THU-USC Workshop

Advances in Image and Video Segmentation

Yu-Jin ZHANG

Department of Electronic Engineering Tsinghua University, Beijing 100084, CHINA

Outline

- Introduction
- An Overview of Segmentation in Last 40 Years
- Some Examples: Image Segmentation, Video Segmentation, Segmenting Particular Images, Special Segmentation Applications
- A General Framework for Segmentation and Its Evaluation
- A Summary of Recent Progresses for **Segmentation Evaluation**
- **Concluding Remarks** YJ ZHANG

2 /40

Introduction

- Image (Video) Segmentation ≻ A process consists of subdividing an image into
- its constituent parts and extracting these parts of interest (objects) from the image
- \triangleright A critical process for image engineering
- ≻ A focused research topic for more than 40 years
- \geq There is no general theory for image segmentation, yet. So ad hoc techniques are often developed

YIZHANG

3 /40

5 /40

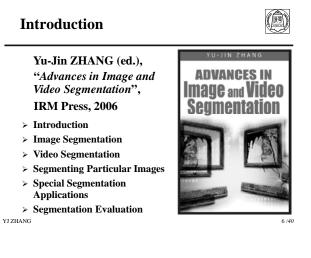
Introduction

Three Levels of Research

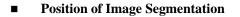
Research works on image and video segmentation are currently conducted in three levels:

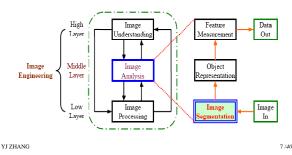
- (0) Base level: Segmentation algorithm development
- Middle level: (1) Evaluation of segmentation techniques
- (2)Top level: Systematic study and comparison of evaluation

YIZHANG

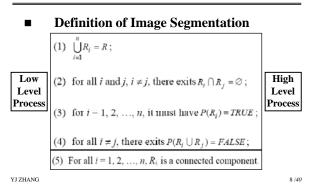

4 /40

Introduction


Few Specialized Books Being Published


- ⊳ Gerbrands, J.J. Segmentation of Noisy Images. Ph.D. dissertation, Delft University, The Netherlands, 1988
- ⊳ Medioni, G., Lee, M. S., Tang, C. K. A. Computational Framework for Segmentation and Grouping. Elsevier, 2000
- ⊳ Zhang, Y.J. Image Segmentation. Science Press, 2001

YJ ZHANG



An Overview of Segmentation in Last 40 Years

An Overview of Segmentation in Last 40 Years

An Overview of Segmentation in Last 40 Years

■ Number of Developed Algorithms (1)

- The history of segmentation of digital images using computers could be traced back to more than 40 years' ago [Roberts 1965]
- > Over the last 40 years, the research and development of segmentation techniques are going on steadily and have resulted a large number of developed algorithms
- It is estimated 10 years' ago that the number of developed algorithm has attend 4 digits

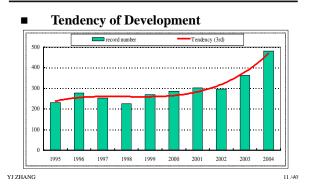
YJ ZHANG

Last 40 Years

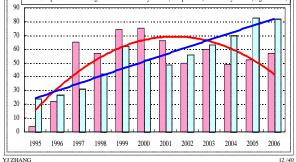
An Overview of Segmentation in

Number of Developed Algorithms (2)

⇒ Search the number of records by using the term "image segmentation" only in the title field from "EI Compendex" gives the following results:


1965-19	94	1995	5	1996	1997	1998	1999
965		232		278	253	226	268
2000	20	001	2	2002	2003	2004	Total
287	3	03		297	364	481	4344

YJ ZHANG


9 /40

10 /40

An Overview of Segmentation in Last 40 Years

An Overview of Segmentation in Last 40 Years

An Overview of Segmentation in Last 40 Years

13 /40

Summary of Survey Papers (1) A number of survey papers for general image segmentation algorithms:

- 1975-1984: [Davis, 1975]; [Zucker, 1976];
 [Riseman, 1977]; [Zucker, 1977]; [Weszka, 1978];
 [Fu, 1981]; [Rosenfeld, 1981]; [Peli, 1982];
- 1985-1994: [Haralick, 1985]; [Nevatia, 1986];
 [Pavlidis, 1986]; [Borisenko, 1987]; [Sahoo, 1988];
 [Buf, 1990]; [Sarkar, 1993]; [Pal, 1993]

YJ ZHANG

An Overview of Segmentation in Last 40 Years

Summary of Survey Papers (3)

Various theories and models have been employed, for example:

Brownian string, Evolution theory, Expert system, Fractal, Fuzzy logic, Gabor filter, Gaussian mixture model, Genetic algorithm, Gibbs random field, Graph theory, Hidden Markov model, Level set, Markov random field, Neural network, Rough set, Simulated annealing, Wavelet,

YJ ZHANG

Some Examples: Image Segmentation

15 /40

Graph Theory

This graph-partitioning task is solved as a variant of the min-cut problem (normalized cut) using a Hierarchical Social (HS) meta-heuristic.

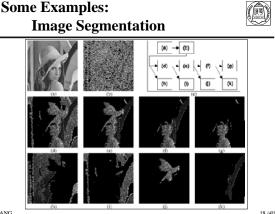
An Overview of Segmentation in Last 40 Years

- Summary of Survey Papers (2)
 - All these survey papers are dated in the second and third decades
 - The reason for no survey in the first decade should be that the research results were just cumulating in that period
 - The reason for no survey in the last decade might be attributed to the factor that so many techniques have already been presented, thus a comprehensive survey becomes less feasible

YJ ZHANG

14 /40

An Overview of Segmentation in Last 40 Years

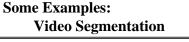

Summary of Survey Papers (4)

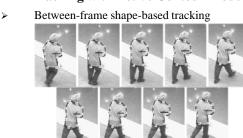
Some specialized / particular surveys have been published in the last 10 years

- Focused on particular group of segmentation algorithms: [Olabarriaga, 2001], [Freixenet, 2002], [Behiels, 2002], [Marcello, 2004]
- Focused on a particular application of image segmentation: [Pham, 2000], [Koprinska, 2001], [Lefèvre, 2003], [Kirbas, 2003], [Prati, 2003]

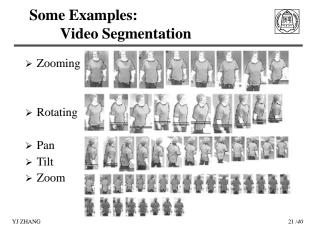
YJ ZHANG

16 /40

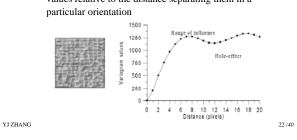

3

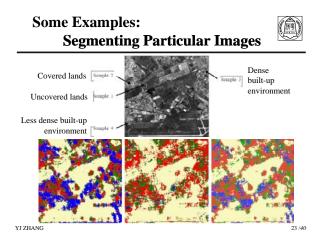

- **Tracking with Active Contour Model**
- > Within-frame shape fitting

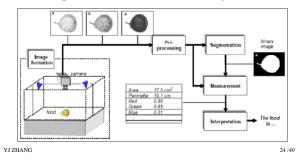
YJ ZHANG

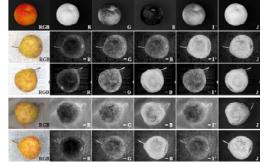


Tracking with Active Contour Model


YJ ZHANG


20 /40


Variagram: Graphs measure the difference between grade values relative to the distance separating them in a



Some Examples:	
Some Examples: Special Segmentation Applications	

Segmentation in Food Industry

Some Examples: Special Segmentation Applications

YJ ZHANG

25 /40

A General Framework for **Segmentation and Its Evaluation**

26 /40

Reference

impirical screpanc

28/40

ANE

Segmentation Evaluation

A General Framework for

Segmentation and Its Evaluation

Pre-process

Segmentation

Post-proces

Input

Outp

- None of the developed segmentation algorithms ۶ are generally applicable to all kinds of images, and different algorithms are not equally suitable for a particular application
- ≻ Necessity of evaluation has been justified
- The history of segmentation evaluation could be ⊳ traced back to 30 years' ago [Fram 1975]
- More than 100 major works have been reported ≻

YJ ZHANG

Analytical Methods

Algorithms

Empirical Goodness

Method

YIZHANG

A General Framework for **Segmentation and Its Evaluation**

- Segmentation Characterization -Intra-technique task
- **Segmentation Comparison** Inter-technique task
- **Qualitative Evaluation** ٠ Ranking: good, acceptable, or unacceptable
- **Ouantitative Evaluation** Numeral score values: [0, 1]

YIZHANG

A General Framework for

27/40

Segmentation and Its Evaluation

- **Analytical Method**
- **Empirical Goodness Method** Un-supervised, Standalone
- **Empirical Discrepancy Method** Supervised, Relative objective

Analytical •Empirical { goodness discrepancy

29/40

A General Framework for Segmentation and Its Evaluation

	Class	Criterion name	Method group
	G-1	Intra-region uniformity	Goodness
	G-2	Inter-region contrast	Goodness
	G-3	Region shape	Goodness
	G-4	Moderate number of regions	Goodness
	D-1	Number of mis-segmented pixels	Discrepancy
	D-2	Position of mis-segmented pixels	Discrepancy
	D-3	Number of objects in the image	Discrepancy
	D-4	Feature values of segmented objects	Discrepancy
	D-5a	Region consistency	Discrepancy
	D-5b	Grey level difference	Discrepancy
	D-5c	Symmetric divergence (cross-entropy)	Discrepancy
	S 1	Amount of editing operations	Special
	\$2	Visual inspection	Discrepancy like
	\$3	Correlation between original image and bi-level image	Goodness like
ANG			•

YJ ZHANG

A Summary of Recent Progresses for Segmentation Evaluation

New Progresses in Segmentation Evaluation

Three Categories:

Recent evaluation works, mainly according to the criteria used, can be classified into three categories

- (1) Evaluation Works Based on Existing Criteria
- (2) Evaluation Works Made with Modifications / Improvements (of existing criteria)
- (3) Evaluation Works Supplying New Inspiration

YJ ZHANG

A Summary of Recent Progresses for Segmentation Evaluation

Evaluation Works Based on Existing Criteria

Method #	Source	Criteria used	Method #	Source	Criteria used
M-1	(Hoover, 1996)	D-5a	M-10	(Huo, 2000)	D-1, D-4
M-2	(Zhang, 1997)	D-4	M-11	(Cavallaro, 2002)	D-1, D-2
M-3	(Borsotti, 1998)	G-1, G-2, G-4	M-12	(Prati, 2003)	D-1
M-4	(Xu, 1998)	S-3	M-13	(Rosin, 2003)	D-1
M-5	(Chang, 1999)	D-5a	M-14	(Lievers, 2004)	G-1
M-6	(Yang,1999)	D-1	M-15	(Marcello, 2004)	S-2
M-7	(Mattana, 1999)	D-4	M-16	(Renno, 2004)	D-1, D-4
M-8	(Rosenberger, 2000)	G-1, G-2	M-17	(Carleer, 2004)	D-1, D-3
M-9	(Betanzos, 2000)	D-1	M-18	(Ladak, 2004)	D-1, S-1

YJ ZHANG

A Summary of Recent Progresses for Segmentation Evaluation

31 /40

Evaluation Works Made with Modifications / Improvements (of existing criteria)

Method #	Source	Criteria used (modification)
M-19	(Oberti, 1999)	D-1 (ROC, curve of FP vs. FN)
M-20	(Gao, 2000)	D-1 (ROC, curve of FP vs. FN)
M-21	(Correia, 2000)	D-1 (with spatial and temporal extension)
M-22	(Udupa, 2002)	D-1, S-1 like (efficiency)
M-23	(Li, 2003)	D-1 and D-2, (contour matching, temporal consistency), S-1
M-24	(Zhang, 2004)	G-1, G-2, G-4 (using region entropy)
M-25	(Erdem, 2004)	G-1, G-2 (with extension to color, motion, color histograms)
M-26	(Niemeijer, 2004)	D-1 (ROC, curve of TP vs. FP)
M-27	(Udupa, 2004)	D-1 (DOC, curve of TP vs. FP)
M-28	(Kim, 2004)	D-1 (PDR, modified detection rate)

YJ ZHANG

YIZHANG

A Summary of Recent Progresses for Segmentation Evaluation

Evaluation Works Supplying New Inspiration

Method #	Source	Novelty
M-29	(Everingham, 2002)	Finding out the Pareto front in a multi-dimensional fitness space
M-30	(Li, 2003)	Finding out the Pareto front in a 4-D fitness space
M-31	(Correia, 2003)	Using contextual relevance metric to match human visual system (HVS)
M-32	(Zhang, 2005)	Using weighted majority (WM), Bayesian and support vector machine (SVM)
M-33	(Desurmont, 2005)	Performing evaluation in different semantic levels

34 /40

A Summary of Recent Progresses for Segmentation Evaluation

Some Observations

- Most new works based on existing criteria use 6 empirical discrepancy criteria
- Many new works made with modifications / ۶ improvements on existing criteria use ROC and its variations: DOC, PDR
- ۶ New inspirations are mainly on how to combine several criteria into a composite criterion

YJ ZHANG

Concluding Remarks

Numbers of Works Made

Level	Description	Publication #
$\begin{array}{c} 0\\ f(x) \end{array}$	Segmentation Algorithms	<i>O</i> (10 ³)
$\frac{1}{f'(x)}$	Technique Evaluation	<i>O</i> (10 ²)
$\begin{array}{c} 2 \\ f''(x) \end{array}$	Comparison of Evaluation Methods	<i>O</i> (10 ¹)

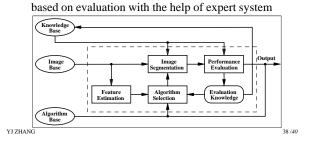
35 /40

36 /40

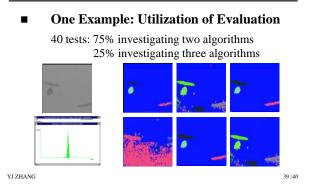
Concluding Remarks

Potential Research Directions

- (1) Combine multiple metrics efficiently
- (2) Make evaluation in considering the final goal of segmentation
- (3) Construct common databases for segmentation evaluation
- (4) Characterize and compare various evaluation methods
- (5) Real use of evaluation results for segmentation


YJ ZHANG

37 /40


Concluding Remarks

• One Example: Utilization of Evaluation Optimal selection of segmentation algorithms

Concluding Remarks

Thanks for Your Attention !

- > Department of Electronic Engineering
- > Tsinghua University, Beijing 100084, China
- ➤ Tel: +86-10-62781430
- **≻ Fax:** +86-10-62770317
- > E-mail: <u>zhang-yj@mail.tsinghua.edu.cn</u>
- > H-page: www.ee.tsinghua.edu.cn/~zhangyujin/
- > L-Web: image.ee.tsinghua.edu.cn

YJ ZHANG

40 /40