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Abstract
The state-of-the-art language models (LMs) for Chinese speech

recognition are word n-gram models. However, in Chinese,

characters are morphological in meaning and words are not con-

sistently defined. There are recent interests in building the char-

acter n-gram LM and its combination with the word n-gram

LM. In this paper, in order to exploit both character-level and

word-level constraints, we propose the joint n-gram LM, which

is an n-gram model based on joint-state that is a pair of char-

acter and its position-of-character (POC) tag. We point out

the pitfall in naive solving of the smoothing and scoring prob-

lems for joint n-gram models, and provide corrected solutions.

For experimental comparison, different LMs (including word

4-grams, character 6-grams and joint 6-grams) are tested for

speech recognition, using training corpus of 1.9 billion char-

acters. The joint n-gram LM achieves performance improve-

ments, especially in recognizing the utterances containing OOV

words.

Index Terms: Chinese Speech Recognition, Language Model,

Joint n-gram

1. Introduction
Language modeling plays an important role for speech recog-

nition. It is essentially to estimate the distribution over all pos-

sible sentences in the target language. The state-of-the-art lan-

guage models (LMs) are word-based n-gram models. However,

the concept of word in Chinese is rather vague [1]. There are

no delimiters between adjacent Chinese words in a sentence,

and there is even no standard definition of a word in Chinese.

Moreover, it is always possible to construct new words by com-

bining multiple characters, which causes the out-of-vocabulary

(OOV) problem. Considering these characteristics of Chinese

language, there are recent interests in building character-based

Chinese LMs, which typically are character n-grams [2, 3, 4].

The advantage is that it eliminates the OOV problem and avoid-

s the complication of using an arbitrary lexicon. It is found

in [3] that using the character-based LM alone produces slight-

ly worse error rates than using the word-based LM alone, and

combining the two gives better results than either model sepa-

rately. This is presumably because that the constraints imposed

by character-based n-grams are not as restrictive as those im-

posed by word-based n-grams, and the two types of constraints

complement to each other. In this paper, we explore an alterna-

tive approach to exploiting both types of linguistic constraints.

This approach is inspired by the recent great success of us-

ing conditional random fields (CRFs) for Chinese word segmen-

tation (CWS) [5, 6], which introduces the position-of-character

(POC) tags. The POC tag of a character could take four pos-

sible values - B, M, E and S, which represents the beginning,

middle, end of a word and a single-character word respectively.

The CWS problem is thus solved as character-sequence tagging,

with the ability of recalling OOV words. However, the CRFs

used in the CWS studies are in essence not language models and

cannot be used for speech recognition. They are not generative

models p(x) of Chinese sentences x, but conditional models

p(y|x) of POC tag-sequence y given character-sequence x.

Motivated by the above observations, we propose to aug-

ment character-based LMs with POC tags which carry word-

level constraints. In particular, we pair every character ci in a

sentence with its POC tag gi, which defines a joint-state [ci, gi].

We then model the joint-state sequence as a Markov source of

order n − 1, which we call a joint-character-POC n-gram LM

(abbreviated as joint n-gram LM). It is a truly generative model

of Chinese sentences which could be used in speech recogni-

tion, and has the potential for modeling both character-level and

word-level linguistic constraints. For experimental comparison,

three types of LMs (word 4-gram, character 6-gram and joint 6-

gram) are tested for speech recognition, using training corpus of

1.9 billion characters. Compared to both the word 4-gram and

the character 6-gram LM, the joint 6-gram LM achieves better

performance, especially in recognizing the utterances contain-

ing OOV words. Moreover, we examine the combination of

joint 6-gram with word 4-gram. Compared to the combination

of character 6-gram with word 4-gram, the new combination

still shows the advantage in handling OOV words.

The rest of this paper is organized as follows. Section 2 in-

troduces the new joint n-gram LM. After the model definition,

we focus on two basic problems when applying the new LM

in speech recognition - the smoothing problem and the scoring

problem. We point out some pitfalls in naive solving of the two

problems for joint n-gram models, and provide corrected so-

lutions. Section 3 describes the results from our experiments,

which demonstrate the effectiveness of joint n-gram LMs. Fi-

nally, in Section 4, we discuss related work and point out future



POC tag gi−1 Following legal POC tags gi

B M / E
M M / E
E B / S
S B / S

Table 1: Hard constraints between adjacent POC tags, gi−1 and
gi

work.

2. Joint n-gram language models
2.1. Model definition

For a sentence represented as a sequence of linguistic units

u1, u2, . . . , uL, an n-gram LM is defined as:

p(uL
1 ) �

L∏
i=1

p(ui|ui−1
i−n+1) (1)

where ui is the linguistic unit at position i, L is the length of

the sentence in terms of such units, and uj
i denotes the unit-

s ui, . . . , uj . The conventional choice for the linguistic units

in Chinese could be words or characters, which leads to word-

based n-gram LMs and character-based n-gram LMs respective-

ly. In contrast, a joint-character-POC n-gram LM (abbreviated

as joint n-gram LM) is an n-gram model based on joint-states,

by defining ui � [ci, gi], where ci is the character and and gi is

the POC tag of ci. The POC tag of a character could take four

possible values - B, M, E and S, which represents the beginning,

middle, end of a word and a single-character word respectively.

The word-based n-gram LMs in Chinese suffer from the OOV

problem and the complication of using an arbitrary lexicon. The

character-based n-gram LMs suffer from the loss of word-level

constraints which could be incorporated with the help of POC

tags. By this analysis, joint n-gram models appear to be a better

choice for Chinese LMs.

Given the above form of the joint n-gram model, there are

two basic problems that must be solved for the new model to

be useful in speech recognition, namely the smoothing problem

and the scoring problem.

2.2. Smoothing

The smoothing procedure is used to avoid the overfitting of the

maximum likelihood (ML) estimation of probabilities. A large

number of smoothing methods for n-gram models have been

studied and compared in [7]. At first thought, we could just

apply any of the existing smoothing methods (e.g. the well-

known modified Kneser-Ney smoothing method) to the joint n-

gram models. But as we explain in the following, there is a

pitfall in such straightforward application.

Most existing smoothing algorithms for n-gram models can

be described as follows:

p(ui|ui−1
i−n+1) ={

α(ui|ui−1
i−n+1) if C(ui

i−n+1) > 0
γ(ui−1

i−n+1)p(ui|ui−1
i−n+2) if C(ui

i−n+1) = 0

(2)

[ ,B] [ ,M] [ ,E] [ ,S] [ ,B] [ ,M] [ ,E] [ ,S]

B M E S

Four backoff nodes

Figure 1: A fragment of the revised WFST representation for
an example joint n-gram LM

ε
Single backoff node

[ ,B] [ ,M] [ ,E] [ ,S] [ ,B] [ ,M] [ ,E] [ ,S]

Figure 2: A fragment of the ‘standard’ (but false) WFST repre-
sentation for an example joint n-gram LM

where C(uj
i ) denotes the number of times uj

i occurs in the

training data. That is, if an n-gram ui
i−n+1 occurs in the train-

ing data, the estimate α(ui|ui−1
i−n+1) is used, which is gen-

erally a discounted version of the ML estimate. Otherwise,

we back off to a scaled version of the (n-1)-gram distribution

p(ui|ui−1
i−n+2). The lower-order distribution p(ui|ui−1

i−n+2) is

defined analogously to the higher-order distribution, and the re-

cursion usually ends with the unigram distribution. The scaling

factor γ(ui−1
i−n+1) is chosen to assure that each conditional dis-

tribution sums to one.

The key observation of the pitfall is that there exist hard

constraints between adjacent joint-states, ui−1 � [ci−1, gi−1]

and ui � [ci, gi]. Specifically, it is the hard constraints be-

tween the adjacent POC tags, gi−1 and gi. As shown in Table

1, each of the four POC tags can be followed by only two out

of the four tags. Therefore, if we simply apply Equ.(2) to joint

n-grams, some probabilities are improperly assigned to impos-

sible transitions between joint-states due to smoothing.

To make corrections, an important observation is that if

smoothed bigram estimates p(ui|ui−1) are corrected, then

higher-order probabilities p(ui|ui−1
i−n+1) (n ≥ 3) could be cor-

rectly estimated just by applying Equ.(2) recursively. The re-

vised formula for estimating the joint bigram probabilities is as

follows:

p([ci, gi]|[ci−1, gi−1]) =⎧⎪⎪⎨
⎪⎪⎩

α([ci, gi]|[ci−1, gi−1]) if C([c, g]ii−1) > 0

γ([ci−1, gi−1])p([ci, gi])
if C([c, g]ii−1) = 0

and gi−1 → gi
0 otherwise

(3)

where gi−1 → gi denotes that the POC connection gi−1gi is



legal. Again, the scaling factor γ([ci−1, gi−1]) is recalculated

to assure that each conditional distribution sums to one.

2.3. Scoring

Scoring is needed for perplexity calculation, and more impor-

tantly, for N-best rescoring or lattice rescoring to evaluate d-

ifferent LMs in speech recognition. The scoring problem is

how we compute the probability that a Chinese sentence (un-

segmented, namely a sequence of Chinese characters) is pro-

duced by a given joint n-gram LM. Theoretically, this probabil-

ity, often referred to as the LM score, is computed as follows:

p(cL1 ) =
∑
gL1

p([c, g]L1 ) =
∑
gL1

L∏
i=1

p([ci, gi]|[c, g]i−1
i−n+1) (4)

In practice, Viterbi approximation is often used to max-

marginalize out the hidden POC tags gL1 instead of the expen-

sive sum-marginalization.

p(cL1 ) ∼= max
gL1

p([c, g]L1 ) = max
gL1

L∏
i=1

p([ci, gi]|[c, g]i−1
i−n+1)

(5)

It is worthwhile to compare the computation of scoring for the

three types of LMs, i.e. character n-grams, word n-grams, and

joint n-grams. For character n-grams, scoring is straightfor-

ward, since there are no hidden variables. For word n-grams,

we also need to take computations similar to Equ.(5) to score

an un-segmented Chinese sentence.

Note that the scoring computation of Equ.(5) could be taken

efficiently by representing n-gram LMs with WFSTs (weighted

finite state transducers) [8] and performing the Viterbi decod-

ing. For standard n-gram LMs as described in Equ.(2) (e.g.

word n-grams, character n-grams), a standard algorithm for cre-

ating the WFST representation layer-by-layer is introduced in

[8]. However, the revised smoothing formula for joint n-grams

as in Equ.(3) are different from the standard formula as in E-

qu.(2). Consequently, the WFST representation for joint n-

grams should also be revised correspondingly. To be precise,

as mentioned in Section 2.2, only bigram smoothing formula

are revised. So for higher-order joint n-gram (n ≥ 3), the upper

layers of the WFST could still be constructed according to [8].

A fragment of the revised WFST representation for an ex-

ample joint n-gram LM is shown in Fig.1. For comparison, the

corresponding fragment of the ‘standard’ (but false) WFST rep-

resentation is given in Fig.2. That is, if we take it for granted to

use the standard smoothing as in Equ.(2) for joint n-gram LMs,

we obtain Fig.2. In both figures, only the bottom two layers of

the WFSTs are shown. The main difference between the two

representations is that Fig.2 has a single backoff node, while

Fig.1 has four backoff nodes, corresponding to the four types

of POC tags. It is notable that illegal transitions are completely

removed in Fig.1 by the use of the four backoff nodes.

3. Experiments
Notations. Throughout this paper, we use “w.2g” for word bi-

gram, “c.3g” for character trigram and “j.3g” for joint trigram.

Higher-order LMs are denoted analogously.

3.1. Experimental setup for Chinese speech recognition

Evaluation experiments are carried out with a Chinese large

vocabulary continuous speech recognition (LVCSR) system.

Speech data for acoustic model training have a total of around

550 hours mainly obtained from LDC. The acoustic model-

s are discriminatively-trained triphone models based on MPE

(minimum phone error) criteria [9]. In the front-end, a 45-

dimensional feature vector is first extracted, including 14-

dimensional MFCCs with normalized log-energy and their first

and second order differentials. A 3-dimensional tone feature

vector is appended to the spectral features, resulting in a final

feature vector of 49-dimension. Cepstral mean and variance

normalization (CVN) is applied for each utterance. The test

speech data is a subset (around 4 hours) from 1997 Mandarin

Broadcast News Speech (HUB4-NE) released by LDC [10],

with transcripts hand-segmented into words.

The evaluation metrics for Chinese LMs include perplex-

ity and character error rate (CER) in speech recognition. To

make meaningful comparison of perplexities, the length of the

test speech used in the perplexity computation for word n-grams

is in terms of characters instead of words. Moreover, we need

some metrics to evaluate the ability of different LMs for recog-

nizing OOV words. Note that the recognition of OOV words is

not isolated and affect the recognition of the whole utterance.

These metrics are better to be computed based on utterances,

instead of only based on OOV words in isolation. Therefore

we split the test utterances into two subsets - OOV-utterance

and IV-utterance subsets. Each utterance in the OOV-utterance

subset contains at least one OOV word, while the words in ut-

terances from the IV-utterance subset are all in-vocabulary (IV)

words. We then define OOV-utt-CER and IV-utt-CER as the

CERs computed over OOV-utterance subset and IV-utterance

subset respectively.

3.2. Speech recognition with training corpus of 1.9B char-
acters

There are two training corpora used in our experiment. One is

a smaller-scale corpus, the PKU People’s Daily 1998 and 2000

with 41 million Chinese characters, which is one of the publicly

available and high quality Chinese corpus with manual word

segmentation. The other is a larger-scale corpus, the LDC Chi-

nese Gigaword Fifth Edition corpus with 1.9 billion Chinese

characters [11], which is not segmented into words. We first

train the w.2g and j.3g LMs over the PKU corpus and apply

them to segment the Gigaword corpus separately. The higher-

order LMs - w.4g and j.6g LMs are separately trained on the au-

tomatically segmented Gigaword corpus based on w.2g and j.3g

respectively. The c.6g is trained directly on the un-segmented

Gigaword corpus. Except the joint n-gram LMs, the other LMs

are all trained with the modified Kneser-Ney smoothing method

by the SRILM toolkit [12].

A lexicon with 58916 words is extracted from the PKU cor-

pus. With this lexicon, the HUB4-NE test data has an OOV-

word rate (i.e. the ratio of OOV-words to the total number of

words) of 2.69% and an OOV-utterance rate (i.e. the ratio of

OOV-utterances to the total number of utterances) of 22.20%.



#state #n-gram
cut-off
setting

Perplexity
Error rates (%)

CER OOV-utt-CER IV-utt-CER

Oracle − − − − 4.77 6.66 4.06

w.4g 58,916 130,118,547 0-0-1-3 28.43 20.98 23.26 20.13
c.6g 5,032 274,544,846 0-0-0-1-1-3 29.01 20.86 23.18 20.00
j.6g 15,340 299,239,752 0-0-0-1-1-3 28.71 20.84 22.83 20.10

w.4g◦c.6g − − − − 20.58 22.79 19.76
w.4g◦j.6g − − − − 20.65 22.74 19.87

Table 2: Perplexities and error rates for different LMs. #states represents the number of words, characters and joint-states respectively
for w.4g, c.6g and j.6g. #n-gram represents the total number of n-grams of all orders. As an example of the terminology we use to
describe cut-off settings, 0-0-1-3 means that all unigrams with 0 or fewer counts are ignored, all bigrams with 0 or fewer counts are
ignored, all trigrams with 1 or fewer counts are ignored, and all fourgrams with 3 or fewer counts are ignored.

By splitting the words into characters and joint-states, the set of

characters and joint-states are generated from the word-lexicon,

which contain 5032 characters and 15340 joint-states respec-

tively.

We use lattice rescoring to evaluate different LMs - w.4g,

c.6g and j.6g, for speech recognition. The w.2g LM trained on

the PKU corpus is used in the first-pass decoding to generate

word lattices for the HUB4-NE test data, with the oracle CER

4.77%, OOV-utt-CER 6.66% and IV-utt-CER 4.06%. Next, the

word lattices are transformed to character lattices, which are

then rescored by different LMs. The acoustic scale factor is not

tuned and fixed to be 0.08 across various LMs. The results are

shown in Table 2, and the main conclusions are as follows:

1. Considering that on average there are 1.5 characters per

word in Chinese [3], it is appropriate to compare a word

4-gram to a joint 6-gram. As expected, by modeling

both word-level and character-level constraint, the j.6g

LM outperforms both w.4g and c.6g for CER.

2. The advantage of the joint 6-gram LM is more obvious in

recognizing the utterances containing OOV words. The

relative reductions of OOV-utt-CERs are 1.8% and 1.5%

when comparing j.6g to w.4g and c.6g respectively.

3. We examine the combination of j.6g with w.4g (denot-

ed as w.4g◦j.6g) through weighted log-linear combina-

tion which is found to be the most useful among vari-

ous combination schemes [3]. It can be seen from Ta-

ble 2 that w.4g◦j.6g gives further gains over j.6g. Al-

though w.4g◦c.6g performs close to w.4g◦j.6g in CER,

w.4g◦j.6g still shows the advantage in handling OOV

words, with lower OOV-utt-CERs.

4. Related work and conclusion
It is worthwhile to remark on related work on language mod-

eling. There are recent interests in building neural network

LMs (NNLMs). Feedforward NNLMs [13, 14] and recurrent

NNLMs [15, 16] have been shown to yield both perplexity and

word error rate improvements. The main idea is to embed words

in a continuous space in which probabilities are computed via

smooth functions implemented by neural networks. Its motiva-

tion is to address the problem of data sparseness and achieve

better generalization for unseen n-grams. In this paper, our mo-

tivation is mainly linguistically-inspired, aiming to exploit both

character-level and word-level constraints to address the OOV

problem for Chinese LMs by modeling the joint-character-POC

sequences. It is interesting to build NNLMs over the joint-

character-POC sequences, which is a future issue.

Basically, the joint n-gram LM belongs to the feature-based

LMs, like stream-based LMs [17], class-based LMs [18, 19]

and factored LMs [20]. In this approach, suitable features (e.g.

morphological classes, data-driven clusters, etc.) are introduced

and the LMs are built over those features. Feature-based LMs

have been successfully used in morphologically rich European

languages [21, 22] to overcome the OOV problem. In this paper,

we propose to use the POC feature which is special in Chinese

and build feature-based LMs over characters. The effective-

ness of modeling the joint-character-POC sequences is shown

in Chinese speech recognition, especially in recognizing the ut-

terances containing OOV words. This is the main result of this

paper.

There are some related studies in Chinese LMs. First, per-

haps the closest work is the character-based generative model in

[23] and the joint n-gram models in [24], but both are unaware

of the pitfall of naive smoothing for joint n-grams and not ap-

plied in speech recognition. A technical contribution of this pa-

per is that the introduction of the corrected smoothing method

and WFST representation for joint n-gram language modeling

in speech recognition. Second, the work in [2, 3] mainly study

the character n-gram LM and its combination with the word n-

gram LM. But such combination is inferior to the joint n-gram

LM in handling OOV words.

Finally, it can be seen from the experiments that the perfor-

mance of the joint 6-gram LM may be limited by sparse estima-

tion of the parameters. Therefore, it is interesting to find better

smoothing method (e.g. neural network or log-linear approach

[19]) to make full use of the modeling of the joint-character-

POC sequences in the future.
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