Wideband Beam Tracking Based on Beam Zooming for THz Massive MIMO

Jingbo Tan, Linglong Dai
Department of Electronic Engineering
Tsinghua University
2020.12.10
Background

Beam zooming based beam tracking

Simulation results

Conclusions
Background

THz communication

- **C ≈ B*M*log(1+SINR):** Expand bandwidth → Increase data rate
- **Tens of GHz bandwidth in Terahertz communication**

![THz communication diagram](image)

Background

- **THz massive MIMO**
 - **Higher attenuation** in THz frequency (160GHz: ~80dB/km)
 - **Massive MIMO**: generate **narrow beams**, expand coverage

THz massive MIMO is the key technique in future 6G communications

Background

- **Beam tracking**
 - Time-varying channel due to **user mobility**: beam training repeatedly
 - THz massive MIMO **huge antenna number** induces **unacceptable overhead**
 - **Beam tracking**: obtain channel information with low overhead

Beam training

- Fast beam tracking is the key to realize mobile coverage in THz massive MIMO

Existing beam tracking schemes

- **Beam tracking based on channel prediction**
 - Track the user based on prior information from channel prediction
 - Disadvantage: requires accurate user mobility model

- **Beam tracking based on Auxiliary Beam Pair**
 - Utilize auxiliary beam pair surrounding the user to detect user mobility
 - Disadvantage: requires extra RF chains to generate auxiliary beam pair

Challenge from THz wideband channel

- Beam split in THz massive MIMO
 - Phase-shifters (PSs) based hybrid precoding is frequency-independent
 - The beams disperse to different directions at different frequency
 - Totally separated beams due to large bandwidth and large antenna number

The existing beam tracking schemes suffer from the severe performance degradation caused by beam split in THz massive MIMO
Background

Beam zooming based beam tracking

Simulation results

Conclusions
Beam zooming based beam tracking scheme

Challenges
- Classical sweeping based tracking scheme suffers from huge overhead
- Existing low-overhead schemes cannot deal with beam split

Solution
- Make use of beam split, propose beam zooming based beam tracking scheme
- Reveal a beam zooming mechanism to control angle-domain coverage of beams
- Track one direction ➔ Track multiple directions, reduce the training overhead
System model

- **Delay-phase precoding**
 - \(N \)-antenna BS serves \(K \) single-antenna user
 - Delay-phase precoding: introduce \(K_d \) time-delayers (TDs) for each RF chain
 \[
y_m = H_m A_m D_m s + n
\]
 - Analog beamformer \(A_m = A_s A^d_m \)
 \[
 A_s = [A_1^s, A_2^s, \ldots, A_K^s], \quad A^d_m = \text{diag}(e^{-j2\pi f_m t_1}, e^{-j2\pi f_m t_2}, \ldots, e^{-j2\pi f_m t_K})
 \]
 - Beamforming vector for the \(k \)-th user \(f_{k,m} = A_k^s e^{-j2\pi f_m t_k} \)

Classical hybrid precoding

System model

Channel model

- Ray-based **wideband channel model** with M-subcarrier OFDM

$$
h_{k,m} = \sum_{l=0}^{L-1} \beta_{k,m}^{(l)} a_N \left(\psi_{k,m}^{(l)} \right)
$$

$$
a_N \left(\psi_{k,m}^{(l)} \right) = \frac{1}{\sqrt{N}} [1, e^{j\pi\psi_{k,m}^{(l)}}, e^{j2\pi\psi_{k,m}^{(l)}}, \ldots, e^{j\pi(N-1)\psi_{k,m}^{(l)}}] T
$$

- **Spatial direction** $\psi_{k,m}^{(l)} = \frac{2d}{c} f_m \sin \tilde{\theta}_{k}^{(l)}$
- Define $\theta_{k}^{(l)} = \sin \tilde{\theta}_{k}^{(l)}$ represent physical direction with $\theta_{k}^{(l)} \in [-1, 1]$

Assumption

- THz channel is **LoS path dominant**, ignore NLoS path
- For LoS path, user mobility has **continuity**, angle-domain variation range α_k

$$\theta_{k,i+1}^{(0)} \in [\theta_{k,i}^{(0)} - \alpha_k, \theta_{k,i}^{(0)} + \alpha_k]$$

Beam tracking problem: Track $\theta_{k,i+1}^{(0)}$ based on $\theta_{k,i}^{(0)}$
Lemma 1: Consider the k-th user and denote $\phi_k = \theta_k + (1 - \xi_1)\alpha_k$. When the time delays from the TDs satisfies $t_k = s_k T_c p(K_d)$ where $s_k = -\frac{P}{2} \left(\phi_k + \frac{2\xi_M \xi_1 \alpha_k}{\xi_M - \xi_1} \right)$ and $p(K_d) = [0, 1, \cdots K_d - 1]^T$, and phase shifts provided by the PSs have the following form as $A_k^s = \text{blkdiag} \left(a_p(\phi_k) e^{j\pi(P\phi_k + 2s_k)p^T(K_d)} \right)$, the beamforming vector $f_{k,m}$ will point to

$$\bar{\theta}_{k,m} = \theta_k + (1 - \xi_1)\alpha_k + \frac{2\xi_M \xi_1 (\xi_m - 1)}{\xi_m (\xi_M - \xi_1)} \alpha_k$$

monotonously increasing over m

$m = 1 \quad \bar{\theta}_{k,1} = \theta_k - \alpha_k$

$m = M \quad \bar{\theta}_{k,M} = \theta_k + \alpha_k$
Beam zooming based beam tracking scheme

- **Channel model**
 - Generate target angle set in T time slots
 - Design analog beamforming matrix based on beam zooming mechanism
 - Transmit training pilots
 \[
 Q_m^{(t)} = [q_{1,m}^{(t)}, q_{1,m}^{(t)}, \cdots q_{K,m}^{(t)}]^T
 \]
 - Detect tracking result
 \[
 (t_k, m_k) = \arg\max \| Y_{m,t,[k,:]} \|_2^2
 \]

$T = 2$

Algorithm 1 Proposed beam zooming based beam tracking scheme.

Inputs:
- Physical directions $\theta_{k,i}^{(0)}$, Variation range of user physical direction α_k; Beam tracking overhead T; The number of pilots in each time slot Q; The number of TDs connected to a RF chain K_d.

Output:
- Physical directions $\theta_{k,i+1}^{(0)}$

1: $\hat{\theta}_{k,i,\text{cen}}^{(t)} = \theta_{k,i}^{(0)} - \alpha_k + \frac{(2t-1)\alpha_k}{T}$
2: $\hat{\theta}_{k,m,i}^{(t)} = \hat{\theta}_{k,i,\text{cen}}^{(t)} + (1 - \xi_1)\frac{\alpha_k}{T} + \frac{2\xi_2\xi_3(\xi_{m-1} - \xi_1)}{T}$
3: $\Psi_{k,i+1}^{T} = [\hat{\theta}_{k,i+1}^{(t)}(1), \hat{\theta}_{k,i+1}^{(t)}(2), \cdots, \hat{\theta}_{k,i+1}^{(t)}(M)]$
4: for $t \in \{1, 2, \cdots, T\}$ do
5: $\phi_k^{(t)} = \hat{\theta}_{k,i,\text{cen}}^{(t)} + (1 - \xi_1)\frac{\alpha_k}{T}$
6: $s_k^{(t)} = -\frac{P}{2} \left(\phi_k^{(t)} + \frac{2\xi_2\xi_3(\xi_m - \xi_1)}{T} \right)$
7: $A_{k,i}^{(t)} = \text{blkdiag}(A_P(\phi_k^{(t)}), e^{j2\pi f_{m,i}^{(t)}D})$
8: $t_k = s_k^{(t)}T_c\Phi(K_d)$
9: $f_{k,m}^{(t)} = A_k^{(t)} e^{-j2\pi f_m^{(t)}D}$
10: $A_m^{(t)} = [f_{1,m}^{(t)}, f_{2,m}^{(t)}, \cdots, f_{K,m}^{(t)}]$.
11: $Y_{m,t} = H_mA_m^{(t)}Q_m^{(t)} + N^{(t)}$
12: end for
13: $(t_k, m_k) = \arg\max_{t \in 1, 2, \cdots, T, m \in 1, 2, \cdots, M} \| Y_{m,t,[k,:]} \|_2^2$
14: $\theta_{k,i+1}^{(0)} = \Psi_{k,i+1}^{(t_k,m_k)}$
15: return $\theta_{k,i+1}^{(0)}$.
Beam zooming based beam tracking scheme

Performance analysis

- Denote the tracking overhead T. If for arbitrary physical direction, the beam zooming based scheme could successfully generate required beams, we have

$$T \geq T_{\text{min}} = \left[\max \left(\max_{m \geq M/2, \theta_{k,i,t}} \tau_1, \max_{m \leq M/2, \theta_{k,i,t}} \tau_2 \right) \right]$$

where

$$\tau_1 = -\frac{\gamma_{t,m} \alpha_k}{\left(1 + P \left(1 - \xi_m\right) \left(\theta_{k,i} - \alpha_k\right)\right)}$$

and

$$\tau_2 = \frac{\gamma_{t,m} \alpha_k}{\left(1 - P \left(1 - \xi_m\right) \left(\theta_{k,i} - \alpha_k\right)\right)}$$

- Parameters: $N=256, K_d = 4, M=128, f_c = 100 \text{ GHz}, f = 10 \text{ GHz} \alpha_k = 0.1$

$$T \geq T_{\text{min}} = 2$$

- Achievable sum-rate

$$R_{k,m} \geq \log_2 \left(1 + \frac{\rho \beta_{k,m}^2}{\sigma^2 N^2} \sum_{k=1}^{K_d} \left(\frac{\xi_m P \alpha_k}{TM}\right) \sum_{p=1}^{2} \left(1 - \frac{\xi_m}{TM} \theta_{k,i} + \frac{\alpha_k}{TM}\right)\right)$$

Proposed scheme can achieve near-optimal achievable sum-rate with low overhead
Background

Beam zooming based beam tracking

Simulation results

Conclusions
Simulation results

- Tracking accuracy
 - Parameters:
 \[N = 256, \quad N_{RF} = 4, \quad K = 4, \quad K_d = 4, \quad M = 128, \quad f_c = 100\,\text{GHz}, \quad B = 10\,\text{GHz} \]
 - Proposed scheme could track the user accurately
Simulation results

- **Beam tracking overhead**
 - Proposed scheme can **reduce overhead about 80%**
 - Proposed scheme can achieve **near optimal achievable sum-rate performance**

Background

Beam zooming based beam tracking

Simulation results

Conclusions
Conclusions

- **Beam zooming based beam tracking scheme**
 - Proposed a *beam zooming mechanism* to control *angle-domain coverage* of frequency-dependent beams
 - Proposed a beam tracking scheme to *track multiple physical directions simultaneously* to realize fast beam tracking

- **Benefit**
 - Solve the problem of *huge training overhead*
 - Reduce the tracking overhead about *80%*, and could realize the near-optimal achievable sum-rate performance.
Thank you!

Wideband Beam Tracking Based on Beam Zooming for THz Massive MIMO

Jingbo Tan, Linglong Dai
2020.12.10

E-mail: tanjb17@mails.tsinghua.edu.cn
Website: http://oa.ee.tsinghua.edu.cn/dailinglong/