation (SA)

■ Introduction to Stochastic Approximation (SA)

σ𝑙=1
𝑙𝑚𝑎𝑥 𝑛𝑙

𝑛
𝐸𝑝𝑙 𝑥𝑙;𝜆 𝑓 𝑥𝑙 =

1

𝑛
σ𝑙=1
𝑙𝑚𝑎𝑥σ

𝑥𝑙∈𝐷𝑙
𝑓 𝑥𝑙 ,

σ
𝑥𝑙 𝑝 𝑙, 𝑥𝑙; 𝜆, 𝜁 = 𝜋𝑙 =

𝑛𝑙

𝑛
,     𝑙 = 1,… , 𝑙𝑚𝑎𝑥

estimate the parameter 𝜆

estimate the normalization constants 𝜁
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Intractable!!

Problem: The objective is to find a solution 𝜃 to  𝐸𝑌~𝑓 ∙; 𝜃 𝐻 𝑌; 𝜃 = 𝛼, where 

𝜃 ∈ 𝑅𝑑, noisy observation 𝐻 𝑌; 𝜃 ∈ 𝑅𝑑

Method:
(1) Generate 𝑌𝑡~𝐾 𝑌𝑡−1,∙ ; 𝜃𝑡−1 , a Markov transition kernel that admits 

𝑓 ∙; 𝜃𝑡−1 as the invariant distribution.
(2) Set 𝜃𝑡 = 𝜃𝑡−1 + 𝛾𝑡 𝛼 − 𝐻 𝑌𝑡; 𝜃𝑡−1

(𝑙, 𝑥𝑙): sentences of varying lengths



Trans-dimensional mixture sampling
Step 1: local jump
• change the sequence length
• Metropolis-Hastings method

Step 2: Markov move
• change the values at each position
• Gibbs method

or

𝑙𝑡, 𝑥𝑡

propose a new length 𝑗

compute the 

acceptance rate

or

or

𝑙𝑡, 𝑥1
𝑡, 𝑥2

𝑡 , 𝑥3
𝑡 , 𝑥4

𝑡

𝑥1
𝑡+1 ∼ 𝑝 ∙, 𝑥2

𝑡 , 𝑥3
𝑡 , 𝑥4

𝑡

𝑥2
𝑡+1 ∼ 𝑝 𝑥1

𝑡+1,∙, 𝑥3
𝑡 , 𝑥4

𝑡

𝑗 < 𝑙𝑡

𝑗 > 𝑙𝑡

𝑙𝑡

𝑗 < 𝑙𝑡

𝑗 > 𝑙𝑡
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𝑥3
𝑡+1 ∼ 𝑝 𝑥1

𝑡+1, 𝑥2
𝑡+1,∙, 𝑥4

𝑡

𝑥4
𝑡+1 ∼ 𝑝 𝑥1

𝑡+1, 𝑥2
𝑡+1, 𝑥3

𝑡+1,∙



Augmented Stochastic Approximation

 Perform the trans-dimensional mixture sampling leaving 𝑝 𝑙, 𝑥𝑙; 𝜆 as the 

stationary distribution, and get the sample set 𝐵 𝑡 . (𝐾 = 𝐵 𝑡 )

𝐵 𝑡

𝑡𝑡 − 1 𝑡 + 1

𝜆 𝑡 = 𝜆 𝑡−1 + 𝛾𝜆,𝑡𝜎
−1

1

𝑛
෍

𝑙=1

𝑙𝑚𝑎𝑥

෍

𝑥𝑙∈𝐷𝑙

𝑓 𝑥𝑙 −
1

𝐾
෍

𝑙,𝑥𝑙 ∈𝐵 𝑡

𝑓 𝑥𝑙

𝜁
𝑡−
1
2 = 𝜁 𝑡−1 + 𝛾𝜁,𝑡

𝛿1 𝐵 𝑡

𝜋1
, … ,

𝛿𝑚 𝐵 𝑡

𝜋𝑚

𝜁 𝑡 = 𝜁
𝑡−
1
2 − 𝜁1

𝑡−
1
2

 Calculate the feature expectation on 𝐵 𝑡 to update 𝜆:

 Calculate the length expectation on 𝐵 𝑡 to update 𝜁:

the empirical variance of 
features

Feature expectation on 

sample set 𝐵 𝑡

𝛿𝑙 𝐵
𝑡 denotes the 

frequency of length 𝑙 in 

sample set 𝐵 𝑡
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Experiment 1: 
Speech recognition on PTB-WSJ dataset

■ LM dataset – Penn Treebank part of WSJ dataset

– Vocabulary              : 10K words

– Training data            : 887K words, 42K sentences

– Development data     :  70K words

■ Test speech — WSJ’92  test set ( 330 utterances )

– by rescoring the 1000-best list（oracle WER=0.93）

■ Language models

– 5-gram LMs with modified Kneser-Ney smoothing (KN5)

– Recurrent neural network (RNN) with 250 hidden units

– Long-Short Term Memory (LSTM) with 2 hidden layers and 
250 units for each layer

– Trans-dimensional random field (TRF) language models

14



Experiment 1: 
Speech recognition on PTB-WSJ dataset
Models WER(± std. dev.) PPL(± std. dev.) #feat

KN5 8.78 284.4 2.3M

RNN 7.91 257.6 5.1M

LSTM(2layer*250) 7.87 306.3 6.0M

TRF 7.898±0.07 253.95±8.84 6.9M

RNN+KN5 7.996

LSTM+KN5 8.089

LSTM+TRF 7.585±0.06

*TRF results are means over 10 independent 

AugSA training runs, ± standard deviation.

• TRF outperforms KN5 with 10% relative reduction.

• Results of TRF is close to RNN and LSTM. But TRF 

improves the rescoring efficiency, as it avoids the 

computation of Softmax. The rescoring times for the 

1000-best list of one utterance are:

TRF: 0.16s  (CPU used)

RNN: 40s (CPU used)

LSTM: 10s (GPU used)

• Interpolated TRF and LSTM achieves the lowest WER 

7.585. The relative reduction is 13.6% over KN5 and 

3.6% over LSTM, and 6.2% over LSTM+KN415



Experiment 2:
Speech Recognition on Google 1-billion dataset

■ Dataset: Google 1-billion dataset

– Training set contains 99 files and each file contains about 8 
million words.

– The held-out set contains 50 files and each files contains about 
160K words.

■ Configuration

– We increase the training set gradually from 8M to 32M words.

– Both the developing set and the test set contain about 160K words.

■ Test speech — WSJ’92  test set ( 330 utterances )

– by rescoring the 1000-best list（oracle WER=0.93）

■ LMs

– KNn: n-gram LMs with Kneser-Ney smoothing 

– LSTM: with 2 hidden layers and each layer contains 250 units
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Experiment 2:
Speech Recognition on Google 1-billion dataset

LMs 8M 16M 32M

KN5 8.24 8.26 7.66

RNN 7.47 7.73 7.73

LSTM 7.19 6.88 6.69

TRF 7.08 7.17 7.10

RNN+KN5 7.60 7.66 7.43

LSTM+KN5 7.14 6.82 6.59

RNN+TRF 7.08 7.27 6.93

LSTM+TRF 6.76 6.72 6.33

We increase the training set gradually from 8M to 

32M words and the WERs are shown in the 

following figures.

LSTM+TRF trained on 32M 

corpus achieves 6.33 WER, which 

represents relative reduction: 

• 17.4% over KN5

• 5.4% over LSTM

• 4.0% over LSTM+KN5

17



Neural trans-dimensional random fields

■ Incorporate the neural network to automatic extract features
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……𝑥1 𝑥2 𝑥3 𝑥𝑙

𝜙 𝑥1, … , 𝑥𝑙; 𝜃

𝑝𝑙 𝑥1, … , 𝑥𝑙; 𝜃 =
1

𝑍𝑙
𝑒𝜙 𝑥1,…,𝑥𝑙;𝜃

A neural network (with parameter 𝜃),
whose output is a read number.

■ The log-likelihood is not a convex function with respect to the 
parameter 𝜃
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Bin Wang, and Zhijian Ou. "Language modeling with 

Neural trans-dimensional random fields." IEEE 

Automatic Speech Recognition and Understanding 

Workshop (ASRU), 2017.

𝑝𝑙 𝑥
𝑙; 𝜃 =

1

𝑍𝑙
𝑒𝜙 𝑥𝑙;𝜃

Model WER(%)
#param
(M)

inference time 
(seconds)

KN5 8.78 2.3 0.06

LSTM-2x200 7.96 4.6 6.36

LSTM-2x650 7.66 19.8 6.36

LSTM-2x1500 7.36 66.0 9.09

discrete TRF 7.92 6.4 0.16

neural TRF 7.60 4.0 0.40

LSTM-2x1500

+

neural TRF

7.17

Our neural TRF perform slightly better than 

LSTM LMs with only 1/5 parameters and 

16x faster inference efficiency.



Summary and future works

■ Contributions

– Propose the trans-dimensional random field (TRF) models 
and develop the AugSA training algorithm.

– Evaluate the TRF and AugSA on speech recognition task. 
TRFs outperform the n-gram LMs and perform competitive 
with NN-based LMs but being much faster in calculating 
sentence probabilities.

■ Future works

– Accelerate the mixture sampling.

– Incorporate other features, such as tree-structure features.

– Investigate unsupervised training
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