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Distributed Machine Learning Based Downlink
Channel Estimation for RIS Assisted
Wireless Communications

Linglong Dai

Abstract—The downlink channel estimation requires a huge
pilot overhead in the reconfigurable intelligent surface (RIS)
assisted communication system. By exploiting the powerful learn-
ing ability of the neural network, the machine learning (ML)
technique can be used to estimate the high-dimensional channel
from a few received pilot signals at the user. However, since
the training dataset collected by the single user only contains
the information of part of the channel scenarios of a cell, the
neural network trained by the single user is not able to work
when the user moves from one channel scenario to another.
To solve this challenge, we propose to leverage the distributed
machine learning (DML) technique to enable the reliable down-
link channel estimation. Specifically, we firstly build a downlink
channel estimation neural network shared by all users, which
can be collaboratively trained by the BS and the users with
the help of the DML technique. Then, we further propose a
hierarchical neural network architecture to improve the channel
estimation accuracy, which can extract different channel features
for different channel scenarios. Simulation results show that
compared with the neural network trained by the single user,
the proposed DML based neural networks can achieve better
estimation performance with the reduced pilot overhead for all
users from different scenarios.

Index Terms—Distributed machine learning, reconfigurable
intelligent surface (RIS), channel estimation.

I. INTRODUCTION

ECENTLY, reconfigurable intelligent surface (RIS) is

proposed as a potential technology for future 6G wireless
communications [1]. Specifically, RIS is a surface composed
of a large number of controllable elements made of low-cost
passive components, where each RIS element can adjust the
incident signal independently [2]. With the help of the RIS, the
communication environment can be controlled intelligently by
optimizing the coefficients of RIS elements to satisfy different
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communication requirements [3]. Thanks to its low-cost and
configurability, RIS has been used to assist many communica-
tion applications. For example, by reasonably deploying RIS
in the cell, RIS is able to overcome the blockage of the line of
sight (LoS) path, particularly for millimeter-wave (mmWave)
and terahertz (THz) communications [4], [5].

In the RIS assisted communication system, the base sta-
tion (BS) sends downlink data to the user via the RIS [6].
However, the downlink channel estimation is a big challenge
due to the introduction of the RIS. Specifically, since all RIS
elements are passive, the channel between the BS and the RIS
and the channel between the RIS and the user are difficult to
be estimated separately. Generally, the user can only estimate
the cascaded channel from the BS to the RIS and then from
the RIS to the user. The cascaded channel estimation problem
can be solved by some classical algorithms, such as least
square (LS) [7], or minimum mean squared error (MMSE) [8].
However, the number of elements of the cascaded channel
is equal to the product of the number of antennas at the
BS and the number of RIS elements. As a result, compared
with the conventional massive multiple-input multiple-output
(MIMO) channel estimation without RIS, the required pilot
overhead of the cascaded channel estimation for the above
classical algorithms increases significantly in the RIS assisted
communication system.

A. Prior Works

There have been some schemes recently proposed to reduce
the required pilot overhead of the cascaded channel estima-
tion for the RIS assisted communication system. Specifically,
a multi-user correlation based cascaded channel estimation
scheme was proposed in [9], where the total number of
elements to be estimated for all users can be reduced at the
BS. Moreover, by considering the double-structured sparsity
of the multi-user angular cascaded channels, a multi-user joint
cascaded channel estimation scheme with the compressive
sensing (CS) tools was proposed to further reduce the pilot
overhead [10]. However, most of existing overhead-reduced
channel estimation schemes are proposed for the uplink chan-
nel estimation, where cascaded channels for all users can
be estimated jointly to reduce the pilot overhead [9], [10].
By contrast, the downlink channel estimation is performed
by each user independently, since the received pilot signals
cannot be shared among different users. Therefore, these
overhead-reduced multi-user joint uplink channel estimation
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schemes are no longer suitable for the downlink channel
estimation.

Some machine learning (ML) techniques can be used to
reduce the required pilot overhead of the downlink channel
estimation. Specifically, the user can deploy the deep neural
network (DNN) to map a nonlinear relationship between
the low-dimensional signals and the high-dimensional down-
link channel. By considering the correlation of adjacent
RIS elements, an ordinary differential equation (ODE) based
convolution neural network (CNN) was proposed to con-
struct the entire high-dimensional cascaded channel from
the low-dimensional sampled cascaded channel. The sampled
cascaded channel is only corresponding to a small part of
RIS elements, which can be estimated by the LS algorithm
with low pilot overhead [11]. In order to further improve
the estimation accuracy with low pilot overhead, a denoising
CNN based cascaded channel estimation scheme was proposed
by combing the CS algorithms with the denoising neural
network [12]. However, the communication environment of
different locations is different for the entire cell, which can be
divided into different channel scenarios. The training dataset
collected by the single user is limited, which only contains
the information of part of the channel scenarios in the entire
cell. Therefore, when the user moves from one channel sce-
nario to another, the trained DNN by the single user cannot
work [11], [12].

B. Our Contributions

In this paper, for the RIS assisted communication system,
we leverage the distributed machine learning (DML) technique
to enable the reliable downlink channel estimation with the
reduced pilot overhead.! Our main contributions are summa-
rized as follows.

1) We leverage the DML technique to train a downlink
channel estimation neural network to enable it to work
when the user moves from one channel scenario to
another in a cell. Specifically, we build a global neural
network shared by the BS and all users, which can
be jointly trained based on the local training datasets
available at all users. During the training process, each
user firstly calculates the gradient vector of the weights
of the global neural network on its own local training
dataset. Then, all gradient vectors from all users are
uploaded to the BS. The BS updates the weights of the
global neural network based on all uploaded gradient
vectors. Finally, the BS broadcasts the updated weights
to all users for the next training iteration. By leveraging
this DML based training method, the downlink channel
estimation neural network can be trained by different
training datasets from different channel scenarios. When
the user moves from one channel scenario to another,
the trained neural network can still work. However,
since different channel scenarios have different channel
features, the single neural network architecture cannot

!'Simulation codes are provided to reproduce the results presented in this
article: http://oa.ee.tsinghua.edu.cn/dailinglong/publications/publications.html.
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achieve the accurate channel estimation in different
channel scenarios.

2) In order to further improve the channel estimation
accuracy, we propose a DML based hierarchical neural
network architecture to extract different channel features
in different channel scenarios. Specifically, the proposed
hierarchical neural network consists of three parts: the
scenario classifier, the feature extractors, the feature
mapper. Firstly, the received pilot signals are input to
the scenario classifier to predict which scenario the
channel to be estimated belongs to. Then, we design
a corresponding feature extractor for each channel sce-
nario. Based on the output of the scenario classifier, the
received pilot signals are input to the corresponding fea-
ture extractor to extract the channel feature. Finally, the
extracted channel feature is input to the feature mapper
to construct the downlink cascaded channel. Moreover,
we propose the DML based hierarchical training method
to train the proposed hierarchical neural network, where
the scenario classifier is trained separately, while the
feature extractors and the feature mapper are jointly
trained.

3) We provide the simulation results to verify the channel
estimation performance of the proposed schemes. Com-
pared with the channel estimation neural network only
trained by the single user, the proposed DML based
neural networks can work well when the users from
one scenario to another in a cell. Further, the proposed
hierarchical neural network architecture can achieve
better channel estimation accuracy than the single neural
network architecture.

C. Organization and Notation

The rest of the paper is organized as follows. In Section II,
we introduce the system model in the RIS assisted communi-
cation system and review the basic principle of the downlink
channel estimation neural network. In Section III, we first
propose to leverage the DML technique to train the downlink
channel estimation neural network, and then further propose
the hierarchical neural network architecture to improve the
estimation accuracy. The computational complexity of the two
proposed schemes is also analyzed in Section III. Simulation
results and conclusions are given in Section IV and Section V,
respectively.

Notation: Lower-case and upper-case boldface letters a
and A denote a vector and a matrix, respectively; A and
AT denote the conjugate transpose and transpose of matrix A,
respectively; diag (a) denotes the diagonal matrix with the
vector a on its diagonal; ||a||, denotes the ls-norm of vector a;
A®B denotes the Kronecker product of A and B.

II. SYSTEM MODEL

In this section, we first introduce the RIS assisted wireless
communication system. Then, the downlink channel estimation
problem at the user is formulated. Finally, the basic prin-
ciple of the downlink channel estimation neural network is
presented.
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Fig. 1. The RIS assisted wireless communication system.

A. Signal Model

We consider a RIS assisted single-cell narrowband wireless
communication system, as shown in Fig. 1, where the BS
employing the M -antenna uniform planer array (UPA) com-
municates with multiple single-antenna users. An RIS with
N reflecting elements is deployed between the BS and the
users to enhance communication. The RIS can be controlled
by the BS via a separate wireless link [3], [5], [8]. The entire
cell can be divided into R regions, where the corresponding
channel features of the users located in the same region are
similar, while the channel features of the users located in
different regions are different. In this paper, the different
regions also refer to the different channel scenarios. We can
define different channel scenarios based on different factors,
such as the angles of the channels, the distance from the
current location to BS and so on. When the user moves from
one channel scenario to another, the channel features may
change greatly. We denote that the number of users located
in rth region is C. (r =1,2,--- | R).

In this paper, the frequency division duplex (FDD) mode
is considered in the RIS assisted system [13], [14], where
the uplink and downlink channels are not reciprocal® It is
noted that this paper only focuses on how to obtain the
channel state information of the reflecting link, while the direct
channels between the BS and the users can be estimated as in
conventional massive MIMO systems only by turning off all
RIS elements.?

Let G € CN*M denote the channel from the BS to the
RIS, and £, € C'™N denote the channel from the RIS to
the kth user (k = 1,2,---,C,) located in the rth region.
Assuming the BS transmits the signal to the users via the
reflecting link with the RIS, the downlink transmission signal
model after removing the impact of the direct channel is given
by

Yrk = Lk PGW, L2 1 + N ks (1)

ZNote that even in the time division duplex (TDD) mode, the uplink and
downlink channels cannot be guaranteed to be reciprocal in some hardware
implementations of RIS [15]. In order to achieve effective beamforming for
the BS and the RIS, the accurate downlink channel estimation is required [16].

3Note that “turn off” is a widely used expression in the literature but
inaccurate, since an RIS with all elements turned off is also a scatterer to
reflect the incident electromagnetic wave. An implementation method with a
special setting of RIS elements proposed in [17] can realize the perfect “turn
off” for the incident electromagnetic wave [18].
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where y,. ;. is the corresponding received signal at the user,
® c CNXN js the reflecting matrix at the RIS, w, ) €
CM>1 is the precoding vector at the BS, z,, € C is the
transmitted signal at the BS, and n,; € C is the addi-
tive noise, respectively. It is noted that the reflecting matrix
® = diag(¢1, P2, ,dn) is a diagonal matrix, where ¢,
represents the reflecting coefficient of the nth RIS element.
The channels G and f, ;, can be represented by the widely
used Saleh-Valenzuela channel model. Specifically, G is given

by
MN & T
G =/ Y offa (v ) o (0 u) @
=1
where Lg represents the number of paths between the BS
and the RIS, ozlcf, 19161;" (wlcf"), and 19‘161;t (lelt) represent the
complex gain, the azimuth (elevation) angle at the RIS, and the
azimuth (elevation) angle at the BS for the [/;th path. We can
find that G is common for all users. Once the RIS is deployed
in the cell, G is almost unchanged.
Similarly, the channel £, ;, can be represented by

Ly g
N : r.k rk rk T
- m; 1: ol a(% R ) : 3)
o=

where L, j, represents the number of paths between the RIS
and the kth user located in the rth region, a;;k, ﬁ;;k, and

ZQk represent the complex gain, the azimuth angle and the
elevation angle at the RIS for the loth path. b (9, v) € CM*x1
and a (¢,1) € CV*! represent the normalized array steering
vector associated to the BS and the RIS, respectively. For
a typical N1 x No (N = Nj x N3) UPA, a(¥¢,%) can be
represented by [19]

aw,w:J—lﬁ

T7

e—jQﬂ'dcos(w)nl//\} ® [e—jQﬂ'dsin(w)cos(G‘)nz/)\} ,

“

where n; = [0,1,---,N; — 1] and ny = [0,1,--- , Ny —
1]7, X is the carrier wavelength, and d is the antenna spacing
usually satisfying d = A\/2.

By denoting ¢ = [¢1, 2,
represented by

,on], (1) can be further

Yy = Qdiag(f, 1) GWy xTr 1 + Nk,
= ¢Hr,kwr,er,k + N ks (5)

where H, ;, = diag(f, )G represents the downlink cascaded
channel corresponding to the kth user located in rth region.
Since the RIS has no ability to process signals independently,
the cascaded channel H, ; is usually estimated instead of the
two separate channels G and f, ;. [7], [8].

B. Problem Formulation

In order to estimate the downlink cascaded channel H,. j,
the BS is required to send the known pilot signals to the users
via the RIS over () time slots. According to (5), in the gth (¢ =
1,2,---,Q) time slot, the received pilot signal yfi kg € C at
the kth user located in rth region can be represented as

yf,k,q = ¢qHT,kWr,kpr,k,q + N kg5 (6)
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where p;. k. o represents the pilot signal sent by the BS, ¢,
represents the reflecting vector of the gth time slot at the RIS,
and n, 1, is the received noise of the gth time slot at the
user, which follows the complex Gaussian distribution with
the mean 0 and the variance o2.

After ) time slots of pilot transmission, we can

obtain the @ x 1 overall received pilot vector y?, =

p p p T : _
[yr,k,l’yr,k,Q’ T ’yr,k,Q] by assuming p;. 4 =1 as

yf,k =OH, ;w, +n,, @)
where © = [¢1T, ¢2T7 S a¢£]T and mn,p =
(M1, M k2, ko)l According to vec(ABC) =

(CT @ A)vec(B), (7) can be represented by

yr k= (WT @ O)vec(H, ;) + 0y g )

By denoting ¥, ;, = (w7 ® ©) and h, j = vec(H, 1), (8)
can be further represented by

yf«)k = ‘Ilr,khr,k + N, . (9)

It is noted that w,.;, and © will be pre-designed to be fixed
values for the channel estimation. Thus, like pilot signals, ¥,.
is known for both the BS and the user during the channel
estimation. The downlink cascaded channel estimation is to
estimate h, ; based on the known y & and W, ;. After that,
the estimated downlink cascaded channel can be fed back to
the BS for effective beamforming by carefully designing the
precoding vector w,.;, at the BS and the reflecting matrix ©
at the RIS.

Since the dimension of the cascaded channel is N times
larger than that of the conventional massive MIMO channel,
the required pilot overhead for the downlink cascaded channel
estimation is very high. For example, the required time slots
@ for pilot transmission of the conventional LS algorithm
should satisfy Q > NM. In order to reduce the pilot
overhead, some ML techniques can be used to solve the
channel estimation problem thanks to the powerful learning
ability of DNNs. Like many existing ML based works, DNNs
can be deployed at the users to enable communications,
such as channel feedback [20], receiver design [21] and end-
to-end communications [22]. Next, we will introduce the basic
principle of the downlink cascaded channel estimation neural
network.

C. The Basic Principle of DNNs

The DNN is deployed at the user side for the downlink
cascaded channel estimation. Specifically, the channel estima-
tion neural network builds the non-linear mapping relationship
from the received pilot signal to the downlink cascaded
channel, which can be represented by

b, = fo(y2,): (10)

where f, : C? — CMN represents the non-linear mapping
function with the weights 6. In order to train the DNN, the
user need to collect enough training data in advance. The

D
training dataset is defined by {y}’ k,hfk a—t, where D,
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represents the size of training dataset for the kth user located
in rth region. The loss function can be represented by

(1)

d
.k HQ’

Ty
where flfk = fg(yf’,(j) represents the output of the neural
network corresponding to the input yT k , and the label h¢  can
be obtained by the conventional LS based channel estimation

scheme. The aim of training the DNN is to minimize the above
loss function by optimizing the weights 6, i.e.,

2

: d

min £(6) D Z I Foyii) —hiy |, (12)
After determining the objective function, the DNN is trained

on the training dataset by an iterative process. In each itera-

tion t, the weights @ are updated by the gradient descent, i.e.,

0t+1 =0; — ntg(et), (13)

where 0, and 6,,, are the weights for the tth iteration and
t+ 1th iteration, respectively. g(6,) is the gradient vector for
0., and 7, is the learning rate. After training the DNN, the
user can estimate the channel directly based on the trained
DNN.

However, the training dataset of each user is limited, which
can only cover the part of the channel scenarios of the entire
cell. When the user moves from one channel scenario to
another, the trained DNN trained by the single user cannot
work. In order to solve this problem, we will propose the
DML based channel estimation neural network in the next
Section III.

III. DML FOR THE DOWNLINK CHANNEL ESTIMATION

In this section, we first leverage the DML technique to
enable the reliable downlink channel estimation when the
user moves from one channel scenario to another. Then,
we further propose a DML based hierarchical neural network
architecture to improve the channel estimation accuracy in
different channel scenarios. Finally, we analyze the compu-
tational complexity of the two proposed DML based channel
estimation neural networks.

A. The DML Based Channel Estimation Neural Network

In order to work steadily when the user moves from one
channel scenario to another, the neural network should be
trained based on sufficient training samples. However, the
single user can only obtain the limited training samples.
Therefore, we propose to leverage the DML technique for
cooperative training between the BS and all users in a cell.

Specifically, the DML technique is a novel training mech-
anism, where the BS and all users can collaboratively train a
global DNN by using the local training dataset collected by
the user [23], [24]. By leveraging the DML based training,
the trained DNN can have access to different training datasets
associated with different channel scenarios in the entire cell.
Moreover, this DML technique can protect the privacy of
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Step 1: each user calculates the gradient
vector on its own training dataset

]

Step 2: all local gradient vectors from all
users are uploaded to BS

]

Step 3: BS updates weights by considering
all uploaded gradient vectors

]

Step 4: BS broadcasts updated weights to
all users

- J

Fig. 2. The DML based training flow.

users, since only the gradient vectors calculated on the local
data instead of the local data of the user are required to
be uploaded to the BS [25]. There have been some works
that employ the DML technique to wireless communications,
such as resource allocation [26], power control [27], hybrid
beamforming in the massive MIMO system [28] and the RIS
beamforming in the RIS assisted communication system [29].

In this subsection, we first build a global DNN called the
downlink channel estimation (DCE) network shared by the BS
and all users. Then, with the help of DML, the global DCE
network is jointly trained based on the local training datasets
available at all users. Next, we will first introduce the training
processing in detail, and then present the architecture of the
DCE network.

1) The DML Based Training: Different from the training
process at the single user mentioned in Subsection II-C, the
weights of the DCE network are updated in each iteration ¢
by the following four steps for DML, as shown in Fig. 2.

Firstly, each user calculates the gradient vector g, j(6;)
on its own training dataset {yf”g,hf’k dD;’f. Secondly, all
local gradient vectors {{gnk(Ot)}kc,;l}le from all users are
uploaded to the BS. Thirdly, The BS updates the weights by
considering all uploaded gradient vectors as

1 R C,
7 2. 8n(6),
S2C, r=1k=1

r=1

0t+1 = 0t — Nt (14)

Finally, the BS broadcasts the updated weights 6;,; to all
users for the next iteration.*

Based on this DML based training method, all users will
obtain the shared trained global DCE network. Compared with
the channel estimation neural network trained by the local
training dataset of the single user [11], the DML based trained
DCE network is expected to learn the entire channel features

“It is noted that during training the neural network, the BS can communicate
with the user via the RIS based on the conventional schemes. After training,
the trained neural network is used to replace the original downlink channel
estimation module without changing other modules of the entire communica-
tion system.
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in the cell. When the user moves from one channel scenario
to another, the DCE network is also still able to work steadily.

2) The DCE Network Architecture: The adopted DCE net-
work in this paper consists of three convolution layers and one
linear layer.

By considering the received pilot signal yfi i and the cas-
caded channel to be estimated h,.; are complex-valued, the
input and the output of the DCE network are converted into the
real-valued by the following processing. yf’ i 18 first reshaped
as Q1 X Q2 2-dimensional matrix. Then the real part and the
imaginary part of this 2-dimensional matrix are extracted as
the two input feature maps of the first convolution layer. The
output of the DCE network is expected as a vector with 2N M
elements, where the first N/ elements represent the real part
of the downlink cascaded channel vector h, j, while the last
N DM elements represent its imaginary part.

The first three convolution layers both consist of 32 filters
with 3 x 3 kernel, a batch normalization operation, and a
rectified linear unit (ReLU) for activation. The final linear
layer consisting of 2N M neurons is used to construct the
downlink cascaded channel vector.

However, for the entire cell, different channel scenarios have
different channel features. The DCE network cannot achieve
the accurate channel estimation for different channel scenarios
with the single neural network architecture. In order to further
improve the channel estimation accuracy, we will propose a
hierarchical neural network architecture in the next subsection.

B. The DML Based Hierarchical Channel Estimation Neural
Network

In order to achieve better channel estimation performance
for different channel scenarios, we propose a DML based
hierarchical channel estimation neural network. The basic idea
of the hierarchical architecture is that we first determine which
channel scenario the channel to be estimated belongs to,
then extract different channel features for different channel
scenarios, and finally construct the entire cascaded channel.
Next, we will first introduce the hierarchical DCE (HDCE)
network, and then present the hierarchical training for the
proposed HDCE network.

1) The Hierarchical DCE Network Architecture: As shown
in Fig. 3, the proposed HDCE network consists of the three
parts: the scenario classifier, the feature extractors, the feature
mapper.

Firstly, in the scenario classifier, the received pilot signals
are input to predict the channel scenario index 7 (7 €
{1,2,---,R}). Then, in the feature extractors, we design a
feature extractor for each channel scenario. There are R feature
extractors in total. Based on the predicted channel scenario
index 7, the received pilot signals are input to the correspond-
ing feature extractor, where the corresponding channel feature
can be extracted. For example, if the channel scenario index
predicted by the scenario classifier is 2, the received pilot
signals will be input to the feature extractor 2, where the output

3 Although the neural network architecture presented in this paper takes the
classical CNN architecture as an example, the DML based training idea can
be extended to any more advanced neurual network architecture.
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I
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Fig. 3. The proposed hierarchical downlink channel estimation network.

of the feature extractors will be only generated by the feature
extractor 2, as shown in Fig. 3. Finally, the extracted channel
feature is input to the feature mapper to construct the entire
downlink cascaded channel.

In order to obtain the real-valued input and output for
the HDCE network, the received pilot signal yfik and the
cascaded channel to be estimated h, ; are also processed in
the same way as that of the DCE network. Compared with the
DCE network, the additional output, i.e., the channel scenario
index 7, will be generated by the scenario classifier of the
HDCE network.

The adopted scenario classifier consists of five layers. The
first and third layers are both the convolution layers consisting
of 32 filters with 3 x 3 kernel followed by the ReLu activation
function. The second and the fourth layers are the max pooling
layer with 2 x 2 kernel. The fifth layer is a linear layer,
which maps the output of the previous layer into a vector
with R elements. The predicted channel scenario index 7 is
determined by the location of the largest element among R
elements.

The feature extractor for each user has the same architecture,
which consists of the three same convolution layers. Each
convolution layer consists of 32 filters with 3 x 3 kernel,
a batch normalization operation, and a ReLu for activation.
The feature mapper is a linear layer, which maps the output
of the feature extractor as a downlink cascaded channel vector
with 2N M elements.

2) The DML Based Hierarchical Training: Based on the
above hierarchical architecture, we can find that the proposed
HDCE network should be trained on different datasets from
different channel scenarios, which also needs to leverage
the DML technique. We further propose the DML based
hierarchical training to train the proposed HDCE network.
Specifically, the HDCE network is not trained as a whole,
where the scenario classifier is trained separately, while the
feature extractors and the feature mapper are trained jointly.
The two training processes are decoupled.

For training the scenario classifier, the users should obtain
the corresponding channel scenario index label r in advance.
In this paper, the different channel scenarios are divided based
on the angles of the downlink channel, of which the channel
scenario index can be obtained by the conventional angle
estimation algorithms. We adopt the cross entropy between the
output of the scenario classifier and the channel scenario index
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label as the loss function to train the scenario classifier. Similar
to the DML based training of the DCE network, the gradient
vectors of weights of the scenario classifier are transmitted
among the BS and the users for the update of the weights.

When training the feature extractors and the feature mapper,
we assumed that the scenario classifier can achieve the perfect
channel scenario index prediction. Therefore, the two training
processes can be decoupled, which can avoid converging
to a bad local optimization. It is noted that although there
are R feature extractors in the HDCE network, each user
only uses one feature extractor to extract the corresponding
channel feature. Therefore, the gradients of weights of other
R — 1 feature extractors for each user are zero.

Based on this DML based hierarchical training method,
besides the received pilot signals and the downlink cascaded
channel labels, the prior information of the channel scenario
index can also be used to train the neural network. Thanks to
this prior information, the trained HDCE network can perform
better than the DCE network in different channel scenarios.

C. Computational Complexity Analysis

In this subsection, we provide a comparison of the com-
putational complexity of the two proposed downlink channel
estimation neural networks.

For a convolution layer, its computational complexity can
be represented by O(E;E2F%C;,Couy) [30], where E; and
FE5 denote the number of rows and columns of each output
feature map, F' denotes the side length of the used filter, Cy,
and C,,; denote the numbers of input and output feature maps,
respectively. For a linear layer, its computational complexity
is O(L1Ls), where L; and Lo denote the dimension of input
and output, respectively.

For the DCE network, the computational complexity of the
first convolution layer is O(Q1Q2-3%-2-32), and the computa-
tional complexity of the second and the third convolution layer
is the same, i.e., O(Q1Q2 - 3% - 32 - 32). The computational
complexity of the final linear layer is O(32Q1Q2 - 2N M).
Therefore, the total computational complexity of the DCE
network is O(19008Q1Q2 + 64Q1Q2NM). Although the
HDCE network consists of R feature extractors, each user
only uses one for extracting its channel feature. We can
find the sum of the computation complexity of one fea-
ture extractor and the feature mapper is just equal to the
computational complexity of the DCE network. Therefore,
compared with the DCE network, the HDCE network only
adds the computational complexity of the scenario classifier.
The computational complexity of the scenario classifier is
O(Q1Q2-32-2-324+1Q13Q2-3%-32-32+ 1Q11Q2-32-3),
i.e., 0(2886Q1Q2), which is small compared with that of the
feature extractor and the feature mapper. Since the training
process of the neural networks is offline, the above analysis
only considers the computational complexity of the proposed
neural networks during the online test process.

From the above analysis, we can find that the HDCE
network further considers the channel scenario classification
on the basis of the DCE network, which is expected to achieve
better performance with a low computational complexity
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increment. This hierarchical architecture can be extended to
classify other factors except for the channel scenario, such as
the SNR level. By considering the additional prior information
about the scenario labels, the neural network can be better
adapted to a variety of different scenarios.

IV. SIMULATION RESULTS

In this section, the simulation results are provided to verify
the effectiveness of the two proposed DML based channel
estimation neural networks, i.e., the DCE network and the
HDCE network.

In our simulation, we consider that the number of antennas
at the BS and the number of the RIS elements are M = 16
(4x4) and N = 64 (8 x8), respectively. Each element of W, ;.
in (9) is selected from {—1/\/Q,+1/y/Q} by considering
discrete phase shifts of the BS and the RIS, and W, ; is
assumed to be same for Vk and Vr. The signal to noise
ratio (SNR) is defined as 1/02. The entire cell is divided
into R = 3 regions (i.e., 3 channel scenarios), where each
region contains C). = 3 users for = 1,2,3. The channel G
between the BS and the RIS is generated according to (2),
where the number of paths between the BS and the RIS
is Lg = 3, the complex gains are generated by following
the complex Gaussian distribution with the mean 0 and the
variance 1, and the angles are generated by following the
uniform distribution on (—n/2,7/2). The channel £, j from
the RIS and the kth user located in the rth region is generated
according to the Saleh-Valenzuela channel model in (3) and the
publicly-available DeepMIMO dataset based on ray-tracing,
respectively. The operating frequency is considered as 28 GHz.

For the Saleh-Valenzuela channel model in (3), the number
of paths between the RIS and the user is set as L, ;, = 3 for Vk
and Vr, the complex gains of f,  are generated by following
the complex Gaussian distribution with the mean 0 and the
variance 1. The angles of f,.; are generated by following
the uniform distribution on (—m/2,7/2), where the elevation
angles are divided into three equal parts, i.e., (—7/2, —7/6),
(—=7/6,7/6) and (7/6,7/2). Each part is corresponding to
each region, that is also each channel scenario.

For the DeepMIMO dataset, we generate the channels f, ;.
from the RIS to the user by referring to [31]. Specifically,
the DeepMIMO dataset is a parameterized dataset, where
the channel samples can be generated based on the ray-
tracing. It can capture the dependence on key environmental
factors such as the environment geometry, operating frequency
and so on [31]. In this paper, we consider the outdoor
ray-tracing scenario ‘Ol’ working at 28 GHz, where the
adopted parameters are shown in Table I. We select BS 3 in
the ‘O1’ scenario to be the RIS. The users belonging to
channel scenario 1 are assumed to be distributed in rows
R401-R800, the users belonging to channel scenario 2 are
assumed to be distributed in rows R801-R1200, and the users
belong to channel scenario 3 are assumed to be distributed
in rows R1201-R1600. It is noted that each obtained channel
sample based on DeepMIMO dataset will be normalized to
||fv",k’||% =N.

We assume that the single user can collect 20000 samples,
90% of which are used as the training dataset while 10%

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 7, JULY 2022

TABLE I
THE ADOPTED DEEPMIMO DATASET PARAMETERS

Parameter Value
Frequency band 28 GHz
Active BSs (RIS) 3

Number of BS antennas (RIS elements) (Nz, Ny, N.) = (1,8,8)

Active users (belongs to scenario 1) From row R401 to row R800

Active users (belongs to scenario 2) From row R801 to row R1200

Active users (belongs to scenario 3) From row R1201 to row R1600

Antenna spacing 0.5
System bandwidth 100 MHz
Number of OFDM subcarriers 512
OFDM sampling factor 1
OFDM limit 1
Number of channel paths 3

of which are used as the validation dataset. It is noted that
there are 180000 samples in total for the DML based training,
since all samples from all users can be effectively used to
train the neural network. In each iteration, each user uses
256 local training samples to calculate the gradient vector
of the weights. The Adam optimizer is used to update the
weights. The training process consists of 100 epochs in total.
For the DML based training, after 100 epochs, the latest
trained network is used to test the performance. The learning
rate is initialized to le — 3, and then is reduced to the half
of the original level every 30 epochs. It is noted that, for
each user, the LS algorithm is used to obtain the downlink
cascaded channel label with SNR 10 dB. After training the
neural network, we use 10000 samples to test the performance
of the trained networks.

We compare the six downlink channel estimation schemes.
In the first scheme, we consider the conventional training
method. The DCE network is deployed at the user, which
is only trained by the training dataset of the single user.
In the second scheme, the DCE network is deployed at the
BS and all users, where the DML technique is used for
training this network, as described in Subsection III-A. In the
third scheme, the proposed HDCE network is trained by
the DML based hierarchical training method, as described
in Subsection III-B. For the fourth scheme, we consider the
specialized DCE (SDCE) network to show the advantage of
the proposed HDCE network. The only difference between the
two neural networks is that the feature mapper of the SDCE
network, like the feature extractor, is also specialized for each
channel scenario. For the above four schemes, the required
pilot overhead is set as @ = 2 =128 (Q; = 16, Q2 = 8).
Finally, the classical LS algorithm and MMSE algorithm are
considered to estimate the downlink cascaded channel with
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Fig. 4. NMSE performance comparison for the channel scenario 1 on the
Saleh-Valenzuela channel model.
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Fig. 5. NMSE performance comparison for the entire cell on the
Saleh-Valenzuela channel model.

the required pilot overhead Q = NM = 1024. The prior
channel autocorrelation matrix for the MMSE algorithm is
obtained based on the LS estimated channels. It is noted that
based on the above settings, both the DCE network and the
HDCE network should occupy about 32 MB memory while
need about 1.1 x 107 multiplications. The simulation results
on the Saleh-Valenzuela channel model and the DeepMIMO
dataset are respectively given as follows.

Fig. 4 and Fig. 5 show the normalized mean square
error (NMSE) performance comparison of six different
schemes mentioned above against different SNRs on the
Saleh-Valenzuela channel model. In Fig. 4, all test samples are
only from the channel scenario 1. It is noted that, for the first
scheme, we provide the three DCE networks, which are trained
by the single user from the channel scenario 1, the channel sce-
nario 2, and the channel scenario 3, respectively. From Fig. 4,
we can find that based on the conventional training method,
the DCE networks trained on the channel scenario 2 and
the channel scenario 3 are not able to work for the channel
scenario 1. By contrast, the two proposed DML based trained
networks can work well, which even also outperform the DCE
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Fig. 6. NMSE performance comparison for the channel scenario 1 on the
DeepMIMO dataset.

network trained on the channel scenario 1. This is because the
DML based neural networks can be trained with more training
data from all users. Specifically, for the DCE network trained
on the channel scenario 1, the training dataset can only be
collected by one user, and thus the number of samples is small,
which is only 20000 in our simulations. For the DML based
trained networks, they can be trained by different training
datasets from different users by leveraging the DML technique.
The number of samples from scenario 1 can be regarded as
60000 in our simulations.

In Fig. 5, the test samples are randomly generated for all
channel scenarios of the entire cell. From Fig. 5, we can
find that although the required pilot overhead is reduced,
the conventional training based schemes cannot achieve the
reliable channel estimation in the entire cell. The LS based and
MMSE based channel estimation schemes can achieve good
estimation accuracy in the high SNR range, but requires a
huge pilot overhead. The two proposed DML based schemes
can achieve better channel estimation performance with the
reduced pilot overhead. It is noted that the proposed HDCE
network can outperform the SDCE network. This is because
that the feature mapper of the SDCE network can only be
trained with the less training data from the corresponding
one channel scenario, while the feature mapper of the HDCE
network can be trained with all training data from all channel
scenarios.

As shown in Fig. 6 and Fig. 7, we further provide the
NMSE performance comparison on the DeepMIMO dataset.
In Fig. 6, all test samples are from the channel scenario 1
(i.e., from row R401 to R800). In Fig. 7, the test samples are
randomly generated for the three considered channel scenarios
(i.e., from row R401 to R1600). We can find since the channel
scenario 2 is somewhat similar to the channel scenario 1 and
the channel scenario 3 for the DeepMIMO dataset, the DCE
network trained on the channel scenario 2 can outperform
than those trained on the channel scenario 1 and the channel
scenario 3 in Fig. 7. But on the whole, the proposed DML
based networks can always achieve better channel estimation
accuracy on the DeepMIMO dataset.
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NMSE performance comparison for the entire cell on the DeepMIMO
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Fig. 8. The accuracy of the channel scenario prediction.

Finally, we provide the accuracy of the channel scenario pre-
diction against different SNRs for the scenario classifier of
the HDCE network, as shown in Fig. 8. We can find for the
Saleh-Valenzuela channel model, the adopted scenario clas-
sifier can always achieve more than 93% accuracy, which
ensures good performance of the proposed HDCE network.
For the DeepMIMO dataset, the accuracy is slightly reduced,
since the considered channel scenario 2 is somewhat similar to
the channel scenario 1 and the channel scenario 3. Fortunately,
the scenario classifier can still achieve 95% accuracy in the
high SNR range.

V. CONCLUSION

In this paper, we proposed to leverage the DML technique
to enable the reliable downlink cascaded channel estimation.
Specifically, we first built a global DCE network shared by
all users, which can be collaboratively trained by the BS and
all users with the help of DML. Then, we further proposed
a hierarchical neural network architecture to improve the
estimation accuracy in the different channel scenarios. In order
to verify the effectiveness of our work, we have considered the
widely used channel model for theoretical analysis, and the

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 7, JULY 2022

publicly-available channel dataset based on ray-tracing in our
simulations. Simulation results showed that compared with the
conventional training method, the two proposed DML based
neural networks can work well when the user moves from one
channel scenario to another. Compared with the conventional
algorithms, the proposed neural networks, particularly the
hierarchical neural network, can achieve better estimation
accuracy when the pilot overhead is reduced to 1/8. For
future work, we will design a light-weight hierarchical neural
network for reducing the transmission overhead for DML.
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