

1

Knowledge-Retrieval Task-Oriented Dialog Systems with Semi-Supervision

Yucheng Cai, Hong Liu, Zhijian Ou*

Speech Processing and Machine Intelligence Lab Tsinghua University, Beijing, China cyc22@mails.tsinghua.edu.cn liuhong21@mails.tsinghua.edu.cn ozj@tsinghua.edu.cn

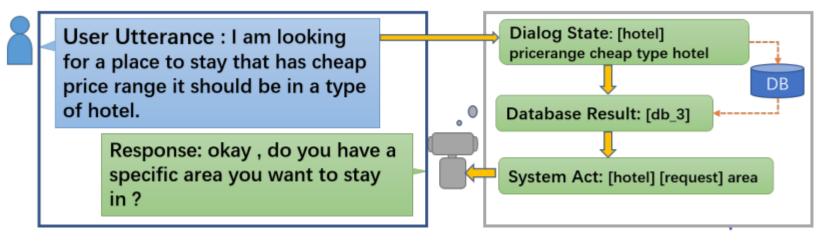
Yi Huang, Junlan Feng

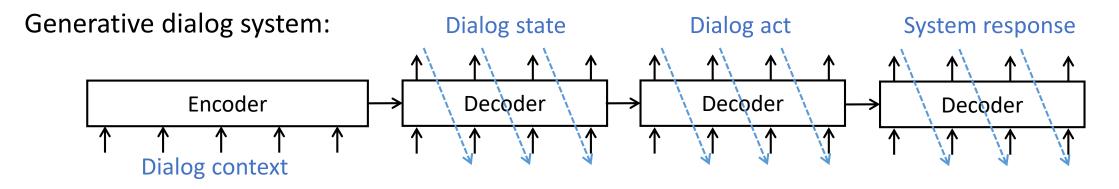
China Mobile Research Institute Beijing, China {huangyi, fengjunlan} @chinamobile.com

- Motivation
- Related Work
- Method
- Experiments
- Conclusion

Introuduction (TOD Systems)

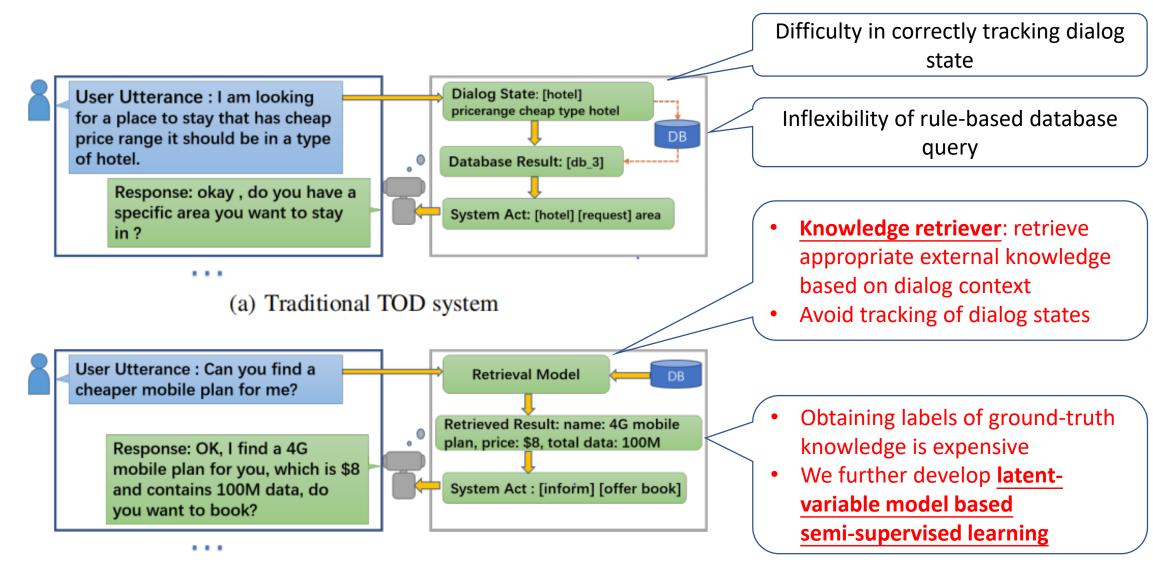
The traditional information flow of a TOD system: dialog state tracking (DST), database querying (DB), policy (POL), and response generation (NLG).





Y. Zhang, Z. Ou, Z. Yu. "Task-Oriented Dialog Systems that Consider Multiple Appropriate Responses under the Same Context", AAAI 2020.

Introuduction (Our Improvements)



(b) Our KRTOD system

 \bigotimes

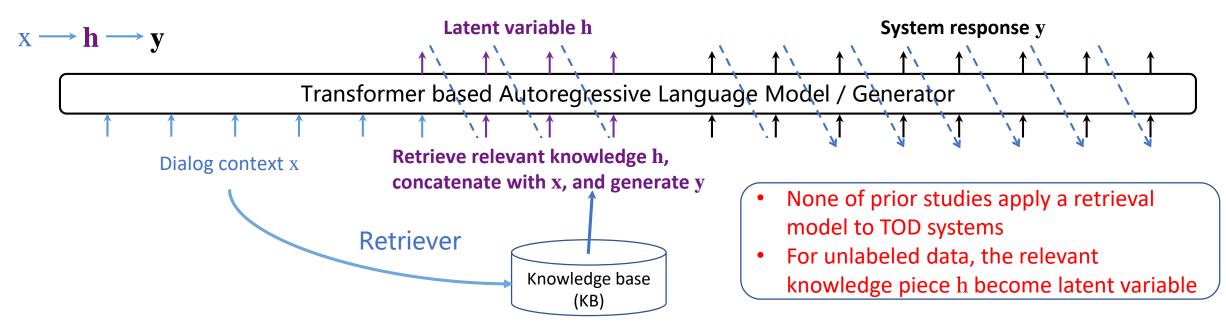
中国移动

- Motivation
- Related Work
- Method
- Experiments
- Conclusion

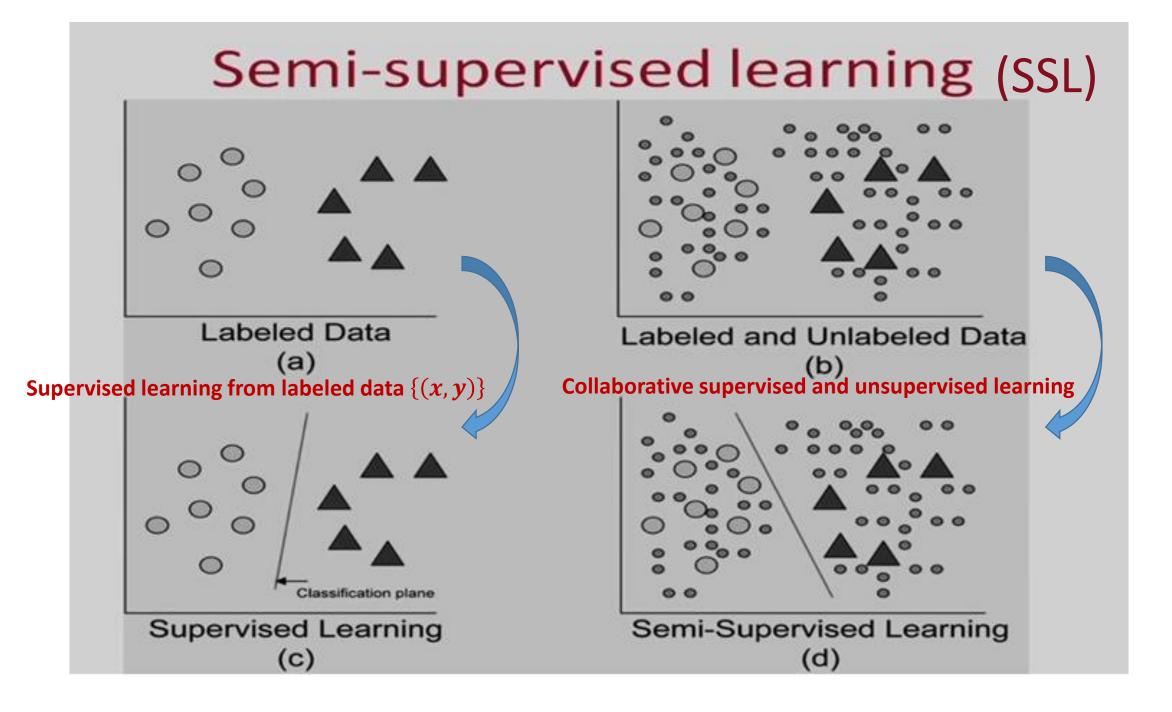
- 1. Knowledge Retriever for Conditional Generation in dialog systems
- 2. Semi-Supervised Learning (SSL) in dialog systems

Related Work (Knowledge Retrieval)

- Pure generative dialog systems
 - Without any access to an external knowledge base
 - Their ability to access and precisely manipulate knowledge is limited
- For open-domain question answering and knowledge-grounded dialog systems, recent studies such as RAG (Retrieval Augmented Generation):
 - Introduce a knowledge retriever model into conditional generation



P. Lewis, et al., "Retrieval-Augmented Generation (RAG) for Knowledge-Intensive NLP Tasks", NeurIPS 2020.



Related work: Two approaches for semi-supervised dialog systems

Pre-training (serial collaboration)

- Unsupervised pre-training followed by supervised fine-tuning
- Large-scale language models , like GPT-x, pre-trained on open-domain texts are fine-tuned with in-domain labels

Joint-training (parallel collaboration)

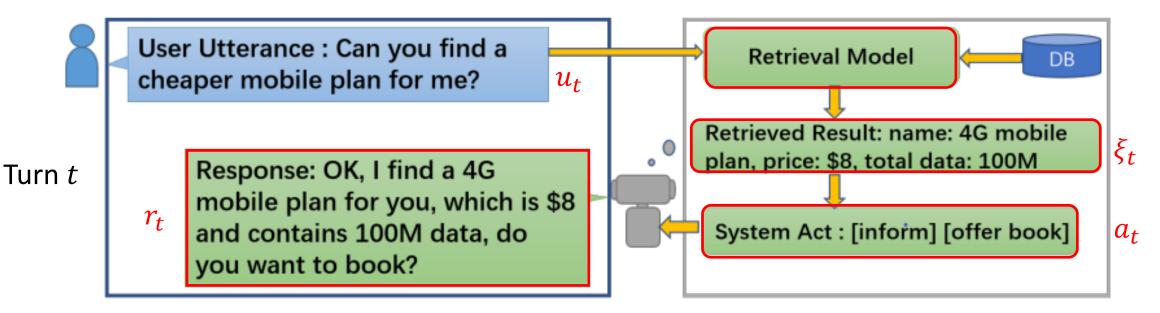
- Formulate a latent variable model (LVM) of observations and labels
- Unsupervised learning with LVM usually maximizes marginal likelihood via variational learning over unlabeled data
- Remarkably, the two approaches, are not exclusive to take and can be jointly used, and, complement each other.
- Joint stochastic approximation (JSA) performs better than variational learning, particularly for discrete latent variable models.
- Zhang, Y.; Ou, Z.; et al, "A Probabilistic End-To-End Task-Oriented Dialog Model with Latent Belief States towards Semi-Supervised Learning". EMNLP, 2020.
- Song, Y., et al, "An empirical comparison of joint-training and pre-training for domain-agnostic semi-supervised learning via energy-based models", IEEE Workshop on Machine Learning for Signal Processing (MLSP), 2021.
- Y. Cai, et al., "Advancing semi-supervised task oriented dialog systems by JSA learning of discrete latent variable models", SIGDIAL 2022.

- Motivation
- Related Work

- Method (JSA-KRTOD)
- Experiments
- Conclusion

Method (Notation)

- Consider a dialog with T turns of user utterances and system responses, denoted by $u_1, r_1, \dots, u_T, r_T$ respectively
- The KB is composed of entities with attributes, or say, slot-value pairs, denoted by $\{sv^1, \dots, sv^N\}$
- Relevant knowledge piece: the slot-value pairs that are relevant for the system to respond at turn t are denoted by ξ_t
- At turn t, $\{\xi_t, a_t\} \triangleq h_t$, collectively denoted as the latent variable. In labeled data, h_t is observed, while in unlabeled dialogs, it becomes a latent variable.



Method (A latent-variable dialog model)

Given context and current user utterance, retrieve knowledge, make action, generate response

$$p_{\theta}(h_{1:T}, r_{1:T} | u_{1:T}) = \prod_{t=1}^{T} p_{\theta}(h_t, r_t | c_t, u_t)$$

Т

where $c_t = u_1, r_1, \cdots, u_{t-1}, r_{t-1}$ denotes the dialog context at turn t

• The joint model of h_t , r_t is decomposed into a knowledge retriever $p_{\theta}^{\rm ret}$ and a response generator $p_{\theta}^{\rm gen}$

For dialog turn t:

- u_t user utterance
- r_t system response

$$h_t = \{\xi_t, a_t\}$$

- ξ_t relevant knowledge piece
- a_t system act

$$p_{\theta}(h_t, r_t | c_t, u_t) = p_{\theta}^{\text{ret}}(\xi_t | c_t, u_t) \times p_{\theta}^{\text{gen}}(a_t, r_t | c_t, u_t, \xi_t)$$

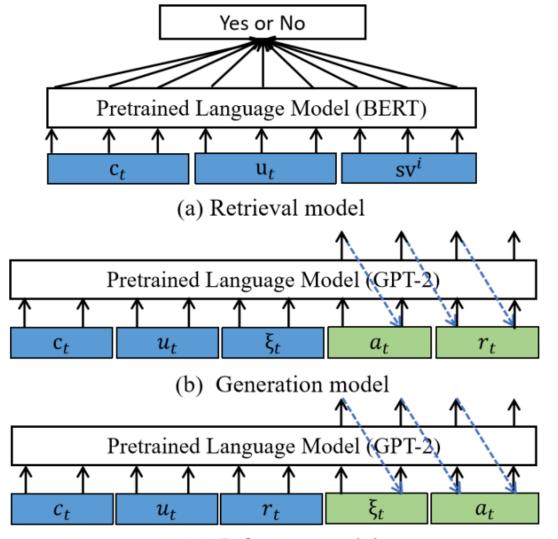
• Introduce an inference model $q_{\phi}(h_{1:T}|u_{1:T}, r_{1:T})$ as follows to approximate the true posterior

$$q_{\phi}(h_{1:T}|u_{1:T}, r_{1:T}) = \prod_{t=1}^{T} q_{\phi}(h_t | c_t, u_t, r_t) = \prod_{t=1}^{T} q_{\phi}(\xi_t, a_t | c_t, u_t, r_t)$$

Method (Model Implementation)

Retrieval model p^{ret}_θ(ξ_t|c_t, u_t):
 ➤ judge which knowledge to retrieve

- Generation model $p_{\theta}^{\text{gen}}(a_t, r_t | c_t, u_t, \xi_t)$:
 - use retrieved knowledge to generate response
- Inference model $q_{\phi}(\xi_t, a_t | c_t, u_t, r_t)$:
 - help infer knowledge in semi-supervised learning



(c) Inference model

Supervised training:

- train retriever with cross-entropy loss
- train generater use next-token prediction loss
- Use the ground-truth knowledge label
- Semi-Supervised training:
 - generate knowledge with inference model
 - use JSA algorithm
- Testing:
 - retrieve knowledge first
 - use retrieved knowledge to generate

Algorithm 1 Semi-supervised training in JSA-KRTOD

Input: A mix of labeled and unlabeled dialogs.

1: Run supervised pre-training of θ and ϕ on labeled dialogs;

2: repeat

- 3: Draw a dialog $(u_{1:T}, r_{1:T});$
- 4: **if** $(u_{1:T}, r_{1:T})$ is not labeled **then**
- 5: Generate $h_{1:T}$ using the recursive turn-level MIS sampler
- 6: end if

7:

$$J_{\theta} = 0, J_{\phi} = 0;$$

8: **for**
$$i = 1, \dots, T$$
 do

$$D: \qquad J_{\theta} + = \log p_{\theta}^{\text{gen}}(a_t, r_t \mid c_t, u_t, \xi_t)$$

0:
$$J_{\phi} + = \log q_{\phi}(\xi_t, a_t \mid c_t, u_t, r_t);$$

- 11: **end for**
- 12: Update θ by ascending: $\nabla_{\theta} J_{\theta}$;
- 13: Update ϕ by ascending: $\nabla_{\phi} J_{\phi}$;
- 14: **until** convergence
- 15: **return** θ and ϕ

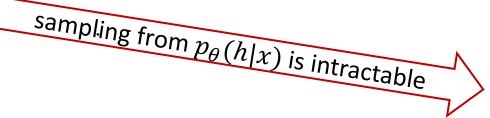
Related Work (Joint Stochastic Approximation)

JSA (Joint Stochastic Approximation)

= Expectation Maximization (EM) + Stochastic Approximation (SA) + Adaptive MCMC

<u>SAEM (Delyon et al., 1999)</u>:

- Monte Carlo sampling: fill the missing values for latent variables through sampling $h' \sim p_{\theta}(h|x)$
- SA updating: perform gradient ascent over θ using $\nabla_{\theta} logp_{\theta}(x, h')$



JSA = coupling an SA version of EM (SAEM) with an adaptive MCMC procedure (UAI 2020)

- $q_{\phi}(h|x)$ acts like an adaptive proposal, using Metropolis Independent Sampling (MIS) to sample $q_{\theta}(h|x)$
- Jointly optimizing $q_{\phi}(h|x)$ with $p_{\theta}(x,h)$

Implementing JSA: Propose, Accept or Reject and Optimize (PARO)

- Motivation
- Related Work

- Method (JSA-KRTOD)
- Experiments
- Conclusion

- Dataset: MobileCS (China Mobile Customer Service)
 - A real-life human-human dialog dataset, instead of collected by Wizard-of-Oz
 - Released from EMNLP 2022 SereTOD Workshop (Towards <u>Semi-supervised and</u> <u>Reinforced Task-Oriented Dialog Systems</u>) and Challenge <u>http://seretod.org/</u>
 - A total of 100K dialogs, 10% annotated
- Experiments in both labeled-only and semi-supervised settings (over both labeled and unlabeled data) can be conducted and fairly compared.
- Backbone: GPT2

Metric	MultiWOZ	MobileCS		
ivicti ic		labeled	unlabeled	
Dialogs	8,438	8,975	87,933	
Turns	113,556	100,139	972,573	
Tokens	1,490,615	3,991,197	39,491,883	
Avg. turns per dialog	13.46	11.16	11.06	
Avg. tokens per turn	13.13	39.86	40.61	
Slots	24	26	-	
Values	4,510	14,623	-	

Table 1: Comparison of our MobileCS corpus to MultiWOZ

- Z. Ou et.al, "A challenge on semi-supervised and reinforced task oriented dialog systems" in *arXiv preprint*, 2022.
- H. Liu et.al, "Information extraction and human-robot dialogue towards real-life tasks: A baseline study with the mobilecs dataset", in *EMNLP2022 SereTOD Workshop*.

- Evaluation: end2end
- Metrics
 - Success rate: how often the system is able to provide all the entities and values requested by the user
 - **BLEU**: measure the fluency of the generated responses
 - Combined score = Success + 2*BLEU

Table 1: Main results on the MobileCS dataset. Success, BLEU-4, and combined score are reported. Our approach achieves SOTA results on both labeled-only and semi-supervised settings. Within the parentheses show the backbone models and their number of parameter.

Baseline: uses predicted dialog state to query KB (<i>KB-query</i>					
baseline. uses predicted dialog state to query KD (KD-query	Setting	Method	Success	BLEU-4	Combined
		Baseline [18]	31.5	4.170	39.84
		Passion [30]	43.2	6.790	56.78
Top three teams in the SereTOD Challenge \searrow .	Semi-supervised	TJU-LMC [29]	68.9	7.54	83.98
• PRIS: concatenates the whole local KB to the		PRIS [19]	78.9	14.51	107.92
dialog history (<i>KB-grounded</i>);		JSA-KRTOD	91.8	9.677	111.15
 TJU-LMC: uses coarse-to-fine intent detection; 		KB-query (GPT2 100M) [18]	31.5	4.170	39.84
	Labeled-only	KB-grounded (GPT2 100M) [19]	64.2	8.845	81.89
Passion: improves prompting scheme	Labeled-only	KB-grounded (T5 1B) [19]	74.1	11.32	96.74
		KRTOD (GPT2 100M)	86.8	8.639	104.08

JSA-KRTOD greatly outperforms KB-query and KB-grounded, especially in *Success*, breaking record in MobileCS!

Experiments (ablation)

- Comparison of JSA with pseudo labeling (PL)
 - JSA-KRTOD outperforms PL constantly in all ratios.
 - The relative improvement of JSA over PL in reducing errors in Success rate is 23% under ratio 9:1.

Table 2: Comparison between pseudo labeling (PL) and JSAlearning methods. Ratio means the ratio between the number ofunlabeled dialogs and the number of labeled dialogs in training.

Ratio	Method	Success	BLEU-4	Combined	p-value
1:1	PL JSA	87.5 88.0	8.853 8.713	105.21 105.43	0.589
2:1	PL JSA	87.8 88.7	9.196 9.490	106.19 107.68	0.853
4:1	PL JSA	88.5 90.9	9.341 9.398	107.18 109.70	0.037
9:1	PL JSA	89.4 91.8	9.532 9.677	108.46 111.15	0.055

The p-values from matched-pairs significance tests in Combined score show:

- As the size of unlabeled data increases, the improvements of JSA-KRTOD over PL become more significant,
- Confirm the superiority of JSA-KRTOD in leveraging unlabeled data.

- Motivation
- Related Work

- Method (JSA-KRTOD)
- Experiments
- Conclusion

Conclusion

- Introduce a knowledge retriever, instead of the traditional database query method, which improves the knowledge acquisition in TOD systems.
- Propose to use the JSA algorithm to perform semi-supervised learning for KRTOD systems.
- Extensive experiments conducted on MobileCS, a real-life dialog dataset, show that JSA-KRTOD achieves SOTA results on MobileCS in both labeled-only and semi-supervised settings.
- Future work: JSA-KRTOD potentially can exploit more different types of knowledge sources, such as passages, documents and knowledge graphs, in addition to slot-value pairs used in this work.

Thanks!

Code released at https://github.com/thu-spmi/JSA-KRTOD