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Abstract— Reconfigurable intelligent surfaces (RISs) are envi-
sioned as a potentially transformative technology for future wire-
less communications. However, RISs’ inability to process signals
and the attendant increased channel dimension have brought
new challenges to RIS-assisted systems, including significantly
increased pilot overhead required for channel estimation. To
address these problems, several prior contributions that enhance
the hardware architecture of RISs or develop algorithms to
exploit the channels’ mathematical properties have been made,
where the required pilot overhead is reduced to be proportional
to the number of RIS elements. In this paper, we propose a
dimension-independent channel state information (CSI) acquisi-
tion approach in which the required pilot overhead is independent
of the number of RIS elements. Specifically, in contrast to
traditional signal transmission methods, where signals from the
base station (BS) and the users are transmitted in different time
slots, we propose a novel method in which signals are transmitted
from the BS and the user simultaneously during CSI acquisition.
With this method, an electromagnetic interference random field
(IRF) will be induced on the RIS, and we propose the structure
of sensing RIS to capture its features. Moreover, we develop three
algorithms for parameter estimation in this system, in which one
of the proposed vM-EM algorithm is analyzed with the fixed-
point perturbation method to obtain an asymptotic achievable
bound. In addition, we also derive the Cramér-Rao lower bound
(CRLB) and an asymptotic expression for characterizing the
best possible performance of the proposed algorithms. Simulation
results verify that our proposed signal transmission method and
the corresponding algorithms can achieve dimension-independent
CSI acquisition for beamforming.
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I. INTRODUCTION

RECONFIGURABLE intelligent surfaces (RISs) are
considered to be a potentially important technology for

future wireless communications. The characteristics of low
cost and power consumption make RISs a promising solution
for overcoming blockages, improving capacity, and reducing
transmit power [1], [2], [3]. Specifically, an RIS is a large-
scale array composed of passive elements, which can achieve
significant beamforming gain by appropriately imposing phase
shifts on the incident electromagnetic waves [4]. To achieve
this beamforming gain, accurate channel state information
(CSI) should be acquired beforehand, which makes chan-
nel estimation an essential prerequisite for RIS-assisted
communications [5].

Although channel estimation has been well investigated in
conventional communication systems, the additional employ-
ment of RISs brings about two challenges [6]. Firstly, in con-
trast to traditional antenna array capable of transmitting,
receiving, and processing the signals, RISs can only passively
reflect the incident signals. Secondly, since the number of
RIS elements is usually large, the dimensions of the channels
increase sharply compared with conventional communication
systems, which results in unacceptably high pilot overhead for
channel estimation. These two main challenges result in the
need for new channel estimation techniques for beamforming
in RIS-assisted communications.

A. Prior Works

Generally, for RIS-assisted systems, channel estimation and
beamforming are two separate procedures. Channel estimation
is performed first, and then the obtained CSI is utilized for
beamforming. The beamforming gain relies heavily on the
channel estimation accuracy.

To tackle the challenges mentioned above in channel esti-
mation for RIS-assisted communications, some solutions have
been proposed, which can be generally divided into two
categories. The first category modifies the hardware archi-
tecture of the RIS, which enables some signal processing
capability. For example, by sparsely replacing some of the RIS
elements with active sensors capable of baseband processing,
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the authors of [7] proposed a compressive sensing and deep
learning-based channel estimation scheme with negligible pilot
overhead. To further reduce the number of active sensors, in [8]
the authors proposed an alternating direction method-based
channel estimation procedure with a single radio-frequency
(RF) chain, with the help of an extended analog combiner [9].
Since in the above works, additional RF chains have already
been attached to RISs for channel sensing, an analogous
improvement is that these RF chains can also perform signal
relaying. In [10], a hybrid relay-reflecting architecture is
considered, where a few passive RIS elements are replaced
by active amplify-and-forward relay modules. These active
modules are then capable of channel estimation.

The second category of channel estimation methods pre-
serve the original hardware architecture of RISs, but they
introduce algorithms to exploit the new structural channel
properties that RISs bring about. Exploiting the two-timescale
channel property in the RIS-assisted system, the authors
of [11] proposed a two-timescale channel estimation algorithm
that reduces the pilot overhead in the time-averaged sense.
In other works [5], [12], by exploiting the sparsity of channels
in the angular domain, compressive sensing-based algorithms
are developed with reduced pilot overhead. In [13], based
on the shared reflected channels among multiple users, the
authors proposed a three-phase channel estimation framework
to further reduce the pilot overhead.

Note that, in order to achieve high beamforming gain, all
the above channel estimation methods are designed to estimate
the full channel matrix as accurately as possible. However,
since the channel matrix is at least of size O(N), where
N denotes the number of RIS elements, the required pilot
overhead for channel estimation is usually proportional to the
number of RIS elements [7], [8], [9], [10], [11], [12], [13], [14]
in practical systems, which makes most of the existing channel
estimation schemes dimension-dependent. This is unaccept-
able especially when the RIS is fabricated with a large number
of elements (e.g. 1100 elements in [15], 2304 elements in [16],
and 10240 elements in [17]). Therefore, the following question
naturally arises: Does there exist a dimension-independent
approach where the required pilot overhead is independent of
the number of RIS elements?

B. Our Contributions

We point out that the main drawback of conventional chan-
nel estimation methods is that they only extract the mathemati-
cal features of channels, while neglecting their electromagnetic
nature. This limitation has caused the problem of high pilot
overhead required for channel estimation in RIS-assisted sys-
tems. Thus, we propose an interference random field (IRF)-
based approach, where the IRF induced on an RIS is utilized
for channel estimation.1 Specifically, the contributions of this
paper can be summarized as follows.
• Inspired by optical interference where phase information

can be obtained from the interference fringes, we reveal
that phase information about the channel can also be

1Simulation codes are provided to reproduce the results in this paper:
http://oa.ee.tsinghua.edu.cn/dailinglong/publications/publications.html.

gathered from the phenomenon of electromagnetic inter-
ference that occurs on RISs, which we name as IRF.
To induce the IRF on an RIS, we propose a novel
pilot transmission method called simultaneous rotational
signaling, where signals are transmitted from the base
station (BS) and the user to the RIS simultaneously, and
the two signals bear a slight frequency difference during
CSI acquisition.

• To exploit this IRF for CSI acquisition, we employ a
sensing RIS that integrates power detectors into the RIS
elements to capture the features of the IRF. Each of
the power detectors can acquire its phase information
independently from the IRF, so that the required pilot
overhead is independent of the number of RIS ele-
ments. We then develop discrete Fourier transform (DFT),
maximum likelihood (ML), and von Mises-expectation
maximization (vM-EM) phase estimation algorithms to
extract the phase information from the power detector
signals in order to perform beamforming.

• By the fixed-point perturbation method, we analytically
prove that the proposed vM-EM algorithm achieves an
error decay of O(γ̄−1), which is the best expectable
asymptotic precision that a phase estimator could attain.
Furthermore, we derive the Cramér-Rao lower bound
(CRLB) of the IRF phase estimation problem as well
as its approximated asymptotic expression. Our numeri-
cal results verify that the developed vM-EM algorithm
achieves the theoretical error decay rate, and that it
is close to the CRLB. Our simulation results further
demonstrate that the proposed signal transmission method
and the corresponding algorithms can realize dimension-
independent CSI acquisition for beamforming, and can
achieve near-optimal system spectral efficiency.

C. Organization and Notation

Organization: The rest of the paper is organized as follows.
In Section II, we introduce the system model of RIS-aided
communications, and review the existing separate procedures
of beamforming and channel estimation. In Section III, we pro-
pose a novel signal transmission method for CSI acquisition in
RIS-aided system, and reveal the IRF phenomenon under this
method. In Section IV, we introduce the hardware architecture
of a sensing RIS to exploit the IRF. Based on the sensing RIS,
we propose three algorithms to realize channel estimation.
In Section VI, we first analyze the asymptotic performance of
the proposed vM-EM algorithm, and then derive the CRLB as
well as its asymptotic expression for channel estimation in the
sensing RIS-assisted system. In Section VII, simulation results
are provided for quantifying the performance of our proposed
sensing RIS-based channel estimation as a novel dimension-
independent solution to the RIS channel estimation problem.
Finally, in Section VIII, we provide our conclusions followed
by promising future research ideas.

Notation: C and R denote the set of complex and real
numbers, respectively; i denotes the imaginary unit; {L}
represents the set of integers {0, 1, · · · , L−1}; A−1,A∗,AT,
and AH denote the inverse, conjugate, transpose, and conjugate
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transpose of matrix A, respectively; ∥·∥2 is the L2-norm of
its argument function; ∥·∥F denotes the Frobenius norm of its
argument matrix; ⟨x,y⟩ := xHy denotes the inner product
of complex vectors x,y; arg(x) and exp(x) denote the phase
angle and exponential of the complex scalar x, respectively;
|x| denotes the amplitude of a complex scalar x; diag(·) is the
diagonal operation; CN

(
µ, σ2

)
represents the complex uni-

variate Gaussian distribution with the mean µ and the variance
σ2; VM(µ, κ) denotes the von Mises distribution with circular
mean µ ∈ [0, 2π] and centrality κ; NCχ2

k
(λ, σ2) and NCχk

(λ)
are the degree-k non-central chi-squared distribution with non-
centrality parameter λ and variance parameter σ2, and the
non-central chi distribution with non-centrality parameter λ,
respectively; IL denotes the L × L identity matrix; xBB(t)
denotes the baseband representation of a passband signal x(t);
Iν(z) is the ν-th order modified Bessel function of the first
kind.

II. SYSTEM MODEL

In this section, we will first specify the system model
of the RIS-assisted multiple-input single-output (MISO) sys-
tem. Then, we will clarify the power allocation between
CSI acquisition and data transmission in II-A. Finally,
traditional approaches for the corresponding beamform-
ing design and channel estimation will be introduced in
Subsection II-B and II-C, respectively.

Let us consider an RIS-aided MISO system, where an
N -element RIS is employed for enhancing the transmission
from an M -antenna BS to a single-antenna user. Assume
furthermore that the phase-shift of each element of the RIS
can be continuously and independently controlled with unit
reflective gain [3]. Then, the precoding matrix of the RIS
can be represented by Θ = diag (θ) = diag

(
[θ1, · · · , θN ]T

)
,

where θn(n ∈ {N}) denotes the phase-shift of the n-th RIS
element, satisfying |θn| = 1. Therefore, the signal received by
the user can be written as

y = fHΘGws+ z, (1)

where f ∈ CN×1 and G ∈ CN×M denote the channel
spanning from the RIS to the user and the channel spanning
from the BS to the RIS, respectively; w ∈ CM×1 denotes
the beamformer at the BS transmitter, with power constraint
∥w∥22 ≤ Pmax; s denotes the normalized BS transmitted
symbol satisfying E[ss∗] = 1; z ∼ CN

(
0, σ2

z

)
denotes the

additive white Gaussian noise (AWGN) imposed at the user’s
receiver. To focus on RIS beamforming, other possible links
are neglected in this paper.2

A. Power Allocation

We assume a block-fading Rayleigh channel with B sym-
bols in each block, i.e., the i.i.d. Rayleigh random channel
matrices G and f are updated for every consecutive B
symbols. Within these B symbols, there are Np pilot symbols
(i.e., the number of time slots for pilot signals) for channel

2In fact, our proposed CSI acquisition procedure automatically works when
there exist direct BS-user links, which will be explained in Sec. IV-D.

estimation, and Nd data symbols for data transmission, where
B = Np + Nd. The pilot symbols and the data symbols are
subject to a total energy budget of Ep and Ed, respectively.
Suppose the average transmit power of each block is P , then
the energy values Ep and Ed should satisfy

P =
Ep + Ed

B
. (2)

Thus, a smaller number of pilot symbols Np will lead to
a higher average pilot signal-to-noise ratio (SNR) γp =
Ep/(Npσ2

z) during CSI acquisition. This property ensures fair
comparison among different channel estimation schemes, since
equal energy Ep is injected into the channel for the purpose
of CSI acquisition.

By defining the total pilot energy Ep and the total data
energy Ed, the actual transmit power values during the CSI
acquisition phase and the data transmission phase are given by

PBS,p =
Ep
Np

Pmax, PBS,d =
Ed
Nd

Pmax,

Pu,p =
Ep
Np

P ′max, Pu,d =
Ed
Nd

P ′max, (3)

where Pmax is the average BS transmit power budget, and
P ′max is the average user transmit power budget.

B. Beamforming Design

Based on the received signal (1), we can formulate the
signal-to-noise ratio (SNR) maximization problem for design-
ing the BS beamformer w and precoding matrix Θ, i.e.,

max
Θ

SNR =
1
σ2
z

∣∣∣fHΘGw
∣∣∣2 , (4a)

s.t. C1 : ∥w∥22 ≤ Pmax, (4b)
C2 : |θn| = 1, ∀n. (4c)

A near-optimal solution to this joint active-passive beam-
forming problem can be obtained by the following alternating
optimization (AO) loop [3]:{

θ(t+1) = exp(−iarg(diag(f∗)Gw(t))),

w(t+1) =
√
Pmaxnorm((diag(f∗)G)Hθ(t+1)∗),

(5)

where norm(z), z ∈ CM×1 denotes z/∥z∥, and t is the
iteration index. Note that this AO-based beamforming method
depends on the knowledge of the full channel matrices G
and f , thus the active beamformer w and the passive beam-
former Θ have to be frequently re-optimized once the channel
changes.

However, a more often assumption in real-world RIS-aided
systems is that the locations of the BS and the RIS are usually
fixed, implying that the BS-RIS channel G enjoys a much
longer channel coherence time compared with the RIS-user
channel f [11]. Thus, in order to mitigate the computational
cost, a suboptimal solution can be immediately obtained by
designing w and Θ in a one-shot manner, i.e.,

w =
√
PBS,d argmax

w̃∈CM ,∥w̃∥=1

∥Gw̃∥2,

θn = exp
(
−iarg

(
f∗ngT

nw
))
, ∀n ∈ {N}, (6)
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where G = [g1, · · · , gN ]T. Note that this method is equivalent
to optimizing the upper bound of the target function (4a):

SNR =
1
σ2
z

|⟨ΘGw,f⟩|2 ≤ 1
σ2
z

∥Gw∥2 · ∥f∥2. (7)

C. Channel Estimation

Observe from (5) that, it suffices to know the cascaded
channel H = diag(f∗)G for beamforming design. To accu-
rately acquire this cascaded channel, the user sends pilot signal
x ∈ C to the BS with Np different RIS configurations. These
different RIS configurations are usually designed to be the
first Np columns of the DFT matrix FN , denoted as FN,Np

.
Due to the channel reciprocity, the received signal at the BS
with the p-th RIS configuration Θp = diag(θp) can be written
as [18]

yBS,p = HTθpw
′s′ + n, p = 1, 2, · · · , Np, (8)

where w′ is the precoding scalar of the user satisfying |w′|2 ≤
P ′max, s′ is the normalized user transmitted symbol with
E[s′(s′)∗] = 1, and n ∼ CN

(
0M , σ2

zIM
)

is the AWGN at the
BS receiver. Equivalently, (8) can be expressed in the matrix
form

Y BS = HTFN,Np
w′s′ + N , (9)

where Y BS =
[
yBS,1, · · · ,yBS,Np

]
and N =[

n1, · · · ,nNp

]
. Given the received signal Y BS and,

without loss of generality, assuming w′s′ =
√
P ′max, the

channel estimation problem in RIS-assisted system can be
solved by the MMSE estimator [14] as

Ĥ
T

= argmin
Ĥ

T

E
[
∥Ĥ

T
−HT∥2F |Y BS

]
= E

[
HT|Y BS

]
(10)

However, the evaluation of the MMSE estimator requires exact
knowledge of the prior p.d.f. of the channel p(H), which is
difficult to be written in an explicit form. This is because the
entries of the cascaded channel matrix Hij is the product of
two Gaussian-distributed random variables f∗i ∼ CN (0, σ2

f )
and Gij ∼ CN (0, σ2

g), which is generally not a Gaussian
random variable. An alternative way to circumvent this
difficulty is to constrain the estimator Ĥ in (10) to be a
linear transform of Y BS. This linear constraint produces a
linearly approximated MMSE estimator, which is called the
linear MMSE (LMMSE) estimator. By assuming σ2

h = σ2
fσ

2
g ,

the LMMSE estimator can be obtained as

(ĤT)LMMSE

=
√
P ′maxY BSF H

N,Np

(
P ′maxFN,Np

F H
N,Np

+
σ2
z

σ2
h

IN

)−1

,

(11)

which provides a feasible solution to the channel estimation
problem in the RIS-assisted MISO system. In this paper,
we name it the linear minimum mean squared error for H
(LMMSE-H) channel estimation method.

Furthermore, by assuming known BS-RIS link G, the
channel estimation problem can be significantly simplified to
the estimation problem of f∗. By exchanging the position
of θ and f∗ in (8), we obtain the equivalent uplink channel
estimation model as

yBS,p =
√
P ′maxG

Tdiag(θp)f∗ + n, (12)

which immediately leads to the following MMSE3 estimator
for f :

f̂
∗

=

(
AHA +

σ2
z

σ2
f

IN

)−1

AHỹ, (13)

where ỹ = vec(Y BS) ∈ CNpM×1, and

A =
√
P ′max

[
GTdiag(θ1); · · · ; GTdiag(θNp)

]
∈ CNpM×N .

(14)

Since this channel estimation scheme assumes known G and
estimates the unknown f by an MMSE estimator, we refer to
it as the MMSE-f scheme.

It is worth noting that, both the LMMSE-G and the MMSE-
f methods consume a linear number of pilot slots in N . For
the LMMSE-G scheme, In order to determine the RIS-user
channel f ∈ CN×1, at least Np = ⌈N/M⌉ = Θ(N) pilots are
required, even with the assumption that the slow-varying [11]
BS-RIS channel G is known in advance. In fact, without
exploiting the inherent structure of f , it seems impossible
to obtain the N channel coefficients with pilot overhead
smaller than Θ(N). However, in the following section, we will
show that it is possible to realize dimension-independent CSI
acquisition by exploiting a common physical phenomenon in
electrodynamics.

III. INTERFERENCE RANDOM FIELD

In this section, the signal model for the IRF will be first
introduced in Subsection III-A. Then, in order to acquire the
CSI, the simultaneous rotational signaling method will be
proposed in Subsection III-B.

A. Signal Model for IRF

Physical intuition is vital in designing RIS-aided
systems [19], and interference is a fundamental physical
phenomenon that appears in all kinds of waves. The most well-
known example is the double-slit optical interference [20],
as is shown in Fig. 1 (a), where the interference fringes created
during the wave superposition reveal the phase difference
of the two optical paths. Similarly, the same interference
phenomenon occurs when two RF electromagnetic waves
meet together on the RIS, as is shown in Fig. 1 (b), and the
IRF created by this interference reveals the CSI.

Suppose two signals impinge upon the RIS simultaneously,
creating an interference field at the n-th RIS element. Denote
the symbol transmitted from the BS by s, and the symbol
transmitted from the user by s′. In order to perform channel

3This LMMSE estimator is automatically a true MMSE estimator, since
the model is linear, and the prior on f and the noise n is Gaussian.
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Fig. 1. Analogy between the optical interference and the IRF phenomenon
induced on the RIS.

estimation by exploiting the IRF, we need to probe the
interference fringes, i.e., the power of the IRF. To clarify
the power problem associated with an electromagnetic signal,
the relationship between physical signal power and baseband
equivalent signal power is stressed in the following formulas.
If we represent both of the BS-RIS and user-RIS signals that
appear on each RIS element by their baseband equivalent
signals EBB(t), then the corresponding physical passband
electric field induced on each RIS element is characteri-
zed by

E(t) =
√

2ℜ
(
EBB(t)eiωct

)
, (15)

where ωc = 2πfc denotes the carrier frequency, and the
coefficient

√
2 ensures that the passband signal power is equal

to the baseband signal power, i.e., ∥EBB∥22 = ∥E∥22. Thus,
taking the square of the baseband signal is equivalent to
calculating the power of the physical electromagnetic signal.
Now we consider the IRF case, where a superposition of
the BS-RIS signal and the user-RIS signal is considered.
Following the notations in Section II and due to the linearity
of (15), we obtain the noisy IRF signal by adding up the two
impinging baseband signals

EBB,IRF(t) = EBB,BS(t) + EBB,user(t) + v(t)

= gT
nws+ f∗nw

′s′ + v(t), (16)

where v(t) ∼ CN (0, σ2
v) is the electromagnetic noise signal

in its baseband representation, w and w′ are the beamformer
at the BS side and the user side satisfying ∥w∥22 ≤ Pmax and
|w′|2 ≤ P ′max, respectively, s is the symbol transmitted from
the BS to RIS, and s′ = eiψ(t) is the time-varying transmitted
symbol from the user to the RIS. Since the interference fringes
are not sensitive to a global phase change, we can safely
assume that s = 1, and then the relative phase between the

user and the BS can be fully characterized by a time-varying
phase function ψ(t).

Furthermore, by defining α =
∣∣gT
nw
∣∣, β = |f∗nw′|, and the

phase difference between the BS-RIS link4 and the RIS-user
channel as φ = arg (f∗nw

′) − arg
(
gT
nw
)
, then the power of

the IRF can be written as

P (t) = A |EBB,IRF(t)|2 + ζ

= A
[
α2 + β2 + 2αβ cos (ψ(t) + φ)

]︸ ︷︷ ︸
IRF power signal

+ 2Aℜ
{(
α+ βei(ψ(t)+φ)

)
v′∗(t)

}
+A |v′(t)|2 + ζ︸ ︷︷ ︸

Noise

,

(17)

where ζ is the noise introduced by digital signal processing
after measuring the IRF power, A is the amplification factor
of the power sensor, and the equivalent electromagnetic noise
v′(t) = ei·arg(gT

nw)v∗(t) follows the same distribution as v(t)
for any time t. The name interference random field (IRF)
comes from the interferential nature of the electromagnetic
field, the randomness of the unknown phase difference φ, and
the unknown random noise realizations.

The phase difference φ defined here will play an important
role in our following channel estimation, since it carries
enough CSI for beamforming, of which the reason will be
justified in the next section. To estimate the phase difference φ,
we need enough observations from the detected power signal
P (t). Recall that according to (17), the interference power
P (t) is determined by α, β and the phase difference ψ(t)+φ.
For simplicity and without loss of generality, we can assume
ψ(t) = 2π

Ts
t, where Ts is the symbol period. Furthermore,

assume that L observations P [l] = P (tl) located at equally-
spaced instants tl = l

LTs for all l ∈ {L} are used for
estimating the phase difference φ.

B. Simultaneous Rotational Signaling and
Interference Detection

Generally, signal processing with only amplitude signals
P (t) are called noncoherent detection. The target of RIS
beamforming is to strengthen the signal at the user, hence
it requires coherent signal combining at the user antenna.
As a result, for noncoherent detection, it seems that the
lack of phase information makes beamforming impossible.
Fortunately, the physical phenomenon interference makes it
possible to convert phase difference into intensity difference,
allowing noncoherent devices to perform coherent detection.

To clarify this idea, we take only one RIS element into
consideration. As is introduced in the previous subsection,
if we allow the BS and the user to transmit electromagnetic
waves simultaneously, then the interference phenomenon will
occur on each RIS element. However, equal carrier frequencies
of the BS and the user create stable interference fringes [20]

4Since it is usually difficult to obtain the optimal BS beamformer w, during
the IRF-based CSI acquisition procedure, we fix w to a vector that guides
most of the signal energy to the RIS aperture according to (6). As a result,
gT
nw can be treated as the equivalent BS-link from the BS to the n-th RIS

element.
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Fig. 2. Simultaneous rotational signaling scheme. The IRF power is the
instantaneous total power of the BS-RIS signal and the user-RIS signal. The
composite power waveform that appears on RIS enables our algorithm to
obtain the desired CSI. The parameters α and β are estimated from the signals
Pα(t), Pβ(t) measured during the first two time slots, and φ is estimated by
IRF signal P (t) that occurs during the third time slot.

Fig. 3. Phasor representation of the IRF on each RIS element. Red vector
represents the complex BS-RIS signal gT

nw; Blue vector represents the
complex user-RIS signal f∗nw′; α and β denote the amplitude of these signals
respectively. In our signaling method, the BS transmits a fixed symbol s = 1,
while the user transmits a rotating symbol s′ = eiψ(t), causing the output of
the power sensor P (t) to vary in a waveform that is similar to a sine curve.

on the RIS, which do not carry information about the channel.
In contrast, a rotational symbol s′ = eiψ(t) at the user, which
is equivalent to a slightly higher carrier frequency, enables
the IRF power to vary over time. Thus, the desired CSI
can be drawn from the varying IRF power signal received
by sensing RIS. Fig. 2 shows the simultaneous rotational
signaling procedure and the IRF waveform.

To further analyze the interference, we focus on the received
IRF signal P (t) of the n-th RIS element. Note that the power
of interference field measured at instant t, expressed by (17),
exhibits a sinusoidal waveform in the time domain, as is shown
in Fig. 3. The initial phase (t = 0) of this sinusoidal waveform
is uniquely determined by φ. Thus, if we have access to the
power received by the n-th element at successive instants tl,
it is possible to retrieve the phase difference φ. However,
according to (6), it is the phase sum of the RIS-user channel
and the BS-RIS channel, i.e., arg(gT

nw) + arg(f∗nw
′), that

determines the optimal phase-shift of the n-th element. Given
the phase difference φ = arg (f∗nw

′)− arg
(
gT
nw
)
, we assume

the phase arg(gT
nw) to be known in our algorithms in order

to acquire the phase sum. The underlying reason for this
assumption is that, in contrast to the fast time-varying RIS-user
link, the BS-RIS link often exhibits a quasi-static property,
thus two-timescale methods in [11] can be applied, in which
the quasi-static BS-RIS channel G is estimated in a longer

Fig. 4. Hardware structure comparison. (a) Traditional RIS. (b) Sensing RIS.

timescale, while the frequently-varying RIS-user channel f
is estimated in a shorter timescale. Since the BS-RIS link
G is usually stable, it can be estimated only once for many
following data frames. Thus, in our simulations for the IRF-
based methods, the phase arg(gT

nw) is assumed to be known.

IV. SENSING RIS-BASED CHANNEL ESTIMATION

In this section, we will first briefly introduce the hardware
architecture required for detecting the IRF in Subsection IV-A.
Then, the core concept of IRF channel estimation and beam-
forming procedures will be introduced in Subsection IV-B.
After that, Subsection IV-C will include the analysis on pilot
overhead and computational complexity of the proposed IRF-
based CSI acquisition methods. Finally, the extension to the
co-existence case of direct-reflective links are presented in
Subsection IV-D.

A. Hardware Architecture of Sensing RIS

To obtain the amplitude of the induced IRF, inspired by the
sensing metasurface [21], we propose a hardware architecture
named sensing RIS. In contrast to traditional RIS architecture
shown in Fig. 4 (a), where each RIS element includes a phase-
shift circuit and a patch antenna, each sensing RIS element
additionally integrates a power sensor which is responsible for
detecting the amplitude of the IRF [22], as shown in Fig. 4 (b).
Since all of the RIS elements can sense and adjust the phase
independently from one another, low-cost microcontroller
units (MCUs) can be attached locally to each RIS element to
allow parallel computation of the optimal phases. However,
for extremely large-scale RIS systems, sparse sensing and
controlling may be preferred to reduce cost and hardware
complexity.

B. IRF Channel Estimation and Beamforming

In this subsection, we will thoroughly introduce the IRF-
based algorithms for adjusting the phases of the RIS elements.
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TABLE I
PILOT OVERHEAD COMPARISON OF DIFFERENT CSI ACQUISITION METHODS

The IRF channel estimation and beamforming procedure can
be divided into three steps:

1) Simultaneous rotational signaling and power sensing;
2) Phase estimation based on power data;
3) Integrate phase information and other CSI to perform

beamforming.

In step 1), three power signals are recorded: Pα(t), Pβ(t),
and P (t) (see Fig. 2 for details). The IRF appears during
the third signal P (t). In order to create an IRF, simultaneous
rotational signaling must be performed. In fact, the signaling
requirements can be realized by transmitting a symbol s = 1
on the zeroth subcarrier at the BS, while transmitting a symbol
s′ = 1 on the k-th subcarrier at the user. As is mentioned
above, if we denote the OFDM symbol period by Ts, then
the equivalent IRF angular frequency ω is given by ω =
2πk/Ts, which means the noiseless power signal exhibits
exactly k sinusoidal periods during an OFDM symbol. Without
loss of generality, in this paper, we always assume k = 1.
In fact, for multi-antenna MIMO systems, rotating pilot sym-
bols at different frequencies k can be simultaneously trans-
mitted by different antennas to enable CSI acquisition. Then,
multi-antenna CSI acquisition can be fulfilled by performing
Fourier analysis on the composite IRF power signal P (t),
and extracting the phase angles for each antenna at distinct
frequencies. Similarly, this pseudo-frequency division idea can
be extended to multi-user MIMO systems, where different
users can also be distinguished by different IRF frequencies.
Fortunately, since different users are usually separated in the
angular domain from the RIS’s perspective, these users can be
further identified by performing joint detection and estimation
across all the RIS sensors. The joint CSI estimation is beyond
the scope of this paper, and is left for our future work.

The second step 2) is called phase estimation. This step is
designed to extract the phase difference φ between the BS-RIS
and RIS-user channel. This is the key step of dimension-
independent IRF channel estimation and beamforming, since
this step can be done independently among all the RIS
elements.

The third step 3) is to utilize the phase information provided
by step 2) and calculate the near-optimal phase shifts for each
RIS element in order to perform beamforming. The additional
CSI refers to the phase information arg(gT

nw).
Step 2) and step 3) are executed by processors, so we

collect these two steps together into pseudo codes shown in
Algorithm 1: Note that in each iteration n of Algorithm 1,
the data P (t) is independent of other iterations. Thus, we can
perform the calculations in parallel for each phase-shift θn.

Algorithm 1 Near-Optimal RIS Beamforming by IRF
Require: Number of RIS elements N , IRF power signals

detected on each RIS element Pα(t), Pβ(t) and P (t).

Ensure: RIS phase-shift matrix Θ.

1: for n = 1, 2, · · · , N do
2: Estimate α and β from Pα(t) and Pβ(t).

3: Estimate phase difference φn from P (t), α and β.

4: Estimate ψn = arg(gT
nw) from known locations of BS

and RIS

5: θn ← exp(−i(φn + 2ψn))

6: end for
7: Θ← diag

(
[θ1, θ2, · · · , θN ]T

)
8: return Θ

For example, we can install an MCU for each of the elements
on the RIS. Each MCU is only responsible for gathering the
data from its own power sensor and adjusting the phase-shift
of its own RIS element. Since all MCUs can work in parallel,
the computational time is independent of the number of RIS
elements, resulting in an O(1) time complexity.

C. Pilot Overhead and Computational Complexity

In our proposed IRF-based CSI acquisition method, the
pilot overhead is fixed to O(1), which is independent of
the RIS dimension N . The reason is that, no matter how
many RIS elements are employed, the IRF appears on them
simultaneously. Thus, both the channel estimation and beam-
forming can be fulfilled within only three pilot symbols, as is
depicted in Fig. 2. Thus, the pilot overhead is independent
of the RIS dimension N . To the best of our knowledge,
this dimension-independent property is unprecedented, if we
cannot endure the cost of attaching a dedicated RF chain
to every RIS element. Some hybrid solutions do exist, such
as connecting all the RIS elements to several RF chains
with analog combiners [8], [23] to enable explicit channel
estimation at RIS. Unfortunately, the cost of analog combiners
and RF chains are usually much higher than power sensors.

Table I compares the pilot overhead of our proposed IRF
method with other different CSI acquisition methods. All the
CSI acquisition methods that appear in Table I assume a
narrowband system, so the pilot overhead is equal to the
number of pilot time slots. K denotes the number of users, S is
the sparsity of the channel assumption, M is the number of

Authorized licensed use limited to: Tsinghua University. Downloaded on May 24,2023 at 14:47:28 UTC from IEEE Xplore.  Restrictions apply. 



3802 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 6, JUNE 2023

antennas at BS, and α is the ratio of the large-timescale chan-
nel coherence time and the small-timescale channel coherence
time [11]. Except for CS-based methods [5], all the channel
estimation methods [11], [13], [24] require the pilot overhead
to be linearly dependent on N , while our IRF method needs
a constant number of exactly 3 pilot slots per user, regardless
of the number of RIS elements.

The computational complexity of processing the obtained
power signals depends on the hardware implementation. The
O(1) time complexity only holds when one MCU is installed
for each RIS element. If all the RIS elements are collectively
controlled by one processor, the computational time would
be O(N), but the pilot overhead still remains O(1). These
conclusions of complexity can be easily extended to multi-
RIS schemes, where multiple RISs are employed to serve a
single user at the same time. The independent nature of IRF
methods allows the RISs to work without the need to exchange
data with the BS or other RISs. This property makes it much
easier to integrate a new RIS into an existing communication
system, which greatly enhances the extendibility of the system.

D. Extension to Systems With Direct BS-User Link

Since the direct link does not affect the creation of the IRF,
the RIS phase-shift matrix Θ can be obtained as if there were
no such a direct link, up to an undetermined global phase eiϕ.
Note that this IRF-based procedure for obtaining Θ consumes
only 3 time slots. After this procedure, two additional uplink
training symbols can be transmitted from the user. The uplink
channel model is

yBS = (hd + eiϕGTΘf∗)s′ + n

= (hd + eiϕhRIS)s′ + n, (18)

where hd ∈ CM×1 is the direct BS-user link. In the first
symbol period ϕ is set to 0, and in the second ϕ = π. Thus,
the direct BS-user link hd and the reflective link hRIS can be
recovered by

ĥd =
yBS,1 + yBS,2

2
,

ĥRIS =
yBS,1 − yBS,2

2
. (19)

After obtaining the estimators of these two links, the global
phase ϕ should be tuned to maximize the total channel energy
∥hd + eiϕhRIS∥2, and this is done by setting

ϕ̂ = arg(ĥ
H

RISĥd). (20)

Though the final solution exp(iϕ̂)Θ for the RIS phase-shift
matrix is suboptimal in general, it only consumes two addi-
tional time slots, resulting in 5 time slots in total for config-
uring N reflective elements of the RIS. This pilot overhead is
still dimension-independent.

V. PHASE ESTIMATION ALGORITHMS

In this section, three phase estimation algorithms will be
proposed in Subsection V-A, V-B, and V-C respectively, which
constitute the core of the IRF channel estimation and beam-
forming algorithm.

A. DFT Method

The key challenge of the IRF channel estimation and
beamforming is the phase estimation step, i.e., how to obtain
the phase difference φ. Since the interferential power P (t)
exhibits a sinusoidal waveform, Fourier transforms can be
applied to extract its phase. Apply L-point discrete Fourier
transform (DFT) to the discrete-time observed sensor detection
signals P [0], · · · , P [L− 1], and we have

p[l′] =
∑L−1

l=0
P [l]e−i 2π

L ll′ , ∀l′ ∈ {L}. (21)

Specifically, we have the complex amplitude of the first
harmonic p[1] as

p[1] =
∑L−1

l=0
A

[
α2 + β2 + 2αβ cos

(
2π
L
l + φ

)]
e−i 2π

L l

= LAαβeiφ. (22)

Then, the phase φ can be estimated as

φ̂ = arg
(

p[1]
LAαβ

)
= arg (p[1]) . (23)

Note that this DFT method simply ignores the non-Gaussian
noise. For Gaussian noise, the DFT method is optimal.
However, in fact, the noise in (17) contains a squared term
of Gaussian noise, resulting in the noise being non-Gaussian.
Thus, we further conceive an ML method, as described in the
following Subsection V-B.

B. Newton-ML Method

Suppose the noise field v′(t) = v′R(t)+iv′I(t) ∼ CN (0, σ2
v),

and the noise of the power sensor is ζ ∼ N (0, σ2
ζ ). Without

loss of generality, we can assume that the sensor noise power
σ2
ζ is much weaker than the electromagnetic noise field v′(t).

Thus, we assume σ2
ζ = 0 in the following discussion. As a

result, the distribution of P (t) = A |EBB,IRF(t)|2 is a non-
central chi-squared distribution NCχ2

2
(A(µ2

R + µ2
I), Aσ

2
v/2)

with degrees of freedom k = 2, and mean values µR, µI
given by

µR = α+ β cos(ψ(t) + φ), µI = β sin(ψ(t) + φ). (24)

Thus, according to (17), the output signal of the power sensor
is given by

P (t) = A
(
(v′R + µR)2 + (v′I + µI)2

)
(25)

Let us define the noncentral parameter λ(t) as

λ(t) = A(µ2
R + µ2

I) = A
[
α2 + β2 + 2αβ cos (ψ(t) + φ)

]
,

(26)

then, according to the definition of theNCχ2
2
, the p.d.f. of P (t)

is given by the zeroth-order modified Bessel function of the
first kind

fP (x) =
1

Aσ2
v

exp
(
−x+ λ(t)

Aσ2
v

)
I0

(√
λ(t)x

Aσ2
v/2

)
, x ≥ 0.

(27)
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Then, the log likelihood function of φ based on the observa-
tions P [l] can be represented by

L(P [0], · · · , P [L− 1]|φ)

=
L−1∑
l=0

[
−P [l] + λl

Aσ2
v

+ log I0

(√
P [l]λl
Aσ2

v/2

)]
− L log(Aσ2

v),

(28)

where λl := λ(tl), and the derivative of (28) is

∂L(P [0], · · · , P [L− 1]|φ)
∂φ

=
2αβ
σ2
v

L−1∑
l=0

sin(ψ(tl) + φ)

[
1−R

(√
P [l]λl
Aσ2

v/2

) √
P [l]√
λl

]
,

(29)

where the function R(z) is defined as R(z) = I1(z)/I0(z).
Since the derivative of the function R(z) satisfies the
property [25]

R′(z) = 1−R2(z)− 1
z
R(z), (30)

the second derivative of the likelihood function L can be
expressed as

∂2L(P [0], · · · , P [L− 1]|φ)
∂φ2

=
2αβ
σ2
v

L−1∑
l=0

cos(ψ(tl) + φ)

[
1−R (zl)

√
P [l]√
λl

]

+
4α2β2

σ4
v

L−1∑
l=0

sin2(ψ(tl)+φ)
(

1−R2(zl)−
2
zl
R(zl)

)
P [l]
λl

,

(31)

where zl =
√
P [l]λ(tl)/(Aσ2

v/2). Then, we can perform the
Newton iteration to obtain φ̂, by iteratively using the updating
formula

φ̂(k+1) = φ̂(k) − L
′(φ̂(k))
L′′(φ̂(k))

, (32)

where L′(φ̂(k)) and L′′(φ̂(k)) are given by (29) and
(31) respectively. Note that during the calculation of (32),
A, σv, α, β and the received signal P [l] are all assumed to be
known. Thus, in fact, (29) and (31) are functions of a single
variable φ.

C. von Mises-EM Method

The Newton-ML algorithm, if convergent, is asymptotically
optimal [26]. However, the computation of the Newton-ML
estimator is quite complicated due to the intensive calculation
of modified Bessel functions. Now we introduce an iterative
method for estimating φ without any computation of such
special functions. Our method is based on the von Mises
distributions [27].

The von Mises-EM algorithm is based on the Bayesian
inference of von Mises distributions [28]. The von Mises

distribution VM(µ, κ) is a two-parameter distribution on
[0, 2π], with the probability density function given by

p(θ|µ, κ) =
exp(κ cos(θ − µ))

2πI0(κ)
, 0 ≤ θ ≤ 2π, (33)

where µ ∈ [0, 2π] and κ > 0 being the cyclic location
parameter and the concentration parameter. Note that the von
Mises distribution is a distribution on a circle, thus it acts
as a perfect prior distribution of a phase estimation problem.
More fortunately, the von Mises distribution is also closely
related to the complex Gaussian distribution, thus implying
the possibility of designing an iterative EM algorithm [26]
based on the interactions between the von Mises distribution
and the complex Gaussian noise distribution. The follow-
ing two lemmas: Lemma 1 and Lemma 2 reveal these
interactions.

Lemma 1 (Bayesian Estimation of VM Distribution):
Let θ ∼ VM(µ, κ), and z|θ ∼ CN (eiθ, σ2). Then
the posterior distribution θ|z is also a von Mises
distribution VM(µ′, κ′) with parameters µ′ and κ′ satisfying
κ′eiµ

′
= κeiµ + 2z/σ2.

Proof: See Appendix A.
In this paper, we also use VM(κeiµ) to denote the von

Mises distribution VM(µ, κ). This representation provides
convenience for the calculation of the posterior distribution
of the von Mises distribution in Bayesian inference.

Lemma 2 (Circular CN Posterior is VM):
Suppose z ∼ CN (z0, σ2), where z0 ∈ C, and a positive

radius r > 0. Then the posterior distribution of angle θ =
arg(z), constrained on a circle |z| = r obeys the von Mises
distribution

p(θ| |z| = r) ∼ VM
(

arg(z0),
r|z0|
σ2/2

)
. (34)

Proof: Replacing z by reiθ give rise to the conclusion
immediately.

Combining the results of Lemma 1 and Lemma 2, we can
then construct the EM algorithm for estimating φ. Since the
output of the power sensors P [l] does not contain phase
information, we can treat the phases as latent variables. Let
sl =

√
P [l]/A be the noisy estimation for |α+βei(φ+ψl)+vl|,

and θl be the latent variables arg(α+ βei(φ+ψl) + vl) that are
not observable. Since the noise vl ∼ i.i.d. CN (0, σ2

v), then
from Lemma 2, θl|sl, φ ∼ VM(arg(α + βei(φ+ψl)), sl|α +
βei(φ+ψl)|/(σ2

v/2)). Thus, we can infer the latent variables by
ML estimation

θ̂l,ML|sl, φ = arg(α+ βei(φ+ψl)). (35)

After inferring the latent variables θ̂l,ML, we can update the
estimation of φ using Bayesian rule in Lemma 1

φ|sl, θl ∼ VM

(
κeiµ +

β

σ2
v/2

L−1∑
l=0

(
sle

iθl − α
)
e−iψl

)
,

(36)

where the coefficient β/(σ2
v/2) comes from scaling the pha-

sor in Fig. 3 by a factor β−1 and applying Lemma 1.
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Algorithm 2 von Mises-EM Phase Estimation (vM-EM
Algorithm)
Require: Incident wave intensity α, β; sensor data P [l];

amplification factor A and noise variance σ2
v ; predefined

phase shifts ψl = ωtl.

Ensure: φ̂
1: sl ←

√
P [l]/A, ∀l ∈ {L}

2: φ̂← arg{FFT(P )[1]}
3: κ← 1

4: while φ̂ not convergent do
5: µl ← α+ βei(φ̂+ψl), ∀l ∈ {L}
6: wl ← sle

iarg(µl) − α, ∀l ∈ {L}
7: zφ ← κeiφ̂ + β

(∑L−1
l=0 wle

−iψl

)
/(σ2

v/2)

8: φ̂← arg(zφ)

9: end while
10: return φ̂

Performing E-step with (35) and M-step with (36) alternately,
then the estimation precision for φ can be iteratively improved.
Note that although the modified Bessel functions appear in
the density function of von Mises distribution, the bother is
avoided in the von Mises-EM algorithm. The pseudo code of
von Mises-EM algorithm is collected in Algorithm 2.

VI. PERFORMANCE ANALYSIS

In this section, we first provide the achievability proof the
proposed vM-EM phase estimation algorithm. Then, we derive
various CRLB expressions for the phase estimation problems.

A. Asymptotic Achievability Bound of the vM-EM Algorithm

Theorem 1 (Fixed-Point Perturbation Bound): Assume
α > β > 0 are fixed. Then, there exists a sufficiently large
integer L0, such that for any L ≥ L0, if the proposed vM-EM
algorithm converges, the returned estimator φ̂ achieves an
MSE performance of E[(φ̂− φ)2] = O(γ̄−1), where φ is the
true parameter, and γ̄ is the interferential SNR defined as
γ̄ = (α2 + β2)/σ2

v .
Before proving this theorem, we first introduce the follow-

ing Lemma 3 that characterizes how fast the vM-EM estimator
φ̂ in Algorithm 2 varies with the random noise vector v.

Lemma 3 (The Speed of the Fixed-Point): Suppose that for
the input data sequence s =

√
P /A = (s0, · · · , sL−1)T, the

vM-EM algorithm converges to the estimator φ̂. Then, the
estimator φ̂ = φ̂(v) can be viewed as a function of the noise
v, and the Wirtinger derivative [29] of φ̂ w.r.t. v satisfies

∥∇vφ̂∥2 =
1

|⟨s,x⟩|2
L−1∑
ℓ=0

sin2(θℓ)
|µℓ|2

, (37)

where x = (x0, · · · , xL−1)T is defined as

xℓ :=
(α+ β cos θℓ)(β + α cos θℓ)

|µℓ|3
, ℓ ∈ {L}, (38)

and

µℓ := α+ βexp(iθℓ), ℓ ∈ {L},
θℓ := ψℓ + φ̂, ℓ ∈ {L}. (39)

Proof: The proof is provided in Appendix E.
The aim of Lemma 3 is to establish the connection between

the vM-EM estimator φ̂ and the noise vector v. In the
following, we denote the estimation error as

∆φ := φ̂− φ. (40)

Specifically, it is justified in Lemma 3 that, the squared error
|∆φ|2 of the vM-EM estimator is intrinsically bounded by
the noise energy ∥v∥2, since the differential d∆φ of a general
complex-valued function ∆φ : C→ C can be written as

d∆φ = ⟨∇vφ̂,dv∗⟩+ ⟨∇v∗ φ̂,dv⟩, (41)

where for real-valued function φ̂(v) : CL → [0, 2π] ⊂ R this
differential relation reduces to

d∆φ = 2ℜ⟨∇vφ̂,dv∗⟩. (42)

Thus, an integration inequality will hold to upper-bound the
MSE of the estimator φ̂, i.e.,

|∆φ|2 =
∣∣∣∣∫ d∆φ

∣∣∣∣2
= 4

∣∣∣∣∫ 1

0

ℜ⟨∇v′=tvφ̂,v⟩dt
∣∣∣∣2

≤ 4∥v∥2
(∫ 1

0

∥∇v′=tvφ̂∥dt
)2

. (43)

Before explaining this idea in detail, we first introduce some
interesting results about some intermediate variables.

Lemma 4 (Asymptotic invariants): Suppose α > β > 0.
If we define

HL :=
1
L

L−1∑
ℓ=0

sin2(θℓ)
|µℓ|2

,

GL :=
1
L

L−1∑
ℓ=0

(α+ β cos(θℓ))(β + α cos(θℓ))
|µℓ|2

, (44)

then the sequences HL and GL are intrinsically independent
of the estimator φ̂ ∈ [0, 2π] as L→∞. Specifically,

H = H∞ +O(L−1),

G = G∞ +O(L−1), (45)

where

H∞ =
1
2π

∫ 2π

0

sin2 θ

α2 + β2 + 2αβ cos(θ)
dθ =

1
2α2

,

G∞ =
1
2π

∫ 2π

0

(α+ β cos(θ))(β + α cos(θ))
α2 + β2 + 2αβ cos(θ)

dθ =
β

2α
.

(46)
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Proof Sketch. The integral expressions for H∞ and G∞ as
well as the asymptotic residuals O(L−1) can be obtained by
applying the numerical trapezoidal integration formula [30] to
the definition of the sequence HL and GL. The integrals on
[0, 2π] can be evaluated by the following replacements [31]:

dθ → dz
iz
,

∫ 2π

0

→
∫
|z|=1

,

sin θ → z − z−1

2i
, cos θ → z + z−1

2
, (47)

and the applying the Residue Theorem to all poles inside the
closed curve |z| = 1.

Remark 1: These limiting expressions will play an impor-
tant rule in obtaining the upper bound of the estimation error
|∆φ|, since this invariance can asymptotically eliminate the
dependence of the Wirtinger derivative (Lemma 3) on the
unknown estimator φ̂.

Remark 2: In fact, we can also prove that

∥x∥2

L
=

2α2 − β2/2
4α2(α2 − β2)

+O(L−1), α > β > 0 (48)

by the same numerical integration approximation technique
and the Residue Theorem [31].

Lemma 5 (ODE bound): Suppose for the input data
sequence s =

√
P /A = (s0, · · · , sL−1)T, the vM-EM

algorithm converges, and the estimation error is denoted by
∆φ = φ̂ − φ. Then, for any sufficiently large L ≥ L0, there
exists some positive δ = δ(L) > 0 and C = C(L) > 0,
such that for any noise vector v satisfying ∥v∥/

√
L ≤ δ, the

estimation error is upper-bounded by

|∆φ| ≤ C ∥v∥√
L
. (49)

Proof: The proof is provided in Appendix F.
From the above Lemma 5, we can directly prove Theorem 1.
Choose L ≥ L0, and then let us compute the MMSE of the
vM-EM estimator, i.e.,

E[(φ̂− φ)2] = E[|∆φ|2]

= E

[
|∆φ|2

∣∣∣∣∣∥v∥√L ≤ δ
]

P
[
∥v∥√
L
≤ δ
]

+ E

[
|∆φ|2

∣∣∣∣∣∥v∥√L > δ

]
P
[
∥v∥√
L
> δ

]
≤ C2E

[
∥v∥2

L

]
+ π2P

[
∥v∥√
L
> δ

]
(a)

≤ C2σ2
v + π2

E
[(

∥v∥√
L

)r]
δr

, (50)

where (a) comes from applying the Markov inequality, and
r > 0 can be arbitrarily chosen. Particularly, by setting r = 2,
we obtain

E [(φ̂− φ)] ≤ σ2
v(C

2 + π2/δ2) = O(γ̄−1), (51)

which completes the proof of Theorem 1.
Remark 3: The conclusion of Theorem 1 guarantees that

as γ̄ →∞, the MSE of the vM-EM estimator decays at a rate

of at least (γ̄)−1. This conclusion is verified in the following
numerical simulation, where it is shown that the MSE curve
of the proposed vM-EM algorithm has an asymptotic slope of
−1 in the logarithmic coordinate.

B. Expressions for the CRLB

In Section IV, we have introduced three phase estima-
tion methods to solve the probabilistic parameter estimation
problem. To analyze the performance limit of the proposed
schemes, we derive the CRLB [26] of the estimation in
Lemma 6.

Lemma 6 (Non-central Chi-Squared CRLB): Suppose the
probabilistic model is specified by (25), where L observations
P [0], · · · , P [L − 1] are obtained. Then the CRLB of this
L-point phase estimation problem is given by

1
CRLB(φ)

= K2(γ̄)2
L−1∑
l=0

sin2(ψl+φ) (1/γl − g(γl)) , (52)

where K = 2αβ/(α2 + β2), a = Aσ2
v , γl = λl/a =(

α2 + β2 + 2αβ cos(ψl + φ)
)
/σ2

v , and γ̄ is the arithmetic
mean of all the γ0, · · · , γL−1. The function g(γ) is defined as

g(γ) =
∫ +∞

0

γt exp(−γ(1 + t)) I0
(
2γ
√
t
)

(
1−R2

(
2γ
√
t
))

dt. (53)

The function R(·) is defined the same as in (30).
Proof: See Appendix B.

From Lemma 6, we note that the CRLB of the phase
estimation problem is completely determined by the two
parameters K and γ̄, which are the interferential contrast
and the average interferential SNR, respectively. However, this
exact CRLB expression is difficult to calculate due to the
sophisticated evaluation of the integral in (53). Thus, we will
provide a simpler approximated CRLB in the following
Theorem 2.

Theorem 2 (Asymptotic CRLB): Suppose the probabilistic
model is specified by (25). Then the approximated CRLB of
this L-point phase estimation problem is given by

1
CRLB(φ)

≈ K2(γ̄)2
L−1∑
l=0

sin2(ψl+φ)(1/γl− ĝ(γl))+, (54)

where (x)+ represents x1{x≥0}, and the definition of param-
eters are the same as in Lemma 6. The asymptotic approxi-
mation function ĝ(γ) is defined as

ĝ(γ) =
1
4

√
π

γ
e−γ/2 ((1 + 1/γ)I0(γ/2) + I1(γ/2)) . (55)

Proof: See Appendix C.
The asymptotic expression of the CRLB still relies only

on two parameters K and γ̄. But the calculation is much
simpler compared to the exact expression. The discussions
of the properties of the exact and asymptotic expressions of
CRLB are continued in Subsection VI-C.
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Fig. 5. Precise 1/CRLB(φ) as a two-variable function of K and γ̄,
calculated from (52). The larger the value of the reciprocal CRLB, the more
precise an unbiased estimator can be.

C. Properties of the CRLB

From the above analysis of CRLB, we can observe two
properties of the phase estimation problem:

1) The CRLB relies almost only on the physical parameters
K and γ̄.

2) The CRLB is insensitive to the value φ.
The first point can be concluded from the expressions, and the
second point comes from the symmetry of the sin2(·) function
when L is large enough. We have plotted 1/CRLB(φ) as a
two-variable function in Fig. 5. The best prediction accuracy
occurs when |K| = 1, i.e., the RIS-received signal from BS
is as strong as that from the user. Also, the larger value of
the average interferential SNR γ̄ also contributes to a more
accurate phase estimation.

We also perform error analysis for the use of asymp-
totic expansion technique, which is stated in the following
Theorem 3.

Theorem 3 (Asymptotic Optimality of CRLB): The relative
error r of 1/γ − ĝ(γ), as an approximation of 1/γ − g(γ),
decreases at a rate that is inverse proportional to the interfer-
ential SNR γ, i.e.,

r =
|ĝ(γ)− g(γ)|
1/γ − g(γ)

= O
(

1
γ

)
. (56)

Proof: See Appendix D.
From Theorem 3, we can conclude that our derived expres-

sion of approximated CRLB is asymptotically optimal.

VII. SIMULATION RESULTS

In this section, we will present our simulation results.
In Subsection VII-A, we will show the performance compar-
ison of the phase estimation algorithms. In Subsection VII-B,
we will show the achievable rate comparison of our IRF
method and other RIS-aided channel estimation and beam-
forming algorithms.

Fig. 6. Performance comparison of phase estimation algorithms. x-axis
represents the interferential contrast K; y-axis represents the MSE of the
estimators. The vM-EM algorithm outperforms naive DFT by at least 1 dB
in high-K regions.

A. Phase Estimation Algorithms

In Section IV, we have already introduced three phase
estimation algorithms: DFT, Newton-ML and vM-EM. Now
we compare the performance of these algorithms together with
the CRLB which has been derived in Section VI.

In all the simulations for phase estimation algorithms, the
amplification factor A is fixed to be 1, the number of power
samples5 is fixed to L = 26 = 64, and σζ = 0.05; The
interferential SNR γ̄ = 20 in Fig. 6. The CRLB and CRLB-
approx curves are calculated from (52) and (54), respectively.
For Newton-ML algorithm, the Newton iteration is performed
4 times according to (32). For vM-EM algorithm, the iteration
number is also fixed to 4. The true value of random variable
φ under estimation is drawn from a uniform distribution
on [0, 2π]. In the simulations in Fig. 7, all the simulation
parameters, except for K and γ̄, are the same with that
of Fig. 6.

It can be concluded from Fig. 6 and Fig. 7 that, the vM-EM
algorithm has comparable performance with the Newton-ML
algorithm, but the computational cost is significantly lower,
since Algorithm 2 does not require the evaluation of the
complicated modified Bessel functions.

It is shown in Fig. 7 that the vM-EM algorithm achieves
an asymptotic error decay of O(γ̄−1), which coincides with
the statement in Theorem 1. Furthermore, both the Newton-
ML and vM-EM algorithms are close to the CRLB, and both
of them outperform the simple DFT algorithm. The CRLB
approximation (54) is also satisfactory under a wide range of
K and γ̄. However, the DFT estimator in Fig. 7 exhibits a
near-constant performance gap toward the CRLB in the high-
SNR region, while the Newton-ML and vM-EM estimators

5In practical OFDM systems, the number of signal samples within the
duration of an OFDM symbol is usually ∼ 2048. Considering that the power
sensor is usually slower than the baseband ADC, it is reasonable to assume
a 32-times slower sampling rate of the power sensor. Thus, L = 64 is a
reasonable number of acquired power samples during one time slot.
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Fig. 7. Performance comparison of phase estimation algorithms. x-axis
represents the average interferential SNR γ̄; y-axis represents the MSE of
the estimators. The interferential contrast K = 0.6.

TABLE II
FAIR PILOT OVERHEAD COMPARISON OF DIFFERENT

CSI ACQUISITION METHODS

are able to bridge this gap and finally approaches the CRLB
as γ̄ →∞.

B. Spectral Efficiency With IRF-Based CSI Acquisition

All our simulation data are acquired under fc = 3.5 GHz,
P ′max = 300mW, n0 = −174 dBm/Hz, subcarrier bandwidth
BW = 180 kHz, thermal noise at the receiver σ2 = BW×n0,
σ2
v = 100MHz×n0Fp, where Fp = 10dB is the noise factor

of the power sensor. Both the BS and the RIS are equipped
with λ/2-spaced uniform planar arrays (UPAs), while the user
has a single antenna. The BS is located at a distance from the
RIS that is drawn from a uniform distribution between 20 m
and 100 m, and the user appears uniformly within a distance
ranging from 10 m to 100 m. The size of the RIS is set to be
N = 20×10, and that of the BS antenna is 4×2. The detailed
simulation settings about the pilot energy and data energy (3)
are listed in Table II.

Moreover, for the IRF methods, the BS beamformer w is
chosen to be the right singular vector that corresponds to
the most significant singular value of the BS-RIS channel G,
which maximizes the total signal energy received by the RIS
from the BS, i.e.,

w = argmax
∥w∥≤Pmax

∥Gw∥2 , (57)

and the user’s transmit scaler is set to the maximum allowed
power w′ =

√
P ′max for all the CSI acquisition schemes to

ensure a high SNR. For the MMSE/LMMSE algorithms, after

Fig. 8. Performance curve of the ergodic spectral efficiency against the BS
transmitted power Pmax.

the channel estimation procedure, the beamforming step is
fulfilled by alternately updating the BS beamformer w and
the RIS phase-shift matrix Θ = diag(θ) according to (5).
The initial values w(0) and θ(0) are generated randomly,
and are subject to their corresponding power constraint and
unit-modulus constraint, respectively. In our simulations, the
iteration is performed for at most T = 10 times.

The proposed IRF channel estimation and beamform-
ing method are compared with the conventional MMSE-f ,
LMMSE-H , and other idealized settings in Fig. 8. In the
simulation of the IRF method, the vM-EM phase estimation
algorithm is utilized with the assumption that the phases
of the BS-RIS line-of-sight (LoS) path are known. The
“Oracle” (black dashed line) assumes perfectly-known CSI
with iterative beamforming (5). In the LMMSE-H method
(pink dashed line), we first utilize (11) to obtain estimates
for the cascaded channel [5], [14], and then perform iterative
RIS beamforming (5) based on the estimated channel. The
MMSE-f method (blue line) is calculated by (13) before
applying the beamforming algorithm (5). The matched filter
(MF) scheme (cyan line) is obtained by assuming σ2

z → ∞
in (11). In addition, we also consider the randomly-phased RIS
scheme as a benchmark.

Fig. 8 shows the performance curve of the ergodic spectral
efficiency CPSI against the BS transmitted power. The ergodic
spectral efficiency is defined as

CPSI =
Nd
B

E [log (1 + γuser)] , (58)

which is normalized by the pilot overhead, and the subscript
PSI represents perfect side information [32]. The achievable
user SNR is defined as

γuser =
PBS,d|fHΘGw|2

σ2
z

. (59)

From Fig. 8, we can conclude that the proposed IRF method
with vM-EM phase estimation is nearly optimal even with
extremely low pilot overhead. The proposed IRF method is
even close to the oracle scheme, and achieves satisfactory
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performance throughout a wide range of the BS transmitted
power.

VIII. CONCLUSION

In this paper, we have introduced a dimension-independent
CSI acquisition method for sensing RIS-assisted MISO wire-
less communication systems. Combined with our proposed
vM-EM phase estimation algorithm, the pilot overhead of our
CSI acquisition method is made independent of the number of
RIS elements with low computational cost, enabling the imple-
mentation of extremely large-scale RISs to achieve significant
beamforming gain. Theoretical analysis have demonstrated
the asymptotic optimality of the proposed vM-EM algorithm,
which is further supported by the CRLB analysis. Simulation
results have also verified the near-optimality of our vM-EM
algorithm. Furthermore, due to the elementwise independent
property of our IRF-based CSI acquisition method, the near-
field effect cannot corrupt the precision of the CSI. Also,
due to the simultaneous signaling protocol, the “multiplicative
fading” effect of RIS [33], [34] during channel estimation is
automatically avoided. Thus, the IRF method has promising
applications to high-frequency large-scale systems.

For future work, the spatial interferential fringes on the
sensing RIS may be exploited to recover the CSI at higher
precision, and the data obtained by the power sensors may be
utilized to perform joint channel estimation and beamforming
with sparse assumptions on the channel. In addition, different
interferential frequencies can be assigned to different users
to perform multi-user CSI acquisition simultaneously, but
the waveforms should be re-designed to avoid interference
among users. Furthermore, when equipped with a sensing RIS,
traditional MIMO systems can also benefit from the additional
CSI provided by the phase estimation methods based on
the IRF.

APPENDIX A
PROOF OF LEMMA 1

Denote z = zr + izi; then the posterior density p(θ|z) ∝
p(θ)p(z|θ) can be expressed as

p(θ|z) ∝ exp(κ cos(θ − µ))

× exp
(
− 1
σ2

(
(zr − cos θ)2 + (zi − sin θ)2

))
∝ exp

(
κ cos(θ − µ) +

2
σ2

(zr cos θ + zi sin θ)
)

∝ exp
(

Re
[
eiθ
(
κe−iµ +

1
σ2/2

z∗
)])

. (60)

Since the density of the von Mises distribution VM(µ, κ)
can also be expressed as p(θ) ∝ exp

(
Re
[
eiθ(κeiµ)∗

])
, we can

also parameterize the von Mises distribution by a single
complex parameter κeiµ. Thus, the above p(θ|z) is a von
Mises density with parameter κ′eiµ

′
, satisfying κ′eiµ

′
= κeiµ+

2z/σ2. This completes the proof.

APPENDIX B
PROOF OF LEMMA 6

According to the definition of the CRLB, taking the neg-
ative expectation of (31) yields the reciprocal CRLB of the

estimators for φ. Note that in (31), there are three types
of expectations to be evaluated: E [P [l]], E

[
R(zl)

√
P [l]

]
,

and E
[
(1−R2(zl))P [l]

]
. The expectation of P [l] can be

directly evaluated from (25) by the linearity of the expectation
operation:

E [P [l]] = Aσ2
v + λl. (61)

The expectation E
[
R(zl)

√
P [l]

]
can be evaluated by cal-

culating the derivative w.r.t λl on both sides of the identity
Eλl,Aσ2

v
[eλl/(Aσ

2
v)] = eλl/(Aσ

2
v):

E
[
R(zl)

√
P [l]

]
= e−λl/(Aσ

2
v) ×

∫ +∞

0

1
Aσ2

v

exp
(
− x

Aσ2
v

)
I1

( √
λlx

Aσ2
v/2

)√
xdx

= e−λl/(Aσ
2
v)Aσ2

v

√
λl×

∂

∂λl

∫ +∞

0

1
Aσ2

v

exp
(
− x

Aσ2
v

)
I0

(√
λlx

Aσ2
v/2

)
dx

=
√
λl.

(62)

According to the definition of zl, the expectation
E [R(zl)P [l]/zl] is of the same form as the expectation

E
[
R(zl)

√
P [l]

]
. Thus, the expectation result is

E
[
R(zl)
zl

P [l]
]

=
Aσ2

v

2
. (63)

As for the third kind of expectation E
[
(1−R2(zl))

P [l]
λl

]
,

we first define

g(λl, a) = E
[
(1−R2(zl))

P [l]
λl

]
. (64)

Let x = λlt, and write down the integral expression of (64),
we obtain

g(λl, a) =
∫ +∞

0

t(1−R2(2γl
√
t))
λl
a

exp
(
λl + λlt

a

)
× I0

(
2γl
√
t
)

dt

=
∫ +∞

0

γlt exp(−γl(1 + t)) I0
(
2γl
√
t
)

×
(
1−R2

(
2γl
√
t
))

dt

= g(γl). (65)

Combining the above equations of expectations (61), (62),
(63) and (65), we obtain

1
CRLB(φ)

(a)
= −4α2β2

σ4
v

L−1∑
l=0

sin2(ψ(tl) + φ)

×
(

E
[
(1−R2(zl))

P [l]
λl

]
− a

λl

)
(b)
=

4α2β2

σ4
v

L−1∑
l=0

sin2(ψ(tl) + φ)
(
a

λl
− g(λl/a)

)
,

(66)
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where step (a) comes from substituting these three types
of expectation into (31), and step (b) comes from replacing
the trickiest expectation by the definition of the function
g(·) in (53).

Note that the precise value of the CRLB can be determined
by the exact single-variable g function (53), whose variable
γl = λl/a is the interferential SNR. After further derivations,
it can be observed from the expressions that the CRLB only
relies on two intrinsic physical parameters: the interferential
SNR γl, and the interferential contrast K [20], which coincides
with the physical intuition. Imitating the notations in optics,
we define the parameter K to be

K =
IM − Im
IM + Im

=
2αβ

α2 + β2
, (67)

and K automatically satisfies −1 ≤ K ≤ 1. Define the
average interferential SNR γ̄ to be the arithmetic average of γl,
0 ≤ l < L:

γ̄ =
1
L

L−1∑
l=0

γl =
α2 + β2

σ2
v

. (68)

Thus, the CRLB can be expressed as

1
CRLB(φ)

= K2(γ̄)2
L−1∑
l=0

sin2(ψl + φ) (1/γl − g(γl)) (69)

where the values γl = γ̄ (1 +K cos(ψl + φ)) are jointly
determined by both the average interferential SNR γ̄
and the interferential contrast K. This completes the
proof.

APPENDIX C
PROOF OF THEOREM 2

Since an exact expression of g(γ) in (53) is difficult to
calculate, we evaluate it approximately by utilizing the asymp-
totic expansion x(1 − R2(2

√
x)) ≈

√
x/2 [25]. According

to the definition, evaluating g(γ) is the same as evaluating
E[(1−R2(zl))P [l]/λl].

In order to evaluate the expectation E[(1−R2(zl))P [l]/λl],
we first introduce some preliminaries about the noncentral chi
distribution NCχk

(λ) with noncentrality parameter λ > 0.
The distribution NCχk

(λ) is the law of the length (2-norm)
of a k-dimensional standard normal distribution N (µ, Ik),
with λ = ∥µ∥2. Specifically, we are interested in the case
where k = 2, since this is the case of the 2-dimensional
complex plane. For k = 2, let Y ∼ NCχ2(m), then we
have [35]

E [Y ] =
√
π

2
L1/2(−m2/2), (70)

where L1/2 denotes the generalized Laguerre function of
order 1/2. The function L1/2(x) has explicit expression

L1/2(x) = ex/2
[
(1− x)I0

(
−x

2

)
− xI1

(
−x

2

)]
. (71)

Recall that the asymptotic expansion x(1 − R2(2
√
x)) ∼√

x/2 holds for large x, and the random variable P [l] obeys a
non-central chi-squared distribution which can be equivalently

expressed as

P [l] ∼ A
∣∣∣CN ((α+ βei(ψl+φ)), σ2

v

)∣∣∣2
∼ a

2

∣∣∣CN ((α+ βei(ψl+φ))/(σv/
√

2), 2
)∣∣∣2 . (72)

Thus, we obtain

E[(1−R2(zl))P [l]/λl] = E

[(
1−R2

(√
λlP [l]
a/2

))
P [l]
λl

]

≈
(
a

λl

)2

E

[√
λlP [l]
a2

/2

]

=
1
2

√
λl
a

(
a

λl

)2√
a

2
E [NCχ2(m)] ,

(73)

where m = |α+βei(ψl+φ)|/(σv/
√

2) =
√

2λl/a =
√

2γl, and
thus m2/2 = γl. Plugging (70) and (71) into (73), we obtain
the final expression

E[(1−R2(zl))P [l]/λl]

≈ 1
2

√
λl
a

(
a

λl

)2√
aπ

4
e−γl/2 [(1+γl)I0(γl/2)+γlI1(γl/2)]

=
1
4

√
π

γl
e−γl/2

[
(1 + γ−1

l )I0(γl/2) + I1(γl/2)
]

:= ĝ(γl). (74)

Finally, substituting the approximation (74) into the exact
CRLB (52) yields the conclusion (54), which completes the
proof. Note that the operation (x)+ in (54) ensures that each
term of the CRLB is non-negative.

APPENDIX D
PROOF OF THEOREM 3

Since the only imprecise step of the above derivation is the
asymptotic expansion, the approximation error of the expec-
tation can be upper-bounded by the asymptotic expansion
error. Assume that the asymptotic expansion error does not
exceed δ, i.e., ∣∣x (1−R2(2

√
x)
)
−
√
x/2
∣∣ ≤ δ. (75)

Then, by error analysis on (73), we have

|g(γ)− ĝ(γ)| ≤ 1
γ2
δ. (76)

It can be numerically confirmed from Fig. 9 that δ ≤ 0.07, and
that as x → ∞, the approximation error tends to zero. Thus,
(74) is a nearly perfect approximation when the interferential
SNR γ is large. To be more precise, at γ → +∞, the function
ĝ(γ) can be asymptotically expanded as

ĝ(γ) ∼ 1
2

(
1
γ

+
1

4γ2
+O(

1
γ3

)
)
. (77)

Thus, 1/γ − ĝ(γ) ∼ 1/2 Θ(1/γ), and the relative error r of
a single term in the CRLB expression is upper bounded by
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Fig. 9. The curve x(1 − R2(2
√

x)) −
√

x/2, when 0 ≤ x ≤ 5. We can
see from the curve that the approximation error δ ≤ 0.07.

introducing a positive parameter ϵ, which is

r
(a)

≤ δ/γ2

| |1/γ − ĝ(γ)| − |ĝ(γ)− g(γ)| |
(b)

≤ δ/γ2

1/((2 + ϵ)γ)− δ/γ2

=
δ

γ/(2 + ϵ)− δ
, (78)

where (a) comes from applying the triangle inequality, and
(b) comes from assuming sufficiently large γ such that the
denominator is positive (note that this can be done due to (77)).
In order to let this upper bound hold, it should be satisfied that
γ > (2 + ϵ)δ, and the parameter ϵ should satisfy

1
γ
− ĝ(γ) > 1

(2 + ϵ)γ
, ∀γ > (2 + ϵ)δ, (79)

which is equivalent to

ϵ >
1

1− γĝ(γ)
− 2, ∀γ > (2 + ϵ)δ. (80)

Such ϵ > 0 exists. Since the function 1/(1 − γĝ(γ)) is
decreasing for sufficiently large γ, the inequality (80) is
equivalent to

ϵ >
1

1− (2 + ϵ)δ ĝ((2 + ϵ)δ)
− 2. (81)

In fact, choosing ϵ = 4 will satisfy all the conditions above
when δ = 0.07. Thus, from (78), the relative error is upper
bounded by

r ≤ 0.07
γ/6− 0.07

, ∀γ > 0.42. (82)

We can easily see from the above inequality that this approx-
imation becomes arbitrarily good when γ → ∞, and the
decreasing rate is of order O(1/γ). This completes the proof.

APPENDIX E
PROOF OF LEMMA 3

Proof. Let z = exp(iφ̂) be the complex representation of
the estimator φ̂, and

w = w(φ̂, s) =
2β
σ2
vκ0

L−1∑
ℓ=0

exp(−iψℓ)sℓ
µℓ
|µℓ|

(83)

be the scaled intermediate result in the proposed vM-EM
algorithm (Algorithm 2, line 7). Then, on convergence, φ̂ is
the fixed point of the algorithmic iteration, i.e., the complex
number w is parallel to z, which is equivalent to w∗z ∈ R.

Define p(z, w) = (zw∗ − z∗w)/(2i) : C2 → R, then the
convergence of this algorithm is equivalent to w∗z ∈ R, which
is further equivalent to p(z, w) = 0. Since both z = z(φ̂) and
w = w(φ̂, s) are functions of the estimator φ̂, the output of
the vM-EM algorithm is a root of the equation p = 0, i.e.,

p(z(φ̂), w(φ̂, s)) = 0. (84)

Notice that if the observed signal is noiseless, i.e., sℓ =
µ

(0)
ℓ := α+βexp(i(ψℓ+φ)), then the true value φ is a solution

to the equation (84). This can be easily seen from the fact that
if φ̂ = φ, then µℓ = µ

(0)
ℓ . However, generally the input of the

algorithm s is noisy, which is modeled by sℓ = |µ(0)
ℓ + vℓ|,

where vℓ ∼ i.i.d. CN (0, σ2
v) are the thermal noise at the ℓ-

th power sensor. Thus, the estimator φ̂ can be viewed as a
perturbed version of the true value φ, i.e., φ̂ = φ̂(v), which is
a function of the noise v. Thus, we aim to find the Wirtinger
derivative [29] ∇v(φ̂(v)), where the gradient operator ∇v

acting on f : CL → C is defined through its components:

∇vf =
1
2
(
∇ℜ(v)f − i∇ℑ(v)f

)
=

1
2

(
∂f

∂v0,R
− i

∂f

∂v0,I
, · · · , ∂f

∂vL−1,R
− i

∂f

∂vL−1,I

)T

.

(85)
Choose ℓ ∈ {L}, we first evaluate ∂φ̂/∂vℓ. Taking the
derivative of both sides of (84) w.r.t. vℓ ∈ C and using the
derivative formula for implicit functions, we obtain

∂φ̂

∂vℓ
= −

∂p
∂w

∂w
∂vℓ

+ ∂p
∂w∗

∂w∗

∂vℓ(
∂p
∂z

∂z
∂φ̂ + ∂p

∂z∗
∂z∗

∂φ̂

)
+
(
∂p
∂w

∂w
∂φ̂ + ∂p

∂w∗
∂w∗

∂φ̂

) , (86)

where the Wirtinger derivative is applied to functions of
complex variables, and the ordinary derivative is applied
to functions of real variables. By calculating the Wirtinger
derivatives of p w.r.t. z, z∗, w and w∗, as well as z w.r.t. φ̂,
we obtain

∂p

∂z
=

i
2
w∗,

∂p

∂z∗
= − i

2
w,

∂p

∂w
= − i

2
z∗,

∂p

∂w∗
=

i
2
z,

∂z

∂φ̂
= iz,

∂z∗

∂φ̂
= −iz∗. (87)

Substituting (87) into (86), we obtain

∂φ̂

∂vℓ
= − i

2

(
z ∂w

∗

∂vℓ
− z∗ ∂w∂vℓ

)
−ℜ(z∗w) + ℑ(z∗ ∂w∂φ̂ )

. (88)

Let ∂φ
∂vℓ

= −Nℓ/Dℓ, where Nℓ and Dℓ are defined to be the
numerator and denominator of the above equation respectively.
In order to obtain expressions for Nℓ and Dℓ, we first evaluate

∂w

∂vℓ
=

2β
σ2
vκ0

L−1∑
ℓ′=0

e−iψℓ′
µℓ′

|µℓ′ |
∂sℓ′

∂vℓ

=
2β
σ2
vκ0

e−iψℓ
µℓ
|µℓ|

(µ(0)
ℓ + vℓ)∗

2|µ(0)
ℓ + vℓ|

, (89)
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where the formula ∂|ρ|
∂ρ = ρ∗/(2|ρ|) is used. Thus,

we obtain

Nℓ =
i
2

(
z
∂w∗

∂vℓ
− z∗ ∂w

∂vℓ

)
=

2β
σ2
vκ0

(µ(0)
ℓ + vℓ)∗

2sℓ|µℓ|
(
−ℑ{eiθℓµ∗ℓ}

)
= − 2αβ

σ2
vκ0

(µ(0)
ℓ + vℓ)∗

2sℓ|µℓ|
sin(θℓ). (90)

Similarly, by evaluating ∂w/∂φ̂ as

∂w

∂φ̂
=

2β
σ2
vκ0

L−1∑
ℓ=0

e−iψℓsℓ
∂

∂φ̂

(
µℓ
|µℓ|

)

=
2β
σ2
vκ0

L−1∑
ℓ=0

e−iψℓsℓ
µℓ
|µℓ|3

iℑ
{
µ∗ℓ
∂µℓ
∂φ̂

}

=
2β
σ2
vκ0

L−1∑
ℓ=0

e−iψℓsℓ
µℓ
|µℓ|3

iβ(β + α cos(θℓ)), (91)

we get the denominator D = Dℓ as

D = −ℜ(z∗w) + ℑ(z∗
∂w

∂φ̂
)

= −ℜ{z∗(w + i
∂w

∂φ̂
)}

= − 2β
σ2
vκ0
ℜ

{
L−1∑
ℓ=0

e−iθℓ
sℓµℓ
|µℓ|

(
1− β · β + α cos(θℓ)

|µℓ|2

)}

=
2αβ
σ2
vκ0
⟨s,x⟩, (92)

where x = (x0, x1, · · · , xL−1)T, and its components defined
as

xℓ = ℜ{e−iθℓ
µℓ
|µℓ|
}(1− β(β + α cos(θℓ))/|µℓ|2)

=
(β + α cos(θℓ))(α+ β cos(θℓ))

|µℓ|3
. (93)

Finally, the squared norm of the gradient ∇vφ̂ is given by

∥∇vφ̂∥2 =
L−1∑
ℓ=0

∣∣∣∣NℓD
∣∣∣∣2

=
1

|⟨s,x⟩|2
L−1∑
ℓ=0

sin2(θℓ)
|µℓ|2

, (94)

which completes the proof.

APPENDIX F
PROOF OF LEMMA 5

From the differential representation of the estimation
error (42), for all t ∈ [0, 1], we obtain

d|∆φ| ≤ 2∥∇tvφ̂∥ · ∥v∥dt. (95)

Since HL = H∞ +O(L−1), we can conclude that the upper
limit and the lower limit of the sequence HL converges to the
same limit H∞ as L → ∞, and this convergence is uniform

in φ ∈ [0, 2π]. Specifically, if we denote

HL := inf
k≥L,φ∈[0,2π]

Hk,

HL := sup
k≥L,φ∈[0,2π]

Hk, (96)

then HL = H∞ + O(L−1), and HL = H∞ + O(L−1).
The same definitions and upper/lower limiting properties hold
for the sequences GL and XL := ∥x∥/

√
L. It follows

immediately that

HL ≤ HL ≤ HL,

GL ≤ GL ≤ GL,
XL ≤ XL ≤ XL. (97)

Thus, by Lemma 3, we can further bound the increasing
rate of |∆φ| from above, i.e.,

d|∆φ| ≤ 2
√
LHL

|⟨s(t),x⟩|
· ∥v∥dt (98)

where s(t) = |µ(0) + tv|, and the components of µ(0) ∈ CL
is defined as µ(0)

ℓ := α+ βexp(i(ψℓ + φ)). In order to obtain
an upper bound for the increasing rate of |∆φ| w.r.t. t, we first
try to lower-bound the inner product ⟨s(t),x⟩. ∀t ∈ [0, 1]:

⟨s(t),x⟩ = ⟨s(t)− |µ|,x⟩+ ⟨|µ|,x⟩
= ⟨s(t)− |µ|,x⟩+ LGL

≥ LGL − ∥s(t)− |µ|∥ · ∥x∥
≥ LGL − (∥s(t)− |µ(0)|∥+ ∥|µ(0)| − |µ|∥) · ∥x∥
(a)

≥ LGL − (t∥v∥+
√
Lβ|∆φ|) · ∥x∥

≥ L
[
GL − (

t∥v∥√
L

+ β|∆φ|) ·XL

]
(99)

where (a) comes from applying the triangle inequality to the
definition of s(t) and µ(0). Combining the above inequality
with the differential inequality (98), we obtain

d|∆φ| ≤ 2
√
HL

GL − ( t∥v∥√
L

+ β|∆φ|) ·XL

· ∥v∥√
L

dt, (100)

where the initial condition is |∆φ|(t = 0) = |∆φ|
(v = 0) = 0. In order to solve this differential inequality,
we construct an ordinary differential equation (ODE) with zero
initial condition as

dy
du

= gL(y, u) :=
2
√
HL

GL −XL (u+ βy)
, y(0) = 0. (101)

Since u = 0 is a non-singular point of the ODE, there exists
some small positive number δ = δ(L) > 0 such that the
solution to (101) uniquely exists in some closed interval Iδ =
[0, δ] [36]. Note that this δ is chosen for some given L, but
the existence of the ODE solution, as well as all the following
properties, hold true for arbitrary larger values of L in the
same interval Iδ , because of the monotone property of the
sequences HL, GL, and XL.

Furthermore, there exists some positive constant C > 0 such
that ∀u ∈ Iδ , y(u) ≤ Cu. Particularly, since gL(y, u) is an
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increasing function of y and u, C can be chosen to be

C(δ, L) =
2
√
HL

GL −XL(δ + βy(δ))
. (102)

Since the solution y(u) of this ODE (101) characterizes
the maximum value attainable for arbitrary smooth function
subject to the increasing rate constraint (100), the solution
y(u) in Iδ serves as an upper bound to the unknown function
|∆φ|(tv) as a function of t, i.e.,

|∆φ|(tv) ≤ y
(
t
∥v∥√
L

)
, ∀t∥v∥√

L
∈ Iδ. (103)

Thus, by further applying y(u) ≤ Cu, we can infer that
∀t : 0 ≤ t ≤ δ(∥v∥/

√
L)−1,

|∆φ|(tv) ≤ Ct∥v∥√
L
. (104)

If we apply the constraint ∥v∥/
√
L ≤ δ, then t can be chosen

to t = 1, which completes the proof.
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