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ABSTRACT
Some semi-supervised learning (SSL) methods heavily rely
on domain-specific data augmentations. Recently, semi-
supervised learning (SSL) via energy-based models (EBMs)
has been studied and is attractive from the perspective of be-
ing domain-agnostic, since it inherently does not require data
augmentations. There exist two different methods for EBM
based SSL - joint-training and pre-training. Joint-training
estimates the joint distribution of observations and labels,
while pre-training is taken over observations only and fol-
lowed by fine-tuning. Both joint-training and pre-training are
previously known in the literature, but it is unclear which one
is better when evaluated in a common experimental setup. To
the best of our knowledge, this paper is the first to systemati-
cally compare joint-training and pre-training for EBM-based
for SSL, by conducting a suite of experiments across a variety
of domains such as image classification and natural language
labeling. It is found that joint-training EBMs outperform
pre-training EBMs marginally but nearly consistently, pre-
sumably because the optimization of joint-training is directly
related to the targeted task, while pre-training does not.

Index Terms— semi-supervised learning, energy-based
models, neural random fields, conditional random fields, joint
random fields

1. INTRODUCTION

A plethora of semi-supervised learning (SSL) methods have
emerged to leverage both labeled and unlabeled data to train
deep neural networks (DNNs) [1, 2, 3, 4, 5, 6], spanning
over various domains such as image classification, natural
language labeling and so on. Roughly speaking, recent SSL
methods with DNNs could be divided into two classes1 -
based on generative models or discriminative models, which
are referred to as generative SSL and discriminative SSL re-
spectively. Discriminative SSL methods often assume that
the outputs from the discriminative classifier are smooth with

This work is supported by NSFC 61976122 and Tsinghua-China Mobile
Joint Institute. Corresponding author: Zhijian Ou (ozj@tsinghua.edu.cn).
Code is available at https://github.com/thu-spmi/semi-EBM

1We mainly discuss the SSL methods for using DNNs. General discussion
of SSL can be referred to [7].

respect to local and random perturbations of the inputs. These
SSL methods thus heavily rely on domain-specific data aug-
mentations [8], which are tuned intensively for images and
lead to impressive performance in some image domains. But
discriminative SSL is often less successful for other domains,
where these augmentations are less effective (e.g., medical
images and text). For instance, random input perturbations
are more difficult to apply to discrete data like text [6].

Generative SSL methods exploit unsupervised learning of
generative models over unlabeled data, which inherently does
not require data augmentations and generally can be applied
to a wider range of domains. Considering observation x and
label y, there exist two different methods for the generative
SSL approach - joint-training [9, 10] and pre-training [11].
In joint-training, a joint model of p(x, y) is defined. When
we have label y, we maximize p(y|x) (the supervised objec-
tive), and when the label is unobserved, we marginalize it
out and maximize p(x) (the unsupervised objective). Semi-
supervised learning over a mix of labeled and unlabeled data
is formulated as maximizing the (weighted) sum of log p(y|x)
and log p(x). In pre-training, we perform unsupervised rep-
resentation learning on unlabeled data, which is followed by
supervised training (called fine-tuning) on labeled data.

Among existing generative SSL methods, a class of gener-
ative models - energy-based models (EBMs) have been shown
with promising results for semi-supervised learning across
various domains. Early studies date back to the pre-training
of restricted Boltzmann machines (RBMs) [11] (which are
a simple type of EBMs) and the joint-training with classi-
fication RBMs. More encouraging SSL results have been
shown recently for joint-training via more advanced EBMs,
which are defined by using DNN-based energy functions. In
[12, 13, 14], state-of-the-art SSL results are reported based
on EBMs and across different data modalities (images, nat-
ural languages, an protein structure prediction and year pre-
diction from the UCI dataset repository) and in different data
settings (fix-dimensional and sequence data). Although both
joint-training and pre-training of EBMs have been used for
SSL in the literature, previous studies have not yet evaluate
and compare the two methods. The results from previous
individual works are not directly comparable to each other,
since they are not evaluated in a common experimental setup.
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In this paper, we conduct a suite of experiments to sys-
tematically compare joint-training and pre-training for EBM-
based SSL. As suggested in [15], we vary both the amounts
of labeled and unlabeled data to give a realistic whole picture
of the performances of the two methods for SSL.

2. RELATED WORK

Discriminative and generative SSL. Semi-supervised
learning is a heavily studied problem. Discriminative SSL
works by discriminating between different augmentations
from a given unlabeled sample, such as in recent FixMatch
[4], SimCLR [5] methods. They rely on a rich set of domain-
specific data augmentations, e.g., RandAugment [8]. Al-
though there are some efforts to use data-independent model
noises, e.g., by dropout [16], domain-specific data augmenta-
tions is indispensable.

Recent progress in learning with deep generative mod-
els stimulates the generative SSL research, which usually in-
volves blending unsupervised learning and supervised learn-
ing. These methods make fewer domain-specific assumptions
and tend to be domain-agnostic. The performance compar-
isons between generative and discriminative SSL methods are
mixed. It is found that consistency based discriminative SSL
methods often outperform generative SSL methods in image
domain. However, in text domain, the generative SSL meth-
ods such as those based on pre-training word vectors are more
successful and widely used.

EBM based generative SSL. Pre-training of RBMs once
received attention in the early stage of training DNNs [11].
Recently, it is shown in [12] that joint-training via EBMs
produces state-of-the-art SSL results on images (MNIST,
SVHN and CIFAR-10), compared to previous generative
SSL methods based on Variational AutoEncoders (VAEs) and
Generative Adversarial Networks (GANs). It is also shown
in [13] that joint-training via EBMs outperforms VAT (virtual
adversarial training) [1] on tabular data from the UCI dataset
repository. Further, joint-training via EBMs has been ex-
tended to modeling sequences and consistently outperforms
conditional random fields (CRFs) (the supervised baseline)
and self-training (the classic semi-supervised baseline) on
natural language labeling tasks such as POS (part-of-speech)
tagging, chunking and NER (named entity recognition). De-
spite these previous works showing the advantage of EBMs in
domain-agnostic SSL, a direct and fair comparison of joint-
training and pre-training for EBM-based SSL, however, has
not been known in the literature, to the best of our knowledge.

3. SEMI-SUPERVISED LEARNING VIA EBMS

In this section, we review the methods of joint-training and
pre-training for EBM-based SSL across different data modal-
ities, which are scattered in previous individual works, using
consistent notations summarized in Table 1.

3.1. Background

An energy-based model (EBM) [17], also known as a random
field [18], defines a probability distribution for a collection of
random variables x ∈ X with parameter θ in the form:

pθ(x) =
1

Z(θ)
exp [uθ(x)] (1)

where X denotes the space of all possible values of x, and
Z(θ) =

∫
exp [uθ(x)] dx is the normalizing constant. uθ(x) :

X → R is called the potential function which assigns a scalar
value to each configuration of x in X and can be very flex-
ibly defined (e.g., through DNNs of different architectures).
For different applications, X could be discrete or continuous,
and x could be fix-dimensional or trans-dimensional (i.e., se-
quences of varying lengths). For example, images are fix-
dimensional continuous data (i.e., X = RD), and natural lan-
guages are sequences taking discrete tokens (i.e., X =

⋃
l Vl

where V is the vocabulary of tokens).
Training EBMs is challenging, because the gradient in

maximizing the data log-likelihood log pθ(x) for observed x
involves expectation w.r.t. the model distribution pθ(x), as
shown below:

∇θ log pθ(x) = ∇θuθ(x)−∇θ logZ(θ)

= ∇θuθ(x)− Epθ(x′) [∇θuθ(x′)] .
(2)

Considerable progress has been made recently to suc-
cessfully train large-scale EBMs parameterized by DNNs
[12, 19, 14, 20] for different types of data from various do-
mains, which lays the foundation to use EBMs, as a unified
framework, to achieve domain-agnostic SSL.

• For training EBMs for continuous data such as im-
ages, the inclusive approach, as detailed in [12], has
been shown to yield superior results in unsupervised
and semi-supervised training, by introducing inclusive-
divergence minimized auxiliary generators and utiliz-
ing stochastic gradient sampling (such as SGLD) to
approximate the model expectation in Eq. (2).

• For training EBMs for discrete sequence data such as
natural languages, the DNCE approach, as detailed in
[20, 14], avoids the model expectation in Eq. (2) and
has achieved superior results in unsupervised and semi-
supervised training, with the use of dynamic noise dis-
tribution to improve training efficiency of NCE (noise-
contrastive estimation) [21].

3.2. Pre-training via EBMs for SSL

Pre-training via EBMs for SSL consists of two stages. The
first stage is pre-training an EBM on unlabeled data. It is fol-
lowed by a fine-tuning stage, where we can easily use the pre-
trained EBM to initialize a discriminative model and further
train over labeled data.



Consider pre-training of an EBM for semi-supervised
image classification, which essentially involves estimating
pθ(x) as defined in Eq. (1) from unlabeled images. For
the potential function uθ(x), we can use a multi-layer feed-
forward neural network Φθ(x) : RD → R, which, in the final
layer, calculates a scalar via a linear layer, uθ(x) = wTh.
Here h ∈ RH denotes the activation from the last hidden
layer and w ∈ RH the weight vector in the final linear layer.
For simplicity, we omit the bias in describing linear layers
throughout the paper.

In fine-tuning, we throw away w and fed h into a new
linear output layer, followed by softmax(Wh), to predict y,
where W ∈ RK×H denotes the new trainable weight param-
eters and y ∈ {1, · · · ,K} the class label. It can be seen that
pre-training aims to learn representations that may be useful
for multiple downstream tasks, and any information about the
labels is not utilized until the fine-tuning stage.

The above procedure can be similarly applied to pre-
training of an EBM for semi-supervised natural language
labeling, e.g., POS tagging. In pre-training, we estimate an
EBM-based language model pθ(x) from unlabeled text cor-
pus. Neural networks with different architectures can be used
to implement the potential function Φθ(x) : Vl → R given
length l. With abuse of notation, here x = (x1, . . . , xl) de-
notes a token sequence of length l, and xi ∈ V, i = 1, · · · , l.
We use the bidirectional LSTM based potential function in
[20] as follows:

uθ(x) =

l−1∑
i=1

hTf,iei+1 +

l∑
i=2

hTb,iei−1 (3)

where ei, hf,i and hb,i are of the same dimensions, denoting
the output embedding vector, the last hidden vectors of the
forward and backward LSTMs respectively at position i.

In fine-tuning, we add a CRF, as the discriminative model,
on top of the extracted representations {(hf,i, hb,i), i = 1, · · · , l}
to do sequence labeling, i.e., to predict a sequence of labels
y = (y1, . . . , yl) with one label for one token at each posi-
tion, where yi ∈ {1, · · · ,K} denotes the label at position
i. Specifically, we concatenate hf,i and hb,i, add a linear
output layer to define the node potential, and add a matrix
A ∈ RK×K to define the edge potential, as in recent neu-
ral CRFs [22, 23]. The parameters to be fine-tuned are the
weights in the linear output layer and the edge potential
matrix A.

3.3. Joint-training via EBMs for SSL

The above pre-training via EBMs for SSL considers the mod-
eling of only observations x without labels y. The joint-
training refers to the joint modeling of x and y:

pθ(x, y) =
1

Z(θ)
exp [uθ(x, y)] (4)

Then, it can be easily seen that the conditional density pθ(y|x)
implied by the joint density Eq. (4) is:

pθ(y|x) =
pθ(x, y)

pθ(x)
=

exp(uθ(x, y))∑
y′ exp(uθ(x, y′))

(5)

And the implied marginal density is pθ(x) = 1
Z(θ) exp(uθ(x)),

where, with abuse of notation, uθ(x) , log
∑
y exp [uθ(x, y)].

Different from pre-training, the unsupervised objective pθ(x)
depends on the targeted task. The key for EBM based joint-
training for SSL is to choose suitable uθ(x, y) such that both
pθ(y|x) and pθ(x) can be tractably optimized.

In joint-training of an EBM for semi-supervised image
classification, we consider a neural network Ψθ(x) : RD →
RK , which accepts the image x and outputs an vector, whose
size is equal to the number of class labels, K. Then we define
uθ(x, y) = Ψθ(x)[y], where [y] denotes the y-th element of
a vector. With the above potential definition, it can be eas-
ily seen that the implied conditional density pθ(y|x) is ex-
actly a standard K-class softmax based classifier, using the
K logits calculated by the neural network Ψθ(x) from the
input x. And we do not need to calculate Z(θ) for classi-
fication. Therefore, we can conduct SSL over a mix of la-
beled and unlabeled data by maximizing the (weighted) sum
of log pθ(y|x) and log pθ(x), where both optimizations are
tractable as detailed in [12].

The above procedure can be similarly applied to joint-
training of an EBM for semi-supervised natural language
labeling with x = (x1, . . . , xl) and y = (y1, . . . , yl), xi ∈
V, yi ∈ {1, · · · ,K} , i = 1, · · · , l. We consider a neural
network Ψθ(x) : Vl → Rl×K and define

uθ(x, y) =

l∑
i=1

Ψθ(x)[i, yi] +

l∑
i=1

A[yi−1, yi] (6)

where [·, ·] denotes the element of a matrix and A ∈ RK×K
models the edge potential for adjacent labels. With the above
potential definition, it can be easily seen that the conditional
density pθ(y|x) implied by the joint density Eq.(4) is exactly
a CRF with node potentials Ψθ(x)[i, yi] and edge potentials
A[yi−1, yi], and the implied marginal density pθ(x) is exactly
a trans-dimensional random field (TRF) language model [24,
25, 26]. Training of both models are tractable as detailed in
[14, 20].

4. EXPERIMENTS

SSL experiments are conducted on standard benchmark
datasets in different domains, including the CIFAR-10 and
SVHN datasets [12] for image classification and the POS,
chunking and NER datasets [27, 14] for natural language
labeling. We use the standard data split for training and
testing. When we vary the amount of labeled and unlabeled
data for training, we select varying proportions (e.g., 10%,



Table 1. Applications of EBMs across different domains:
comparison and connection (See text for details).

Image classification Natural language labeling

Observation x ∈ RD x ∈
⋃
l Vl

continuous, fixed-dimensional discrete, sequence

Label y ∈ {1, 2, · · · ,K} y ∈
⋃
l{1, 2, · · · ,K}l

Pre-training uθ(x) = wTh uθ(x) in Eq.(3)

Joint-training uθ(x, y) = Ψθ(x)[y] uθ(x, y) in Eq.(6)

Table 2. SSL for image classification over CIFAR-10 with
4,000 labels. The upper/lower blocks show the genera-
tive/discriminative SSL methods respectively. The means and
standard deviations are calculated over ten independent runs
with randomly sampled labels.

Methods error (%)

CatGAN [28] 19.58±0.46
Ladder network [29] 20.40±0.47
Improved-GAN [30] 18.63±2.32
BadGAN [31] 14.41±0.30
Sobolev-GAN [32] 15.77±0.19
Supervised baseline 25.72±0.44
Pre-training+fine-tuning EBM 21.40±0.38
Joint-training EBM 15.12±0.36

Results below this line cannot be directly compared to those above.

VAT small [1] 14.87
Temporal Ensembling [2] 12.16±0.31
Mean Teacher [3] 12.31±0.28

100%) of labels from the original full set of labeled data.
Throughout the paper, the amount of labels is thus described
in terms of proportions. “100% labeled” means 50,000 and
73,257 images for CIFAR-10 and SVHN, and 56K, 7.4K,
14K sentences for POS, chunking and NER, respectively.

4.1. SSL for Image Classification

First, we experiment with CIFAR-10 and compare different
generative SSL methods. As in previous works, we randomly
sample 4,000 labeled images for training. The remaining im-
ages are treated as unlabeled. We use the network architec-
tures and hyper-parameter settings in [12]. It can be seen
from Table 2 that semi-supervised EBMs, especially the joint-
training EBMs, produce strong results on par with state-of-art
generative SSL methods2. Furthermore, joint-training EBMs
outperform pre-training+fine-tuning EBMs by a large margin
in this task. Note that some discriminative SSL methods,
as listed in the lower block in Table 2, also produce supe-
rior results but heavily utilize domain-specific data augmen-
tations, and thus are not directly compared to the generative
SSL methods.

2As discussed in [12], Bad-GANs could hardly be classified as a genera-
tive SSL method.

Fig. 1. Error rates of the supervised baseline and the joint-
training EBMs as the amount of labels varies on SVHN and
CIFAR-10 datasets. The dash line is the supervised result
trained with 100% labeled data.

Second, we experiment with CIFAR-10 and SVHN, and
examine the effects of varying amount of labels. We sample
varying proportions of labels as labeled training data and use
the remaining as unlabeled training data (i.e., we do not add
external unlabeled data). From the plot of error rates w.r.t. la-
beling proportions in Fig. 1 , we can see how many labels can
be reduced by using joint-training EBMs. The joint-training
EBMs obtain 11.14% on CIFAR-10 and 3.95% on SVHN us-
ing only 50% labels, which are better than 11.49% and 4.04%
respectively, obtained by the supervised baseline using 100%
labels. This indicates that we can reduce 50% of labels with-
out losing performance on these two tasks. Additionally, it is
interesting to observe that in the case of using 100% labels,
the joint-training EBMs outperform the supervised baseline
with 13.9% and 14.6% reductions in error rates. This is be-
cause the generative loss pθ(x) provides regularization for the
pure discriminative loss pθ(y|x), as discussed in [33].

4.2. SSL for Natural Language Labeling

In this experiment, we evaluate different methods for natural
language labeling, through three tasks - POS tagging, chunk-
ing and NER. The following benchmark datasets are used -
PTB POS tagging, CoNLL-2000 chunking and CoNLL-2003
English NER, as in [23, 6, 27, 14]. We sample varying pro-
portions of labels as labeled training data and use the Google
one-billion-word dataset [34] as the large pool of unlabeled
sentences. In [14], joint-training EBM based experiments are
conducted, using the labeling proportions of 10% and 100%
with “U/L” (the ratio between the amount of unlabeled and
labeled) of 50. In this paper, a larger scale of experiments are
conducted, covering the labeling proportions of 2%, 10% and
100% with “U/L” of 50, 250 and 500 for three tasks, which
consist of a total of 27 settings. We use the network archi-
tectures in [14]. After some empirical search, we fix hyper-
parameters (tuned separately for different methods), which
are used for all the 27 settings.

From the comparison results in Table 3 and 4, the main
observations are as follows. 1) The joint-training EBMs out-



Table 3. Natural language labeling results. The evaluation
metric is accuracy for POS and F1 for chunking and NER.
“Labeled” denotes the amount of labels in terms of the pro-
portions w.r.t. the full set of labels. “U/L” denotes the ratio
between the amount of unlabeled and labeled data. “U/L=0”
denotes the supervised baseline. “pre.” and “joint” denote the
results by pre-training+fine-tuning EBMs and joint-training
EBMs, respectively.

Labeled U/L POS tagging Chunking NER
pre. joint pre. joint pre. joint

2%

0 95.57 78.73 78.19
50 95.72 95.92 81.62 82.24 76.74 77.61
250 95.96 96.13 82.10 82.26 78.49 78.51
500 96.08 96.24 83.10 83.05 79.47 79.17

10%

0 96.81 90.06 86.93
50 96.87 96.99 91.60 91.85 86.37 87.05
250 96.88 97.00 91.09 91.93 86.86 86.77
500 96.92 97.08 91.93 92.23 87.57 87.06

100%

0 97.41 94.77 90.74
50 97.40 97.49 95.05 95.31 91.24 91.34
250 97.45 97.54 95.12 95.48 91.19 91.51
500 97.46 97.57 95.19 95.50 91.30 91.52

perform the supervised baseline in 25 out of the 27 settings.
Since we perform one run for each setting, this indicates 2
outliers. 2) For a fixed labeling size (as given by the label-
ing proportion), increasing “U/L” enables the joint-training
EBMs to perform better, except in one outlier. 3) The ef-
fects of increasing the labeling sizes on the improvements of
the joint-training EBMs over the supervised baseline with a
fixed “U/L” are mixed. For POS/chunking/NER, the largest
improvements are achieved under 2%/10%/100% labeled, re-
spectively. It seems that the working point where an SSL
method brings the largest improvement over the supervised
baseline is task dependent. Suppose that the working point
is indicated by the performance of the supervised baseline,
then the SSL method brings the largest effect when the per-
formance of the supervised baseline is moderate, i.e., neither
too low nor too high. 4) Joint-training EBMs outperform
pre-training EBMs in 23 out of the 27 settings marginally
but nearly consistently. A possible explanation is that pre-
training is not aware of the labels for the targeted task and
is thus weakened for representation learning. In contrast, the
marginal likelihood optimized in joint-training is directly re-
lated to the targeted task. 5) It seems that the degrees of im-
provements of the joint-training EBMs over the pre-training
EBMs are not much affected when varying the labeling sizes
and the “U/L” ratios.

5. CONCLUSION

In this paper, we systematically evaluate and compare joint-
training and pre-training for EBM-based domain-agnostic

Table 4. Relative improvements by joint-training EBMs com-
pared to the supervised baseline (abbreviated as sup.) and the
pretraining+fine-tuning EBMs (abbreviated as pre.) respec-
tively. Refer to Table 3 for notations.

joint over sup. joint over pre.

Labeled U/L POS Chunking NER POS Chunking NER

2%
50 7.9 16.5 -2.7 4.7 3.4 3.7
250 12.6 16.6 1.5 4.2 0.9 0.1
500 15.1 20.3 4.5 4.1 -0.3 -1.5

10%
50 5.6 18.0 0.9 3.8 3.0 5.0
250 6.0 18.3 -1.2 3.8 9.4 -0.7
500 8.5 21.8 1.0 5.2 3.7 -4.1

100%
50 3.1 10.3 6.5 3.5 5.3 1.1
250 5.0 13.6 8.3 3.5 7.4 3.6
500 6.2 14.0 8.4 4.3 6.4 2.5

SSL, through a suite of experiments across a variety of do-
mains such as image classification and natural language la-
beling. It is revealed that joint-training EBMs outperform
pre-training EBMs marginally but nearly consistently. Pre-
sumably, this is because that the optimization of joint-training
is directly related to the targeted task, but pre-training is not
aware of the labels for the targeted task. We hope this new
finding would be helpful for future work to further explore
better methods to leverage unlabeled data.

6. REFERENCES

[1] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama,
and Shin Ishii, “Virtual adversarial training: a regu-
larization method for supervised and semi-supervised
learning,” IEEE transactions on pattern analysis and
machine intelligence, vol. 41, no. 8, pp. 1979–1993,
2018.

[2] Samuli Laine and Timo Aila, “Temporal ensembling for
semi-supervised learning,” in ICLR, 2017.

[3] Antti Tarvainen and Harri Valpola, “Mean teachers are
better role models: Weight-averaged consistency tar-
gets improve semi-supervised deep learning results,” in
NIPS, 2017.

[4] Kihyuk Sohn, David Berthelot, Chun-Liang Li, and et
al, “FixMatch: Simplifying semi-supervised learning
with consistency and confidence,” arXiv:2001.07685,
2020.

[5] Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton, “A simple framework for contrastive
learning of visual representations,” arXiv:2002.05709,
2020.

[6] Kevin Clark, Minh-Thang Luong, Christopher D Man-
ning, and Quoc Le, “Semi-supervised sequence model-
ing with cross-view training,” in EMNLP, 2018.



[7] Xiaojin Zhu, “Semi-supervised learning literature
survey,” Technical report, University of Wisconsin-
Madison, 2006.

[8] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and
Quoc V Le, “RandAugment: Practical automated data
augmentation with a reduced search space,” in CVPR,
2020.

[9] Hugo Larochelle, Michael I Mandel, Razvan Pascanu,
and Yoshua Bengio, “Learning algorithms for the classi-
fication restricted Boltzmann machine,” Journal of Ma-
chine Learning Research, 2012.

[10] Diederik P. Kingma, Danilo Jimenez Rezende, Shakir
Mohamed, and Max Welling, “Semi-supervised learn-
ing with deep generative models,” in NIPS, 2014.

[11] Geoffrey E Hinton, Simon Osindero, and Yee Whye
Teh, “A fast learning algorithm for deep belief nets,”
Neural Computation, 2006.

[12] Yunfu Song and Zhijian Ou, “Learning neural
random fields with inclusive auxiliary generators,”
arXiv:1806.00271, 2018.

[13] Stephen Zhao, Jörn-Henrik Jacobsen, and Will Grath-
wohl, “Joint energy-based models for semi-supervised
classification,” in ICML Workshop on Uncertainty and
Robustness in Deep Learning, 2020.

[14] Yunfu Song, Zhijian Ou, Zitao Liu, and Songfan Yang,
“Upgrading CRFs to JRFs and its benefits to sequence
modeling and labeling,” in ICASSP, 2020.

[15] Avital Oliver, Augustus Odena, Colin Raffel, Ekin D
Cubuk, and Ian J Goodfellow, “Realistic evaluation of
semi-supervised learning algorithms,” in ICLR, 2018.

[16] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov, “Dropout: a
simple way to prevent neural networks from overfitting,”
The journal of machine learning research, 2014.

[17] Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato,
and F Huang, “A tutorial on energy-based learning,”
Predicting structured data, vol. 1, no. 0, 2006.

[18] Daphne Koller and Nir Friedman, Probabilistic graphi-
cal models: principles and techniques, MIT press, 2009.

[19] Yilun Du and Igor Mordatch, “Implicit gener-
ation and generalization in energy-based models,”
arXiv:1903.08689, 2019.

[20] Bin Wang and Zhijian Ou, “Improved training of neural
trans-dimensional random field language models with
dynamic noise-contrastive estimation,” in SLT, 2018.

[21] Michael Gutmann and Aapo Hyvärinen, “Noise-
contrastive estimation: A new estimation principle for
unnormalized statistical models,” in AISTATS, 2010.

[22] Guillaume Lample, Miguel Ballesteros, Sandeep Subra-
manian, Kazuya Kawakami, and Chris Dyer, “Neural
architectures for named entity recognition,” in NAACL-
HLT, 2016.

[23] Xuezhe Ma and Eduard Hovy, “End-to-end sequence
labeling via bi-directional LSTM-CNNs-CRF,” in ACL,
2016.

[24] Bin Wang, Zhijian Ou, and Zhiqiang Tan, “Learn-
ing trans-dimensional random fields with applications
to language modeling,” IEEE transactions on pattern
analysis and machine intelligence, vol. 40, no. 4, pp.
876–890, 2017.

[25] Bin Wang and Zhijian Ou, “Language modeling with
neural trans-dimensional random fields,” in ASRU,
2017.

[26] Bin Wang and Zhijian Ou, “Learning neural trans-
dimensional random field language models with noise-
contrastive estimation,” in ICASSP, 2018.

[27] Kai Hu, Zhijian Ou, Min Hu, and Junlan Feng, “Neu-
ral CRF transducers for sequence labeling,” in ICASSP,
2019.

[28] Jost Tobias Springenberg, “Unsupervised and semi-
supervised learning with categorical generative adver-
sarial networks,” in ICML, 2016.

[29] Antti Rasmus, Harri Valpola, Mikko Honkala, Mathias
Berglund, and Tapani Raiko, “Semi-supervised learning
with ladder networks,” in NIPS, 2015.

[30] Tim Salimans, Ian Goodfellow, Wojciech Zaremba,
Vicki Cheung, Alec Radford, and Xi Chen, “Improved
techniques for training GANs,” in NIPS, 2016.

[31] Zihang Dai, Zhilin Yang, Fan Yang, William W Cohen,
and Ruslan R Salakhutdinov, “Good semi-supervised
learning that requires a bad GAN,” in NIPS, 2017.

[32] Youssef Mroueh, Chun-Liang Li, Tom Sercu, Anant
Raj, and Yu Cheng, “Sobolev GAN,” in ICLR, 2018.

[33] Andrew Y Ng and Michael I Jordan, “On discrimina-
tive vs. generative classifiers: A comparison of logistic
regression and naive bayes,” in NIPS, 2002.

[34] Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, Phillipp Koehn, and Tony Robinson,
“One billion word benchmark for measuring progress
in statistical language modeling,” in INTERSPEECH,
2014.


