A Comparison of Algorithms for Inference and Learning in Probabilistic Graphical Models

Brendan J. Frey, Senior Member, IEEE, and Nebojsa Jojic

Abstract

Research into methods for reasoning under uncertainty is currently one of the most exciting areas of artificial intelligence, largely because it has recently become possible to record, store, and process large amounts of data. While impressive achievements have been made in pattern classification problems such as handwritten character recognition, face detection, speaker identification, and prediction of gene function, it is even more exciting that researchers are on the verge of introducing systems that can perform large-scale combinatorial analyses of data, decomposing the data into interacting components. For example, computational methods for automatic scene analysis are now emerging in the computer vision community. These methods decompose an input image into its constituent objects, lighting conditions, motion patterns, etc. Two of the main challenges are finding effective representations and models in specific applications and finding efficient algorithms for inference and learning in these models. In this paper, we advocate the use of graph-based probability models and their associated inference and learning algorithms. We review exact techniques and various approximate, computationally efficient techniques, including iterated conditional modes, the expectation maximization (EM) algorithm, Gibbs sampling, the mean field method, variational techniques, structured variational techniques and the sum-product algorithm, "loopy" belief propagation. We describe how each technique can be applied in a vision model of multiple, occluding objects and contrast the behaviors and performances of the techniques using a unifying cost function, free energy.

Index Terms-Graphical models, Bayesian networks, probability models, probabilistic inference, reasoning, learning, Bayesian methods, variational techniques, sum-product algorithm, loopy belief propagation, EM algorithm, mean field, Gibbs sampling, free energy, Gibbs free energy, Bethe free energy.

1 Introduction

USING the eyeball of an ox, Rene Descartes demonstrated in the 17th century that the backside of the eyeball contains a two-dimensional projection of the three-dimensional scene. Isolated during the plague, Isaac Newton slipped a bodkin into his eyeball socket behind his eyeball, poked the backside of his eyeball at different locations, and saw small white and colored rings of varying intensity. These discoveries helped to formalize the problem of vision: What computational mechanism can interpret a threedimensional scene using two-dimensional light intensity images as input? Historically, vision has played a key role in the development of models and computational mechanisms for sensory processing and artificial intelligence.

By the mid-19th century, there were two main theories of natural vision: the "nativist theory," where vision is a consequence of the lower nervous system and the optics of the eye, and the "empiricist theory," where vision is a consequence of learned models created from physical and visual experiences. Hermann von Helmholtz advocated the empiricist theory and, in particular, that vision involves psychological inferences in the higher nervous system, based

- B.J. Frey is with the Electrical and Computer Engineering Department, University of Toronto, 10 King's College Road, Toronto, ON M5S 3G4 Canada. E-mail: frey@psi.toronto.edu.
- N. Jojic is with the Machine Learning and Applied Statistics Group, Microsoft Research, One Microsoft Way, Redmond, WA 98052-6399. E-mail: jojic@microsoft.com.
Manuscript received 5 Feb. 2003; revised 27 Sept. 2004; accepted 22 Nov. 2004; published online 14 July 2005.
Recommended for acceptance by J. Rehg.
For information on obtaining reprints of this article, please send e-mail to: tpami@computer.org, and reference IEEECS Log Number 118245.
on learned models gained from experience. He conjectured that the brain learns a generative model of how scene components are put together to explain the visual input and that vision is inference in these models [7]. A computational approach to probabilistic inference was pioneered by Thomas Bayes and Pierre-Simon Laplace in the 18th century, but it was not until the 20th century that these approaches could be used to process large amounts of data using computers. The availability of computer power motivated researchers to tackle larger problems and develop more efficient algorithms. In the past 15 years, we have seen a flurry of intense, exciting, and productive research in complex, large-scale probability models and algorithms for probabilistic inference and learning.

This paper has two purposes: First, to advocate the use of graph-based probability models for analyzing sensory input and, second, to describe and compare the latest inference and learning algorithms. Throughout the review paper, we use an illustrative example of a model that learns to describe pictures of scenes as a composition of images of foreground and background objects, selected from a learned library. We describe the latest advances in inference and learning algorithms, using the above model as a case study, and compare the behaviors and performances of the various methods. This material is based on tutorials we have run at several conferences, including CVPR00, ICASSP01, CVPR03, ISIT04, and CSB05.

2 Graphical Probability Models and Reasoning under Uncertainty

In practice, our inference algorithms must cope with uncertainties in the data, uncertainties about which features
are most useful for processing the data, uncertainties in the relationships between variables, and uncertainties in the value of the action that is taken as a consequence of inference. Probability theory offers a mathematically consistent way to formulate inference algorithms when reasoning under uncertainty.

There are two types of probability model. A discriminative model predicts the distribution of the output given the input: P (output \mid input). Examples include linear regression, where the output is a linear function of the input, plus Gaussian noise, and SVMs, where the binary class variable is Bernoulli distributed with a probability given by the distance from the input to the support vectors. A generative model accounts for all of the data: $P($ data $)$ or $P($ input, output $)$. An example is the factor analyzer, where the combined input/output vector is a linear function of a short, Gaussian hidden vector, plus independent Gaussian noise. Generative models can be used for discrimination by computing P (output \mid input $)$ using marginalization and Bayes rule. In the case of factor analysis, it turns out that the output is a linear function of a lowdimensional representation of the input, plus Gaussian noise.

Ng and Jordan [32] show that, within the context of logistic regression, for a given problem complexity, generative approaches work better than discriminative approaches when the training data is limited. Discriminative approaches work best when the data is extensively preprocessed so that the amount of data relative to the complexity of the task is increased. Such preprocessing involves analyzing the unprocessed inputs that will be encountered in situ. This task is performed by a user who may or may not use automatic data analysis tools, and involves building a model of the input, $P($ input $)$, that is either conceptual or operational. An operational model can be used to perform preprocessing automatically. For example, PCA can be used to reduce the dimensionality of the input data in the hope that the low-dimensional representation will work better for discrimination. Once an operational model of the input is available, the combination of the preprocessing model $P($ input $)$ and the discriminative model P (output \mid input $)$ corresponds to a particular decomposition of a generative model: $P($ output, input $)=P($ output \mid input $) P($ input $)$.

Generative models provide a more general way to combine the preprocessing task and the discriminative task. By jointly modeling the input and output, a generative model can discover useful, compact representations and use these to better model the data. For example, factor analysis jointly finds a low-dimensional representation that models the input and is good at predicting the output. In contrast, preprocessing the input using PCA ignores the output. Also, by accounting for all of the data, a generative model can help solve one problem (e.g., face detection) by solving another, related problem (e.g., identifying a foreground obstruction that can explain why only part of a face is visible).

Formally, a generative model is a probability model for which the observed data is an event in the sample space. So, sampling from the model generates a sample of possible observed data. If the training data has high probability, the model is "a good fit." However, the goal is not to find the model that is the best fit, but to find a model that fits the data
well and is consistent with prior knowledge. Graphical models provide a way to specify prior knowledge and, in particular, structural prior knowledge, e.g., in a video sequence, the future is independent of the past, given the current state.

2.1 Example: A Model of Foregrounds, Backgrounds, and Transparency

The use of probability models in vision applications is, of course, extensive. Here, we introduce a model that is simple enough to study in detail here, but also correctly accounts for an important effect in vision: occlusion. Fig. 1 illustrates the training data. The goal of the model is to separate the five foreground objects and the seven background scenes in these images. This is an important problem in vision that has broad applicability. For example, by identifying which pixels belong to the background, it is possible to improve the performance of a foreground object classifier since errors made by noise in the background will be avoided.

The occlusion model explains an input image, with pixel intensities z_{1}, \ldots, z_{K}, as a composition of a foreground image and a background image (cf., [1]) and each of these images is selected from a library of J possible images (a mixture model). Although separate libraries can be used for the foreground and background, for notational simplicity, we assume they share a common image library. The generative process is illustrated in Fig. 2a. To begin with, a foreground image is randomly selected from the library by choosing the class index f from the distribution, $P(f)$. Then, depending on the class of the foreground, a binary mask $m=\left(m_{1}, \ldots, m_{K}\right)$, $m_{i} \in\{0,1\}$ is randomly chosen. $m_{i}=1$ indicates that pixel z_{i} is a foreground pixel, whereas $m_{i}=0$ indicates that pixel z_{i} is a background pixel. The distribution over mask RVs depends on the foreground class, since the mask must "cut out" the foreground object. However, given the foreground class, the maskRVs are chosen independently: $P(m \mid f)=\prod_{i=1}^{K} P\left(m_{i} \mid f\right)$. Next, the class of the background, $b \in\{1, \ldots, J\}$, is randomly chosen from $P(b)$. Finally, the intensity of the pixels in the image are selected independently, given the mask, the class of the foreground, and the class of the background: $P(z \mid m, f, b)=\prod_{i=1}^{K} P\left(z_{i} \mid m_{i}, f, b\right)$. The joint distribution is given by the following product of distributions:

$$
\begin{align*}
& P(z, m, f, b)= \\
& P(b) P(f)\left(\prod_{i=1}^{K} P\left(m_{i} \mid f\right)\right)\left(\prod_{i=1}^{K} P\left(z_{i} \mid m_{i}, f, b\right)\right) . \tag{1}
\end{align*}
$$

In this equation, $P\left(z_{i} \mid m_{i}, f, b\right)$ can be further factorized by noticing that if $m_{i}=0$, the class is given by the RV b and if $m_{i}=1$ the class is given by the RV f. So, we can write $P\left(z_{i} \mid m_{i}, f, b\right)=P\left(z_{i} \mid f\right)^{m_{i}} P\left(z_{i} \mid b\right)^{1-m_{i}}$, where $P\left(z_{i} \mid f\right)$ and $P\left(z_{i} \mid b\right)$ are the distributions over the i th pixel intensity given by the foreground and background, respectively. These distributions account for the dependence of the pixel intensity on the mixture index, as well as independent observation noise. The joint distribution can thus be written:

$$
\begin{align*}
& P(z, m, f, b)= \\
& P(b) P(f)\left(\prod_{i=1}^{K} P\left(m_{i} \mid f\right)\right)\left(\prod_{i=1}^{K} P\left(z_{i} \mid f\right)^{m_{i}}\right)\left(\prod_{i=1}^{K} P\left(z_{i} \mid b\right)^{1-m_{i}}\right) . \tag{2}
\end{align*}
$$

Fig. 1. Some of the 300 images used to train the model in Section 2.1. Each image was created by randomly selecting one of seven backgrounds and one of five foreground objects from the Yale face database, combining them into a 2-layer image, and adding normal noise with standard deviation of 2 percent of the dynamic range. Each foreground object always appears in the same location in the image, but different foreground objects appear in different places so that each pixel in the background is seen in several training images.

In comparison with (1), this factorization reduces the number of arguments in some of the terms.

For representational and computational efficiency, it is often useful to specify a model using parametric distributions. Given a foreground or background class index k, we assume z_{i} is equal to $\mu_{k i}$ plus zero-mean Gaussian noise with variance $\psi_{k i}$. This noise accounts for distortions that are not explicitly modeled, such as sensor noise and fluctuations in illumination. If a Gaussian model of these noise sources is too inaccurate, extra hidden RVs can be added to better model the noise, as described in Section 3. Note that in the above parameterization, the foreground and background images are selected from the same library. ${ }^{1}$ Denote the probability of class k by π_{k} and let the probability that $m_{i}=1$, given that the foreground class is f, be $\alpha_{f i}$. Since the probability that $m_{i}=0$ is $1-\alpha_{f i}$, we have $P\left(m_{i} \mid f\right)=\alpha_{f i}^{m_{i}}\left(1-\alpha_{f i}\right)^{1-m_{i}}$. Using these parametric forms, the joint distribution is

$$
\begin{align*}
& P(z, m, f, b)= \\
& \pi_{b} \pi_{f}\left(\prod_{i=1}^{K} \alpha_{f_{i}}^{m_{i}}\left(1-\alpha_{f i}\right)^{1-m_{i}} \mathcal{N}\left(z_{i} ; \mu_{f i}, \psi_{f i}\right)^{m_{i}} \mathcal{N}\left(z_{i} ; \mu_{b i}, \psi_{b i}\right)^{1-m_{i}}\right), \tag{3}
\end{align*}
$$

where $\mathcal{N}(z ; \mu, \psi)$ is the normal density function on z with mean μ and variance ψ. An equivalent form is

1. If it is desirable that the foreground and background images come from separate libraries, the class RVs f and b can be constrained, e.g., so that $f \in\{1, \ldots, n\}, b \in\{n+1, \ldots, n+l\}$, in which case, the first n images in the library are foreground images and the next l images are background images.

$$
\begin{aligned}
& P(z, m, f, b)= \\
& \pi_{b} \pi_{f}\left(\prod _ { i = 1 } ^ { K } \alpha _ { f i } ^ { m _ { i } } (1 - \alpha _ { f i }) ^ { 1 - m _ { i } } \mathcal { N } \left(z_{i} ; m_{i} \mu_{f i}\right.\right. \\
& \left.\left.\quad+\left(1-m_{i}\right) \mu_{b i}, m_{i} \psi_{f i}+\left(1-m_{i}\right) \psi_{b i}\right)\right)
\end{aligned}
$$

where, here the mask RVs "screen" the mean and variance of the Gaussians.

In the remainder of this review paper, the above occlusion model is used as an example. One of the appeals of generative models is in their modularity and the ease with which they can be extended to cope with more complex data. In Section 3, we describe extensions of the occlusion model that enable it to account for motion, object deformations, and object-specific changes in illumination.

2.2 Graphical Models

Graphical models describe the topology (in the sense of dependencies) of the components of a complex probability model, clarify assumptions about the representation, and lead to algorithms that make use of the topology to achieve exponential speed-ups. When constructing a complex probability model, we are faced with the following challenges: ensuring that the model reflects our prior knowledge; deriving efficient algorithms for inference and learning, translating the model to a different form, and communicating the model to other researchers and users. Graphical models overcome these challenges in a wide variety of situations. After commenting on each of these issues, we briefly review

Fig. 2. (a) A generative process that explains an image as a composition of the image of a foreground object with the image of the background, using a transparency map or mask. The foreground and background are each selected stochastically from a library and the generation of the mask depends on the foreground that was selected. We refer to this model as the occlusion model. (b) A BN for an occlusion model with three pixels, where f is the index of the foreground image, b is the index of the background image, m_{i} is a binary mask RV that specifies whether pixel z_{i} is from the foreground image ($m_{i}=1$) or the background image ($m_{i}=0$). (c) A simpler, but less explicit, BN is obtained by grouping the mask RVs together and the pixels together. (d) An MRF for the occlusion model. (e) An MRF corresponding to the BN in (c). (f) An FG for the occlusion model. (g) A directed FG expressing all properties of the BN in (c) and the MRF in (e).
three kinds of graphical model: Bayesian networks (BNs), Markov random fields (MRFs), and factor graphs (FGs). For a more extensive treatment, see [4], [9], [23], [24], [33].

Prior knowledge usually includes strong beliefs about the existence of hidden random variables (RVs) and the relationships between RVs. This notion of "modularity" is a central aspect of graphical models. In a graphical model, the existence of a relationship is depicted by a path that connects the two RVs. A related concept is the Markov blanket of an RV x-the minimal set of RVs that when given, makes x independent of all other RVs. Probabilistic inference in a probability model can, in principle, be carried out by using Bayes rule. However, for the complex models that accurately describe many problems, direct application of Bayes rule leads to an intractable number of computations. A graphical model identifies the modules in the system and can be used to derive algorithms that achieve exponential speedups. In a complex probability model, computational inference and
interpretation usually benefit from judicious groupings of RVs and these clusters should take into account dependencies between RVs. Other types of useful transformation include splitting RVs, eliminating (integrating over) RVs, and conditioning on RVs. By examining the graph, we can often easily identify transformation steps that will lead to simpler models or models that are better suited to our goals and in particular our choice of inference algorithm. For example, we may be able to transform a graphical model that contains cycles to a tree and thus use an exact but efficient inference algorithm. By examining a picture of the graph, a researcher or user can quickly identify the dependency relationships between RVs in the system and understand how the influence of an RV flows through the system to change the distributions over other RVs. Whereas block diagrams enable us to efficiently communicate how computations and signals flow through a system, graphical models enable us to efficiently communicate the dependencies between components in a modular system.

2.3 Bayesian Network (BN) for the Occlusion Model

A Bayesian network (BN) [4], [24], [33] for RVs x_{1}, \ldots, x_{N} is a directed acyclic graph (no directed cycles) on the set of RVs, along with one conditional probability function for each RV given its parents, $P\left(x_{i} \mid x_{A_{i}}\right)$, where A_{i} is the set of indices of x_{i} 's parents. The joint distribution is given by the product of all the conditional probability functions: $P(x)=\prod_{i=1}^{N} P\left(x_{i} \mid x_{A_{i}}\right)$.

Fig. 2 b shows the BN for the occlusion model in (1), with $K=3$ pixels. By grouping the mask RVs together and the pixels together, we obtain the BN shown in Fig. 2c. Here, z is a real vector, $z=\left(z_{1}, z_{2}, z_{3}\right)$ and m is a binary vector, $m=\left(m_{1}, m_{2}, m_{3}\right)$. Although this graph is simpler than the graph in Fig. 2b, it is also less explicit about dependencies among pixels and mask RVs.

The graph indicates conditional independencies, as described in [33]. For example, the Markov blanket of m_{1} is $\left\{f, b, z_{1}\right\}$. In a BN, observing a child induces a dependence between its parents. Here, the BN indicates that f and b are dependent given z and m, even though they are not (observing m decouples f and b). This demonstrates that BNs are not good at indicating conditional independence. However, the BN indicates that f and b are marginally independent, demonstrating that BNs are good at indicating marginal independence.

2.4 Markov Random Field (MRF) for the Occlusion Model

A Markov Random Field (MRF) [4], [24], [33] for RVs x_{1}, \ldots, x_{N} is an undirected graph on the set of RVs, along with one potential function for each maximal clique, $g_{k}\left(x_{C_{k}}\right)$, where C_{k} is the set of indices of the RVs in the k th maximal clique. The joint distribution is given by the product of all the potential functions divided by a normalizing constant, \mathcal{Z}, called the partition function: $P(x)=\frac{1}{\mathcal{Z}} \prod_{k=1}^{K} g_{k}\left(x_{C_{k}}\right)$, where $\mathcal{Z}=\sum_{x_{1}, \ldots, x_{N}}\left(\prod_{k=1}^{K} g_{k}\left(x_{C_{k}}\right)\right)$. A clique is a fully connected subgraph, and a maximal clique is a clique that cannot be made larger while still being a clique. For brevity, we use the term "clique" to refer to a maximal clique, e.g., the potentials on maximal cliques are usually called clique potentials.

The above factorization of the joint distribution is similar to the factorization for the BN , where each conditional probability function can be viewed as a clique potential. However,
there is an important difference: In a BN , the conditional probability functions are individually normalized with regard to the child, so the product of conditional probabilities is automatically normalized and $\mathcal{Z}=1$.

An MRF for the occlusion model in (2) is shown in Fig. 2d and the version where the mask RVs are grouped and the pixels are grouped is shown in Fig. 2e. Note that the MRF includes an edge from m to b, indicating they are dependent, even though they are not. This demonstrates that MRFs are not good at indicating marginal independence. However, the MRF indicates f and b are independent given z and m, demonstrating that MRFs are good at indicating conditional independence.

2.5 Factor Graph (FG) for the Occlusion Model

Factor graphs (FGs) [9], [23] subsume BNs and MRFs. Any BN or MRF can be easily converted to an FG, without loss of information. Further, there exist models that have independence relationships that cannot be expressed in a BN or an MRF, but that can be expressed in an FG. FGs are more explicit about the factorization of the distribution than BNs and MRFs. Also, belief propagation takes on a simple form in FGs so that inference in both BNs and MRFs can be simplified to a single, unified inference algorithm.

A factor graph (FG) for RVs x_{1}, \ldots, x_{N} and local functions $g_{1}\left(x_{C_{1}}\right), \ldots, g_{K}\left(x_{C_{K}}\right)$ is a bipartite graph on the set of RVs and a set of nodes corresponding to the functions, where each function node g_{k} is connected to the RVs in its argument $x_{C_{k}}$. The joint distribution is given by the product of all the functions: $P(x)=\frac{1}{\mathcal{Z}} \prod_{k=1}^{K} g_{k}\left(x_{C_{k}}\right)$. In fact, $\mathcal{Z}=1$ if the FG is a directed graph, as described below. Otherwise, \mathcal{Z} ensures the distribution is normalized. Note that the local functions may be positive potentials, as in MRFs, or conditional probability functions, as in BNs.

Fig. 2f shows an FG for the occlusion model in (1). As with BNs and MRFs, we can group variables to obtain a simpler FG. Also, we can indicate conditional distributions in an FG using directed edges, in which case, $\mathcal{Z}=1$. Fig. 2 g shows such a directed FG for the model with variables grouped together. This FG expresses all properties of the BN and MRF. As described in [9], all independencies that can be expressed in BNs and MRFs can be expressed in FGs. Here, the directed FG indicates that f and b are independent (expressed by the BN but not the MRF) and it indicates that f and b are independent given z and m (expressed by the MRF but not the BN). Another advantage of FGs is that, because they explicitly identify functions, they provide a useful graph for messagepassing algorithms, such as belief propagation.

2.6 Converting between FGs, BNs, and MRFs

BNs and MRFs represent different independence properties, but FGs can represent all the properties that BNs and MRFs can represent.

A BN can be converted to an FG by "pinning" the edges arriving at each variable together and creating a function node associated with the conditional distribution. Directed edges are used to indicate the parent-child relationship, as shown in Fig. 2g. A directed FG can be converted to a BN by "unpinning" each function node. An MRF can be converted to an FG by creating one function node for each maximal clique, connecting the function node to the variables in the maximal
clique, and setting the function to the clique potential. An FG can be converted to an MRF by creating a maximal clique for each function node and setting the clique potential to the function.

In fact, if a BN is converted to a directed FG and back again, the same BN is obtained. Similarly, if an MRF is converted to an FG and back again, the same MRF is obtained. Consequently, the rules for determining conditional independence in BNs and MRFs map losslessly to FGs, i.e., FGs can express all conditional independencies that BNs and MRFs can express. The converse is not true: There are FGs that express independencies that cannot be expressed in a BN or an MRF, e.g., the FG in Fig. 2g. It is also the case that multiple FGs may be converted to the same BN or MRF-a consequence of the fact that FGs are more explicit about factorization.

Another way to interconvert between representations is to expand the graph to include extra edges and extra variables (cf., [37]).

3 Building Complex Models Using Modularity

Graphical models provide a way to link simpler models together in a principled fashion that respects the rules of probability theory. Fig. 3 shows how the occlusion model can be used as a module in a larger model that accounts for changing object positions, deformations, object occlusion, and changes in illumination. The figure shows a BN , where the appearance and mask vector RVs are shown as images and the brightness, deformation, and position RVs are shown pictorially. After inference and learning, the video frame is automatically decomposed into the parts shown in the BN. Previous papers describe efficient techniques for inference and learning in models that account for changes in object locations and moving objects [11], changes in appearances of moving objects and image patches using a subspace model [10], common motion patterns of moving objects [21], layered models of occluding objects in 3D scenes [19], and the "epitome" of components in object appearance and shape [20]. An inference and learning algorithm in a combined model, like the one shown above, can be obtained by linking together the modules and associated algorithms. Many other interesting avenues within this framework are being explored or have yet to be explored. For example, Williams and Titsias [36] describe a fast, greedy way to learn layered models of occluding objects.

4 Parameterized Models and the Exponential Family

So far, we have studied graphical models as representations of structured probability models for data analysis. We now turn to the general problem of how to learn these models from training data. For the purpose of learning, it is often convenient to express the conditional distributions or potentials in a graphical model as parameterized functions. Choosing the forms of the parameterized functions usually restricts the model class, but can make computations easier.

Fig. 3. Simple probability models can be combined in a principled way to build a more complex model that can be learned from training data. Here, after the model parameters (some shown in the top row of pictures) are learned from the input video, the model explains a particular video frame as a composition of four "cardboard cutouts," each of which is decomposed into appearance, transparency (mask), position, brightness, and deformation (which accounts for the gait of the walking person).

For example, Section 2.1 shows how we can parameterize the conditional probability functions in the occlusion model.

4.1 Parameters as RVs

Usually, the model parameters are not known exactly, but we have prior knowledge and experimental results that provide evidence for plausible values of the model parameters. Interpreting the parameters as RVs, we can include them in the conditional distributions or potentials that specify the graphical model, and encode our prior knowledge in the form of a distribution over the parameters.

Including the parameters as RV s in the occlusion model, we obtain the following conditional distributions: $P(b \mid \pi)=\pi_{b}$, $P(f \mid \pi)=\pi_{f}, P\left(m_{i} \mid f, \alpha_{1 i}, \ldots, \alpha_{J i}\right)=\alpha_{f i}^{m_{i}}\left(1-\alpha_{f i}\right)^{1-m_{i}}, P^{f}\left(z_{i} \mid f\right.$, $\left.\mu_{1 i}, \ldots, \mu_{J i}, \psi_{1 i}, \ldots, \psi_{J i}\right)=\mathcal{N}\left(z_{i} ; \mu_{f i}, \psi_{f i}\right), P^{b}\left(z_{i} \mid b, \mu_{1 i}, \ldots, \mu_{J i}\right.$, $\left.\psi_{1 i}, \ldots, \psi_{J i}\right)=\mathcal{N}\left(z_{i} ; \mu_{b i}, \psi_{b i}\right)$. We obtain a simpler model (but one that is less specific about independencies) by grouping the mask RVs, the pixels, the mask parameters, and the pixel means and variances. The resulting conditional distributions are $P(b \mid \pi)=\pi_{b}, P(f \mid \pi)=\pi_{f}, P(m \mid f, \alpha)=\prod_{i=1}^{K} \alpha_{f i}^{m_{i}}\left(1-\alpha_{f i}\right)^{1-m_{i}}$, $P(z \mid m, f, b, \mu, \psi, \mu, \psi)=\prod_{i=1}^{K} \mathcal{N}\left(z_{i} ; \mu_{f i}, \psi_{f i}\right)^{m_{i}} \mathcal{N}\left(z_{i} ; \mu_{b i}, \psi_{b i}\right)^{1-m_{i}}$.

Since we are interpreting the parameters as RVs, we must specify a distribution for them. Generally, the distribution over parameters can be quite complex, but simplifying assumptions can be made for the sake of computational expediency, as describe in later sections. For now, we assume that $P(\pi, \alpha, \mu, \psi, \mu)=P(\pi) P(\alpha) P(\mu) P(\psi)$.

The BN for this parameterized model is shown in Fig. 4a, and the joint distribution over RVs and parameters is

$$
\begin{aligned}
& P(z, m, f, b, \pi, \alpha, \mu, \psi)= \\
& P(b \mid \pi) P(f \mid \pi) P(m \mid f, \alpha) P(z \mid m, f, b, \mu, \psi) P(\pi) P(\alpha) P(\mu) P(\psi) .
\end{aligned}
$$

4.2 Introducing Training Data

Training data can be used to infer plausible configurations of the model parameters. We imagine that there is a setting of the parameters that produced the training data. However, since we only see the training data, there will be many settings of the parameters that are good matches to the training data, so the best we can do is compute a distribution over the parameters.

Denote the hidden RVs by h and the visible RVs by v. The hidden $R V$ s can be divided into the parameters, denoted by θ, and one set of hidden RVs $h^{(t)}$, for each of the training cases, $t=1, \ldots, T$. So, $h=\left(\theta, h^{(1)}, \ldots, h^{(T)}\right)$. Similarly, there is one set of visible RVs for each training cases, so $v=\left(v^{(1)}, \ldots, v^{(T)}\right)$. Assuming the training cases are independent and identically drawn (i.i.d.), the distribution over all visible $R V$ s and hidden RVs (including parameters) is

$$
P(h, v)=P(\theta) \prod_{t=1}^{T} P\left(h^{(t)}, v^{(t)} \mid \theta\right) .
$$

$P(\theta)$ is the parameter prior and $\prod_{t=1}^{T} P\left(h^{(t)}, v^{(t)} \mid \theta\right)$ is the likelihood. In the occlusion model described above, we have $\theta=(\mu, \psi, \pi, \alpha), h^{(t)}=\left(f^{(t)}, b^{(t)}, m^{(t)}\right)$, and $v^{(t)}=z^{(t)}$. The BN for T i.i.d. training cases is shown in Fig. 4 b .

Fig. 4. (a) The parameter sets π, α, μ, and ψ can be included in the BN as RVs. (b) For a training set with T i.i.d. cases, these parameters are shared across all training cases. (c) If the training cases are time-series data (e.g., a video sequence), we may create one parameter set for each time instance, but require the parameters to change slowly over time. (d) Generally, undirected graphical models must include a normalization function $1 / \mathcal{Z}(\theta)$, which makes inference of the parameters more difficult. Viewing the occlusion model as a member of the exponential family, we can draw an undirected FG, which includes the function, $1 / \mathcal{Z}(\theta)$. (e) When the parameters specify conditional distributions, $\mathcal{Z}(\theta)$ factorizes into local terms, leading to a representation that is equivalent to the one in (a).

When the training cases consist of time-series data (such as a video sequence), the parameters often can be thought of as RVs that change slowly over time. Fig. 4c shows the above model, where there is a different set of parameters for each training case, but where we assume the parameters are coupled across time. Using ${ }^{(t)}$ to denote the training case at time $t=1, \ldots, T$, the following distributions couple the parameters across time: $P\left(\pi^{(t)} \mid \pi^{(t-1)}\right), P\left(\alpha^{(t)} \mid \alpha^{(t-1)}\right), P\left(\mu^{(t)} \mid\right.$ $\left.\mu^{(t-1)}\right), P\left(\psi^{(t)} \mid \psi^{(t-1)}\right)$. The uncertainty in these distributions specifies how quickly the parameters can change over time. Such a model can be viewed as the basis for online learning algorithms. For simplicity, in this paper, we assume the model parameters are fixed for the entire training set.

4.3 The Exponential Family

Members of the exponential family [2] have the following parameterization: $P(x \mid \theta)=(1 / \mathcal{Z}(\theta)) \exp \left(\sum_{i} \theta_{i} \Omega_{i}(x)\right)$, where $\theta=\left(\theta_{1}, \theta_{2}, \ldots\right)$ is a parameter vector and $\Omega_{i}(x)$ is the
i th sufficient statistic. The sufficient statistics of x contain all information that is needed to determine the density of $x . \mathcal{Z}(\theta)$ is the partition function, which normalizes $P(x \mid \theta): \mathcal{Z}(\theta)=$ $\sum_{x} \exp \left(\sum_{i} \theta_{i} \Omega_{i}(x)\right)$. For members of the exponential family, there is a simple relationship between the distribution for one training case and the distribution for an entire training set. Let $x^{(t)}$ be the hidden and visible variables for the t th training case. Then, $P\left(x^{(t)} \mid \theta\right)=\exp \left(\sum_{i} \theta_{i} \Omega_{i}\left(x^{(t)}\right)\right) / \mathcal{Z}(\theta)$ and the likelihood for the entire training set is $P(x \mid \theta)=\prod_{t} P\left(x^{(t)} \mid \theta\right)=\exp$ $\left(\sum_{i} \theta_{i}\left(\sum_{t=1}^{T} \Omega_{i}\left(x^{(t)}\right)\right)\right) / \mathcal{Z}(\theta)^{T}$. The sufficient statistics for the entire training set are given by summing the sufficient statistics over training cases.

To put the occlusion model in exponential family form, note that the sufficient statistics for a normal density on z_{i} are z_{i} and z_{i}^{2}. The reader can confirm that the joint distribution can be written

$$
\begin{aligned}
P(z, m, f, b)= & (1 / \mathcal{Z}(\theta)) \exp \left(\sum_{j=1}^{J}\left(\ln \pi_{j}\right)\{[b=j]\}\right. \\
& +\sum_{j=1}^{J}\left(\ln \pi_{j}\right)\{[f=j]\} \\
& +\sum_{i=1}^{K} \sum_{j=1}^{J}\left(\ln \alpha_{j i}\right)\left\{\left[m_{i}=1\right][f=j]\right\} \\
& +\sum_{i=1}^{K} \sum_{j=1}^{J}\left(\ln \left(1-\alpha_{j i}\right)\right)\left\{\left[m_{i}=0\right][f=j]\right\} \\
& -\sum_{i=1}^{K} \sum_{j=1}^{J}\left(1 / 2 \psi_{j i}\right)\left\{z_{i}^{2}\left[m_{i}=1\right][f=j]\right\} \\
& +\sum_{i=1}^{K} \sum_{j=1}^{J}\left(\mu_{j i} / \psi_{j i}\right)\left\{z_{i}\left[m_{i}=1\right][f=j]\right\} \\
& -\sum_{i=1}^{K} \sum_{j=1}^{J}\left(1 / 2 \psi_{j i}\right)\left\{z_{i}^{2}\left[m_{i}=0\right][b=j]\right\} \\
& \left.+\sum_{i=1}^{K} \sum_{j=1}^{J}\left(\mu_{j i} / \psi_{j i}\right),\left\{z_{i}\left[m_{i}=0\right][b=j]\right\}\right)
\end{aligned}
$$

where curly braces identify the sufficient statistics and square braces indicate Iverson's notation: $[$ expr $]=1$ if expr is true, and $[$ expr $]=0$ if expr is false.

Modular structure in members of the exponential family arises when each sufficient statistic $\Omega_{i}(x)$ depends on a subset of RVs $x_{C_{i}}$ with indices C_{i}. Then, $P(x)=(1 / \mathcal{Z}(\theta)) \prod_{i}$ $\exp \left(\theta_{i} \Omega_{i}\left(x_{C_{i}}\right)\right)$, so we can express $P(x)$ using a graphical model, e.g., an FG. In the FG, there can be one function node for each sufficient statistic Ω_{i} and one variable node for each parameter θ_{i}, but a more succinct FG is obtained by grouping related sufficient statistics together and grouping their corresponding parameters together. Fig. 4d shows an FG for the exponential family representation of the occlusion model, where we have made groups of $\pi \mathrm{s}, \alpha \mathrm{s}, \mu \mathrm{s}$, and $\psi \mathrm{s}$. Note that the FG must include the normalizing function $1 / \mathcal{Z}(\theta)$.

Generally, computing $\mathcal{Z}(\theta)$ is intractable since we must sum or integrate over x. However, if the exponential family parameterization corresponds to a BN, the sufficient statistics can be grouped so that each group defines a conditional distribution in the BN . In this case, $\mathcal{Z}(\theta)$ simplifies to a product of local partition functions, where each local partition function ensures that the corresponding conditional distribution is normalized. In the above model, the normalization constants associated with the conditional distributions for f, m, b, and z are uncoupled, so we can write $\mathcal{Z}(\theta)=\mathcal{Z}(\pi) \mathcal{Z}(\alpha) \mathcal{Z}(\mu) \mathcal{Z}(\psi)$, where, e.g., $\mathcal{Z}(\psi)=\prod_{j k} \sqrt{2 \pi \psi_{j k}}$. Fig. 4e shows the FG in this case, which has the same structure as the BN in Fig. 4a.

4.4 Uniform and Conjugate Parameter Priors

Parameter priors encode the cost of specific configurations of the parameters. For simplicity, the uniform prior is often used, where $P(\theta)=$ const. Then, $P(h, v) \propto \prod_{t=1}^{T} P\left(h^{(t)}, v^{(t)} \mid \theta\right)$ and the dependence of the parameters on the data is determined solely by the likelihood. In fact, a uniform prior is not uniform under a different parameterization. Also, the uniform density for the real numbers does not exist, so the uniform prior is improper. However, these facts are often ignored for computational expediency. Importantly, the use of a uniform prior is justified when the amount of training data is large relative to
the maximum model complexity since then the prior will have little effect on the model. One exception is zeros in the prior, which can never be overcome by the likelihood, but such hard constraints often can be inorporated in the learning algorithm, e.g., using Lagrange multipliers.

Assuming a uniform prior for all parameters in the occlusion model, the joint distribution over RVs and parameters is

$$
\begin{align*}
& P\left(\mu, \psi, \pi, \alpha, f^{(1)}, b^{(1)}, m^{(1)}, \ldots, f^{(T)}, b^{(T)}, m^{(T)}, z^{(1)}, \ldots, z^{(T)}\right) \\
& \propto \prod_{t=1}^{T}\left(\pi _ { f ^ { (t) } } \pi _ { b ^ { (t) } } \left(\prod_{i=1}^{K} \alpha_{f^{(t)} i}^{m_{i}^{(t)}}\left(1-\alpha_{f^{(t)} i}\right)^{1-m_{i}^{(t)}} \mathcal{N}\left(z_{i}^{(t)} ; \mu_{f^{(t)} i}, \psi_{f^{(t)} i}\right)^{m_{i}^{(t)}}\right.\right. \\
& \left.\left.\quad \mathcal{N}\left(z_{i}^{(t)} ; \mu_{b^{(t)} i}, \psi_{b^{(t)} i}\right)^{1-m_{i}^{(t)}}\right)\right) . \tag{4}
\end{align*}
$$

Note that when using uniform priors, parameter constraints such as $\sum_{i=1}^{J} \pi_{i}=1$ must be taken into account during inference and learning.

The conjugate prior offers the same computational advantage as the uniform prior, but allows specification of stronger prior knowledge and is also a proper prior. The idea is to choose a prior that has the same form as the likelihood, so the prior can be thought of as the likelihood of fake, user-specified data. The joint distribution over parameters and RVs is given by the likelihood of both the real data and the fake data. For members of the exponential family, the fake training data takes the form of extra, user-specified terms added to each sufficient statistic, e.g., extra counts added for Bernoulli RVs.

In the occlusion model, imagine that before seeing the training data we observe λ_{j} fake examples from image class j. The likelihood of the fake data for parameter π_{j} is $\pi_{j}^{\lambda_{j}}$, so the conjugate prior for π_{1}, \ldots, π_{J} is $P\left(\pi_{1}, \ldots, \pi_{J}\right) \propto \prod_{j=1}^{J} \pi_{j}{ }^{\lambda_{j}}$ if $\sum_{j=1}^{J} \pi_{j}=1$ and 0 otherwise. This is the Dirichlet distribution and $P\left(\pi_{1}, \ldots, \pi_{J}\right)$ is the Dirichlet prior. The conjugate prior for the mean of a Gaussian distribution is a Gaussian distribution because the RV and its mean appear symmetrically in the Gaussian pdf. The conjugate prior for the inverse variance β of a Gaussian distribution is a Gamma distribution. Imagine fake data consisting of λ examples, where the squared difference between the RV and its mean is δ^{2}. The likelihood for this fake data is proportional to $\left(\beta^{1 / 2} e^{-\delta^{2} \beta / 2}\right)^{\lambda}=\beta^{\lambda / 2} e^{-\left(\lambda \delta^{2} / 2\right) \beta}$. This is a Gamma distribution in β with mean $1 / \delta^{2}+2 / \lambda \delta^{2}$ and variance $2\left(1 / \delta^{2}+2 / \lambda \delta^{2}\right) / \lambda \delta^{2}$. Setting the prior for β to be proportional to this likelihood, we see that the conjugate prior for the inverse variance is the Gamma distribution.

5 ALGORITHMS FOR INFERENCE AND LEARNING

Once a generative model describing the data has been specified, data analysis consists of probabilistic inference. In Fig 4 b , for training images $z^{(1)}, \ldots, z^{(T)}$, vision consists of inferring the set of mean images and variance maps, μ, ψ, the mixing proportions π, the set of binary mask probabilities, α, and, for every training case, the class of the foreground image, f, the class of the background image, b, and the binary mask used to combine these images, m.

Exact inference is often intractable, so we turn to approximate algorithms that search for distributions that are close to the correct posterior distribution. This is
accomplished by minimizing pseudodistances on distributions, called "free energies." (For an alternative view, see [34].) It is interesting that, in the 1800s, Helmholtz was one of the first researchers to propose that vision is inference in a generative model and that nature seeks correct probability distributions in physical systems by minimizing free energy. Although there is no record that Helmholtz saw that the brain might perform vision by minimizing a free energy, we can't help but wonder if he pondered this.

Viewing parameters as RVs, inference algorithms for RVs and parameters alike make use of the conditional independencies in the graphical model. It is possible to describe graph-based propagation algorithms for updating distributions over parameters [15]. It is often important to treat parameters and RVs differently during inference. Whereas each RV plays a role in a single training case, the parameters are shared across many training cases. So, the parameters are impacted by more evidence than RVs and are often pinned down more tightly by the data. This observation becomes relevant when we study approximate inference techniques that obtain point estimates of the parameters, such as the expectation maximization algorithm [6].

We now turn to the general problem of inferring the values of unobserved (hidden) RVs, given the values of the observed (visible) RVs. Denote the hidden RVs by h and the visible RVs by v and partition the hidden RVs into the parameters θ and one set of hidden RVs $h^{(t)}$, for each training case $t=1, \ldots, T$. So, $h=\left(\theta, h^{(1)}, \ldots, h^{(T)}\right)$. Similarly, there is one set of visible RVs for each training case, so $v=\left(v^{(1)}, \ldots, v^{(T)}\right)$. Assuming the training cases are i.i.d., the distribution over all RVs is

$$
\begin{equation*}
P(h, v)=P(\theta)\left(\prod_{t=1}^{T} P\left(h^{(t)}, v^{(t)} \mid \theta\right)\right) \tag{5}
\end{equation*}
$$

In the occlusion model, $\theta=(\mu, \psi, \pi, \alpha), h^{(t)}=\left(f^{(t)}, b^{(t)}, m^{(t)}\right)$, and $v^{(t)}=z^{(t)}$.

Exact inference consists of computing estimates or making decisions based on the posterior distribution over all hidden RVs (including the parameters), $P(h \mid v)$. From Bayes rule,

$$
P(h \mid v)=\frac{P(h, v)}{\int_{h} P(h, v)}
$$

where the notation \int_{h} includes summing over discrete hidden RVs. The denominator normalizes the distribution, but if we need only a proportional function, $P(h, v)$ suffices since with regard to $h, P(h \mid v) \propto P(h, v)$. In the case of a graphical model, $P(h, v)$ is equal to either the product of the conditional distributions or the product of the potential functions divided by the partition function.

5.1 Partition Functions Complicate Learning

For undirected graphical models and general members of the exponential family, $P(x, \theta)=P(\theta) \frac{1}{\mathcal{z}(\theta)} \prod_{k} g_{k}\left(x_{C_{k}}\right)$ and $\ln P(x, \theta)=\ln P(\theta)-\ln \mathcal{Z}(\theta)+\sum_{k} \ln g_{k}\left(x_{C_{k}}\right)$. When adjusting a particular parameter, the sum of log-potentials nicely isolates the influence to those potentials that depend on the parameter, but the partition function makes all parameters interdependent. Generally, as shown in Fig. 4d, $\mathcal{Z}(\theta)$ induces dependencies between all parameters. Since $\mathcal{Z}(\theta)=\int_{x}\left(\prod_{k} g_{k}\left(x_{C_{k}}\right)\right.$, exactly determining the influence of a parameter change on the partition function is often intractable. In fact, determining this influence can also be viewed as a problem of approximate inference since the
partition function is the complete marginalization of $\prod_{k} g_{k}\left(x_{C_{k}}\right)$. So, many of the techniques discussed in this paper can be used to approximately determine the effect of the partition function (e.g., Gibbs sampling [18]). There are also learning techniques that are specifically aimed at undirected graphical models, such as iterative proportional fitting [4].

For directed models, the partition function factorizes into local partition functions (cf., Fig. 4e), so the parameters can be directly inferred using the techniques described in this paper.

5.2 Model Selection

Often, some aspects of the model structure are known, but others are not. In the occlusion model, we may be confident about the structure of the BN in Fig. 4b, but not the number of classes, J. Unknown structure can be represented as a hidden RV so that inference of this hidden RV corresponds to Bayesian model selection [16], [25]. The BN in Fig. 4b can be modified to include an RV, J, whose children are all of the f and b variables and where J limits the range of the class indices. Given a training set, the posterior over J reveals how probable the different models are. When model structure is represented in this way, proper priors should be specified for all model parameters so that the probability density of the extra parameters needed in more complex models is properly accounted for. For an example of Bayesian learning of infinite mixture models, see [29].

5.3 Numerical Issues

Many inference algorithms rely on the computation of expressions of the form $p=\prod_{j} a_{j}^{q_{j}}$, where the number of terms can be quite large. To avoid underflow, it is common to work in the log-domain. Denoting the log-domain value of a variable by "~," we can compute $\tilde{p} \leftarrow \sum_{j} q_{j} \tilde{a}_{j}$. If p is needed, set $p \leftarrow \exp (\tilde{p})$. Keep in mind that, if \tilde{p} is large and negative, p may be set to 0 . This problem can be avoided when computing a normalized set of $p_{i} \mathrm{~s}$ (e.g., probabilities). Suppose \tilde{p}_{i} is the logdomain value of the unnormalized version of p_{i}. Since the $p_{i} \mathrm{~S}$ are to be normalized, we can add a constant to the \tilde{p}_{i} s to raise them to a level where numerical underflow will not occur when taking exponentials. Computing $\tilde{m} \leftarrow \max _{i} \tilde{p}_{i}$ and then setting $\tilde{p}_{i} \leftarrow \tilde{p}_{i}-\tilde{m}$ will ensure that $\max _{i} \tilde{p}_{i}=0$, so one of the $\exp \left(\tilde{p}_{i}\right) \mathbf{s}$ will be 1 . Next, compute the log-normalizing constant, $\tilde{c} \leftarrow \ln \left(\sum_{i} \exp \left(\tilde{p}_{i}\right)\right)$. The previous step ensures that the sum in this expression will produce a strictly positive number, avoiding $\ln 0$. Finally, the $\tilde{p}_{i} \mathrm{~s}$ are normalized, $\tilde{p}_{i} \leftarrow \tilde{p}_{i}-\tilde{c}$, and, if needed, the p_{i} s are computed, $p_{i} \leftarrow \exp \left(\tilde{p}_{i}\right)$. In some cases, notably when computing joint probabilities of RVs and observations using the sum-product algorithm, we need to compute the unnormalized sum $s=\sum_{i} p_{i}$, where each p_{i} is so small that it is stored in its log-domain form, \tilde{p}_{i}. The above method can be used, but \tilde{m} must be added back in to retain the unnormalized form. First, compute $\tilde{m} \leftarrow \max _{i} \tilde{p}_{i}$ and then set $\tilde{s} \leftarrow \tilde{m}+\ln \left(\sum_{i} \exp \left(\tilde{p}_{i}-\tilde{m}\right)\right)$.

5.4 Exact Inference in the Occlusion Model

We consider two cases: exact inference when the model parameters are known and exact inference when the model parameters are unknown. When the model parameters are known, the distribution over the hidden RVs is given in (3). f and b each take on J values and there are K binary mask RVs, so the total number of configurations of f, b, and m is $J^{2} 2^{K}$.

For moderate model sizes, even if we can compute the posterior, we cannot store the posterior probability of every configuration. However, from the BN in Fig. 2b, we see that m_{i} is independent of $m_{j}, j \neq i$, given f, b and z_{i} (the Markov blanket of m_{i}). Thus, we represent the posterior distribution as follows:

$$
\begin{aligned}
P(m, f, b \mid z) & =P(f, b \mid z) P(m \mid f, b, z) \\
& =P(f, b \mid z) \prod_{i=1}^{K} P\left(m_{i} \mid f, b, z\right)
\end{aligned}
$$

Here, the posterior can be stored using $O\left(J^{2}\right)$ numbers 2 for $P(f, b \mid z)$ and, for each configuration of f and $b, O(K)$ numbers for the probabilities $P\left(m_{i} \mid f, b, z\right), i=1, \ldots, K$, giving a total storage requirement of $O\left(K J^{2}\right)$ numbers. Using the fact that $P\left(m_{i} \mid f, b, z\right)=P\left(m_{i} \mid f, b, z_{i}\right) \propto P\left(z_{i}, m_{i} \mid f, b\right)=P\left(m_{i} \mid f, b\right) P\left(z_{i}\right.$ $\left.\mid m_{i}, f, b\right)=P\left(m_{i} \mid f\right) P\left(z_{i} \mid m_{i}, f, b\right)$ and substituting the definitions of the conditional distributions, we have
$P\left(m_{i}=1 \mid f, b, z\right)=\frac{\alpha_{f i} \mathcal{N}\left(z_{i} ; \mu_{f i}, \psi_{f i}\right)}{\alpha_{f i} \mathcal{N}\left(z_{i} ; \mu_{f i}, \psi_{f i}\right)+\left(1-\alpha_{f i}\right) \mathcal{N}\left(z_{i} ; \mu_{b i}, \psi_{b i}\right)}$.
We need only store $P\left(m_{i}=1 \mid f, b, z\right)$, since $P\left(m_{i}=0 \mid f, b, z\right)=$ $1-P\left(m_{i}=1 \mid f, b, z\right)$. For each $i=1, \ldots, K$ and each configuration of f and b, this can be computed and normalized using a small number of multiply-adds. The total number of multiply-adds needed to compute $P\left(m_{i}=1 \mid f, b, z\right)$ for all i is $O\left(K J^{2}\right)$.
$P(f, b \mid z)$ can be computed as follows:

$$
\begin{gathered}
P(f, b \mid z)=\sum_{m} P(m, f, b \mid z) \propto \sum_{m} P(m, f, b, z) \\
=\pi_{b} \pi_{f} \prod_{i=1}^{K}\left(\sum _ { m _ { i } } \left(\alpha_{f i}^{m_{i}}\left(1-\alpha_{f i}\right)^{1-m_{i}} \mathcal{N}\left(z_{i} ; \mu_{f i}, \psi_{f i}\right)^{m_{i}}\right.\right. \\
\left.\left.\mathcal{N}\left(z_{i} ; \mu_{b i}, \psi_{b i}\right)^{1-m_{i}}\right)\right) \\
=\pi_{b} \pi_{f} \prod_{i=1}^{K}\left(\alpha_{f i} \mathcal{N}\left(z_{i} ; \mu_{f i}, \psi_{f i}\right)+\left(1-\alpha_{f i}\right)\right. \\
\left.\mathcal{N}\left(z_{i} ; \mu_{b i}, \psi_{b i}\right)\right) .
\end{gathered}
$$

For each value of f and b, this can be computed using $O(K)$ multiply-adds. Once it is computed for all J^{2} combinations of f and b, the result is normalized to give $P(f, b \mid z)$. The total number of multiply-adds needed to compute $P(f, b \mid z)$ is $O\left(K J^{2}\right)$. Combining this with the above technique, the exact posterior over f, b, and m can be computed in $O\left(K J^{2}\right)$ multiply-adds and stored in $O\left(K J^{2}\right)$ numbers.

When the parameters are not known, we must infer the distribution over them, as well as the RVs. Assuming a uniform parameter prior, the posterior distribution over parameters and hidden RVs in the occlusion model of Fig. 4b is proportional to the joint distribution given in (4). This posterior can be thought of as a very large mixture model. There are $J^{2 T} 2^{K T}$ discrete configurations of the class RVs and the mask RVs and, for each configuration, there is a distribution over the real-valued parameters. In each mixture component, the class probabilities are Dirichlet-distributed
2. We use $O(\cdot)$ to indicate the number of scalar memory elements or binary scalar operations, up to a constant.
and the mask probabilities are Beta-distributed. (The Beta pdf is the Dirichlet pdf when there is only one free parameter.) The pixel means and variances are coupled in the posterior, but, given the variances, the means are normally distributed and, given the means, the inverse variances are Gammadistributed. If the training data is processed sequentially, where one training case is absorbed at a time, the mixture posterior can be updated as shown in [5].

The exact posterior is intractable because the number of posterior mixture components is exponential in the number of training cases and the posterior distribution over the pixel means and variances are coupled. In the remainder of this paper, we describe a variety of approximate inference techniques and discuss advantages and disadvantages of each approach.

5.5 Approximate Inference as Minimizing Free Energies

Usually, the above techniques cannot be applied directly to $P(h \mid v)$ because this distribution cannot be computed in a tractable manner. So, we must turn to various approximations.

Many approximate inference techniques can be viewed as minimizing a cost function called "free energy" [31], which measures the accuracy of an approximate probability distribution. These include iterated conditional modes [3], the expectation maximization (EM) algorithm [6], [31], variational techniques [22], [31] structured variational techniques [22], Gibbs sampling [30], and the sum-product algorithm (also known as loopy belief propagation) [23], [33].

The idea is to approximate the true posterior distribution $P(h \mid v)$ by a simpler distribution $Q(h)$, which is then used for making decisions, computing estimates, summarizing the data, etc. Here, approximate inference consists of searching for the distribution $Q(h)$ that is closest to $P(h \mid v)$. A natural choice for a measure of similarity between the two distributions is the relative entropy (also known as Kull-back-Leibler divergence):

$$
D(Q, P)=\int_{h} Q(h) \ln \frac{Q(h)}{P(h \mid v)}
$$

This is a divergence, not a distance, because it is not symmetric: $D(Q, P) \neq D(P, Q)$. However, $D(Q, P)$ is similar to a distance in that $D(Q, P) \geq 0$ and $D(Q, P)=0$ if and only if the approximating distribution exactly matches the true posterior, $Q(h)=P(h \mid v)$. The reason we use $D(Q, P)$ and not $D(P, Q)$ is that the former computes the expectation with regard to the simple distribution, Q, whereas the latter computes the expectation with regard to P, which is generally very complex. ${ }^{3}$

Approximate inference techniques can be derived by examining ways of searching for $Q(h)$, to minimize $D(Q, P)$. In fact, directly computing $D(Q, P)$ is usually intractable because it depends on $P(h \mid v)$. If we already have a tractable form for $P(h \mid v)$ to insert into the expression for $D(Q, P)$, we may not have a need for approximate inference. Fortunately, $D(Q, P)$ can be modified in a way that does not alter the structure of the search space of $Q(h)$,
3. For example, if $Q(h)=\prod_{i} Q\left(h_{i}\right)$, then $D(P, Q)=\int_{h} P(h \mid v) \ln$ $P(h \mid v)-\sum_{i} \int_{h_{i}} P\left(h_{i} \mid v\right) \ln Q\left(h_{i}\right)$. Under the constraint $\int_{h_{i}} Q\left(h_{i}\right)=1$, the minimum of $D(P, Q)$ is given by $Q\left(h_{i}\right)=P\left(h_{i} \mid v\right)$. However, computing $P\left(h_{i} \mid v\right)$ is an NP-hard problem, so minimizing $D(P, Q)$ is also an NP-hard problem.
but makes computations tractable. If we subtract $\ln P(v)$ from $D(Q, P)$, we obtain

$$
\begin{align*}
F(Q, P) & =D(Q, P)-\ln P(v) \\
& =\int_{h} Q(h) \ln \frac{Q(h)}{P(h \mid v)}-\int_{h} Q(h) \ln P(v) \tag{6}\\
& =\int_{h} Q(h) \ln \frac{Q(h)}{P(h, v)} .
\end{align*}
$$

Notice that $\ln P(v)$ does not depend on $Q(h)$, so subtracting $\ln P(v)$ will not influence the search for $Q(h)$. For BNs and directed FGs, we do have a tractable expression for $P(h, v)$, namely, the product of conditional distributions.

If we interpret $-\ln P(h, v)$ as the energy function of a physical system and $Q(h)$ as a distribution over the state of the system, then $F(Q, P)$ is equal to the average energy minus the entropy. In statistical physics, this quantity is called the free energy of the system (also known as Gibbs free energy or Helmholtz free energy). Nature tends to minimize free energies, which corresponds to finding the equilibrium Boltzmann distribution of the physical system.

Another way to derive the free energy is by using Jensen's inequality to bound the log-probability of the visible RVs. Jensen's inequality states that a concave function of a convex combination of points in a vector space is greater than or equal to the convex combination of the concave function applied to the points. To bound the log-probability of the visible RVs, $\ln P(v)=\ln \left(\int_{h} P(h, v)\right)$, we use an arbitrary distribution $Q(h)$ (a set of convex weights) to obtain a convex combination inside the concave $\ln ()$ function:

$$
\begin{aligned}
\ln P(v)= & \ln \left(\int_{h} P(h, v)\right)=\ln \left(\int_{h} Q(h) \frac{P(h, v)}{Q(h)}\right) \\
& \geq \int_{h} Q(h) \ln \left(\frac{P(h, v)}{Q(h)}\right)=-F(Q, P)
\end{aligned}
$$

We see that the free energy is an upper bound on the negative \log-probability of the visible RVs: $F(Q, P) \geq-\ln P(v)$. This can also be seen by noting that $D(Q, P) \geq 0$ in (6).

Free energy for i.i.d. training cases. From (5), for a training set of T i.i.d. training cases with hidden RVs, $h=\left(\theta, h^{(1)}, \ldots, h^{(T)}\right)$, and visible RVs, $v=\left(v^{(1)}, \ldots, v^{(T)}\right)$, we have $P(h, v)=P(\theta) \prod_{t=1}^{T} P\left(h^{(t)}, v^{(t)} \mid \theta\right)$. The free energy is

$$
\begin{align*}
F(Q, P)= & \int_{h} Q(h) \ln Q(h)-\int_{\theta} Q(\theta) \ln P(\theta) \\
& -\sum_{t=1}^{T} \int_{h^{(t)}, \theta} Q\left(h^{(t)}, \theta\right) \ln P\left(h^{(t)}, v^{(t)} \mid \theta\right) \tag{7}
\end{align*}
$$

The decomposition of F into a sum of one term for each training case simplifies learning.

Exact inference revisited. The idea of approximate inference is to search for $Q(h)$ in a space of models that are simpler than the true posterior $P(h \mid v)$. It is instructive to not assume $Q(h)$ is simplified and derive the minimizer of $F(Q, P)$. The only constraint we put on $Q(h)$ is that it is normalized: $\int_{h} Q(h)=1$. To account for this constraint, we form a Lagrangian from $F(Q, P)$ with Lagrange multiplier λ and optimize $F(Q, P)$ with regard to $Q(h): \partial(F(Q, P)+\lambda$ $\left.\int_{h} Q(h)\right) / \partial Q(h)=\ln Q(h)+1-\ln P(h, v)+\lambda$. Setting this derivative to 0 and solving for λ, we find $Q(h)=$ $P(h, v) / \int_{h} P(h, v)=P(h \mid v)$. So, minimizing the free energy
without any simplifying assumptions on $Q(h)$ produces exact inference. The minimum free energy is $\min _{Q} F(Q, P)=\int_{h}$ $P(h \mid v) \ln (P(h \mid v) / P(h, v))=-\ln P(v)$. The minimum free energy is equal to the negative log-probability of the data. This minimum is achieved when $Q(h)=P(h \mid v)$.

Revisiting exact inference in the occlusion model. In the occlusion model, if we allow the approximating distribution $Q(f, b, m)$ to be unconstrained, we find that the minimum free energy is obtained when $Q(f, b, m)=P(f, b \mid z) \prod_{i=1}^{K} P\left(m_{i} \mid\right.$ f, b, z). Of course, nothing is gained computationally by using this Q-distribution. In the following sections, we see how the use of various approximate forms for $Q(f, b, m)$ can lead to tremendous speed-ups.

5.6 MAP Estimation as Minimizing Free Energy

Maximum a posteriori (MAP) estimation searches for $\hat{h}=\arg \max _{h} P(h \mid v)$, which is the same as $\arg \max _{h} P(h, v)$. For discrete hidden RVs, MAP estimation minimizes $F(Q, P)$ using a Q-distribution of the form $Q(h)=[h=\hat{h}]$, where $[$ expr $]=1$ if expr is true and $[$ expr $]=0$ if expr is false. The free energy in (6) simplifies to $F(Q, P)=\sum_{h}[h=\hat{h}] \ln [h=$ $\hat{h}] / P(h, v)=-\ln P(\hat{h}, v)$, i.e., minimizing $F(Q, P)$ is equivalent to maximizing $P(\hat{h}, v)$.

For continuous hidden RVs, the Q-distribution for a point estimate is a Dirac delta function centered at the estimate: $Q(h)=\delta(h-\hat{h})$. The free energy in (6) reduces to $F(Q, P)=$ $\int_{h} \delta(h-\hat{h}) \ln \delta(h-\hat{h}) / P(h, v)=-\ln P(\hat{h}, v)-H_{\delta}$, where H_{δ} is the entropy of the Dirac delta. This entropy does not depend on \hat{h}, so minimizing $F(Q, P)$ corresponds to searching for values of \hat{h} that maximize $P(\hat{h}, v) .{ }^{4}$ Two popular methods that use point inferences are iterated conditional modes and the EM algorithm.

5.7 Iterated Conditional Modes (ICM)

The best-known example of ICM is k-means clustering, where the hidden RVs are the cluster centers and the class labels. Here, ICM iterates between assigning each training case to the closest cluster center and setting each cluster center equal to the average of the training cases assigned to it. ICM is popular because it easy to implement. However, ICM does not take into account uncertainties in hidden RVs during inference, so it sometimes finds poor local minima.

ICM works by searching for a configuration of h that maximizes $P(h \mid v)$. The simplest version of ICM examines each hidden RV h_{i}, in turn, and sets the RV to its MAP value, given all other RVs. Only the RVs that co-occur with h_{i} in conditional probability functions or potentials, i.e., the RVs in the Markov blanket of h_{i}, are relevant. Denote these RVs by $x_{M_{i}}$ and denote the product of all conditional distributions or potentials that depend on h_{i} by $f\left(h_{i}, x_{M_{i}}\right)$. ICM proceeds as follows:

Initialization. Pick values for all hidden RVs h (randomly or cleverly).

ICM Step. Consider one of the hidden RVs, h_{i}. Holding all other RVs constant, set h_{i} to its MAP value:

$$
h_{i} \leftarrow \operatorname{argmax}_{h_{i}} P\left(h_{i} \mid h \backslash h_{i}, v\right)=\operatorname{argmax}_{h_{i}} f\left(h_{i}, x_{M_{i}}\right) .
$$

where $h \backslash h_{i}$ is the set of all hidden RVs other than h_{i}.
4. In fact, $H_{\delta} \rightarrow-\infty$. To see this, define $\delta(x)=1 / \epsilon$ if $0 \leq x \leq \epsilon$ and 0 otherwise. Then, $H_{\delta}=\ln \epsilon$, which goes to $-\infty$ as $\epsilon \rightarrow 0$. This infinite penalty in $F(Q, P)$ is a reflection of the fact that an infinite-precision point-estimate of h does a very poor job of representing the uncertainty in h under $P(h \mid v)$.

Repeat for a fixed number of iterations or until convergence.
If h_{i} is discrete, this procedure is straightforward. If h_{i} is continuous and exact optimization of h_{i} is not possible, its current value can be used as the initial point for a search algorithm, such as a Newton method or a gradient-based method.

The free energy for ICM is the free energy described above, for general point inferences.

ICM in the occlusion model. Even when the model parameters in the occlusion model are known, the computational cost of exact inference can be rather high. When the number of clusters J is large, examining all J^{2} configurations of the foreground class and the background class is computationally burdensome. For ICM in the occlusion model, the Q-distribution for the entire training set is

$$
\begin{aligned}
Q= & \left(\prod_{k} \delta\left(\pi_{k}-\hat{\pi}_{k}\right)\right)\left(\prod_{k, i} \delta\left(\mu_{k i}-\hat{\mu}_{k i}\right)\right)\left(\prod_{k, i} \delta\left(\psi_{k i}-\hat{\psi}_{k i}\right)\right) \\
& \left(\prod_{k, i} \delta\left(\alpha_{k i}-\hat{\alpha}_{k i}\right)\right)\left(\prod_{t}\left[b^{(t)}=\hat{b}^{(t)}\right]\right) \\
& \left(\prod_{t}\left[f^{(t)}=\hat{f}^{(t)}\right]\right)\left(\prod_{t} \prod_{i}\left[m_{i}^{(t)}=\hat{m}_{i}^{(t)}\right]\right) .
\end{aligned}
$$

Substituting this Q-distribution and the P-distribution in (4) into the expression for the free energy in (7), we obtain the following (assuming a uniform parameter prior):

$$
\begin{aligned}
F= & -\sum_{t}\left(\ln \hat{\pi}_{\hat{f}^{(t)}}+\ln \hat{\pi}_{\hat{b}^{(t)}}\right)-\sum_{t}\left(\sum_{i} \hat{m}_{i}^{(t)} \ln \hat{\alpha}_{\hat{f}^{(t)} i}\right. \\
& \left.+\left(1-\hat{m}_{i}^{(t)}\right) \ln \left(1-\hat{\alpha}_{\hat{f}^{(t)} i}\right)\right) \\
& +\sum_{t} \sum_{i} \hat{m}_{i}^{(t)}\left(\left(z_{i}^{(t)}-\hat{\mu}_{\hat{f}^{(t)} i}\right)^{2} / 2 \hat{\psi}_{\hat{f}^{(t)} i}+\ln \left(2 \pi \hat{\psi}_{\hat{f}^{(t)} i}\right) / 2\right) \\
& +\sum_{t} \sum_{i}\left(1-\hat{m}_{i}^{(t)}\right)\left(\left(z_{i}^{(t)}-\hat{\mu}_{\hat{b}^{(t)} i}\right)^{2} / 2 \hat{\psi}_{\hat{b}^{(t)} i}\right. \\
& \left.+\ln \left(2 \pi \hat{\psi}_{\hat{b}_{(t)}}\right) / 2\right)-H .
\end{aligned}
$$

H is the entropy of the δ-functions and is constant during optimization. F measures the mismatch between the input image and the image obtained by combining the foreground and background using the mask.

To minimize the free energy with regard to all RVs and parameters, we can iteratively solve for each RV or parameter keeping the other RVs and parameters fixed. These updates can be applied in any order, but since the model parameters depend on values of all hidden RVs, we first optimize for all hidden RVs and then optimize for model parameters. Furthermore, since, for every observation, the class RVs depend on all pixels, when updating the hidden RVs, we first visit the mask values for all pixels and then the class RVs.

After all parameters and RVs are set to random values, the updates are applied recursively, as described in Fig. 5. To keep notation simple, the " ${ }^{\text {" }}$ symbol is dropped and in the updates for the variables m_{i}, b, and f, the training case index ${ }^{(t)}$ is dropped.

5.8 Block ICM and Conjugate Gradients

One problem with the simple version of ICM described above is its severe greediness. Suppose $f\left(h_{i}, x_{M_{i}}\right)$ has almost the same value for two different values of h_{i}. ICM will pick one value for h_{i}, discarding the fact that the other value of h_{i} is almost as good. This problem can be partly avoided by optimizing subsets of h, instead of single elements of h. At each step of this block ICM method, a tractable subgraph of the graphical model is selected and all RVs in the subgraph are updated to maximize $P(h, v)$. Often, this can be done efficiently using the max-product algorithm [23]. An example of this method is training HMMs using the Viterbi algorithm to select the most probable state sequence. For continuous hidden RVs, an alternative to block ICM is to use a joint optimizer, such as a conjugate gradients.

5.9 The Expectation-Maximization Algorithm

The EM algorithm accounts for uncertainty in some RVs, while performing ICM-like updates for the other RVs. Typically, for parameters θ and remaining $\operatorname{RVs} h^{(1)}, \ldots, h^{(T)}$, EM obtains point estimates for θ and computes the exact posterior over the other RVs, given θ. The Q-distribution is $Q(h)=\delta(\theta-\hat{\theta}) Q\left(h^{(1)}, \ldots, h^{(T)}\right)$. Recall that for i.i.d. data $P(h, v)=P(\theta)\left(\prod_{t=1}^{T} P\left(h^{(t)}, v^{(t)} \mid \theta\right)\right)$. Given θ, the RVs associated with different training cases are independent, so we have $Q(h)=\delta(\theta-\hat{\theta}) \prod_{t=1}^{T} Q\left(h^{(t)}\right)$. In exact EM, no restrictions are placed on the distributions, $Q\left(h^{(t)}\right)$.

Substituting $P(h, v)$ and $Q(h)$ into (7), we obtain the free energy:

$$
F(Q, P)=-\ln P(\hat{\theta})+\sum_{t=1}^{T}\left(\int_{h^{(t)}} Q\left(h^{(t)}\right) \ln \frac{Q\left(h^{(t)}\right)}{P\left(h^{(t)}, v^{(t)} \mid \hat{\theta}\right)}\right)
$$

EM alternates between minimizing $F(Q, P)$ with regard to the set of distributions $Q\left(h^{(1)}\right), \ldots, Q\left(h^{(T)}\right)$ in the E step, and minimizing $F(Q, P)$ with regard to $\hat{\theta}$ in the M step.

When updating $Q\left(h^{(t)}\right)$, the only constraint is that $\int_{h^{(t)}} Q\left(h^{(t)}\right)=1$. As described earlier, this constraint is accounted for by using a Lagrange multiplier. Setting the derivative of $F(Q, P)$ to zero and solving for $Q\left(h^{(t)}\right)$, we obtain the solution, $Q\left(h^{(t)}\right)=P\left(h^{(t)} \mid v^{(t)}, \hat{\theta}\right)$. Taking the derivative of $F(Q, P)$ with regard to $\hat{\theta}$, we obtain

$$
\begin{aligned}
\frac{\partial F(Q, P)}{\partial \hat{\theta}}= & -\frac{\partial}{\partial \hat{\theta}} \ln P(\hat{\theta}) \\
& -\sum_{t=1}^{T}\left(\int_{h^{(t)}} Q\left(h^{(t)}\right) \frac{\partial}{\partial \hat{\theta}} \ln P\left(h^{(t)}, v^{(t)} \mid \hat{\theta}\right)\right)
\end{aligned}
$$

For M parameters, this is a set of M equations. These two solutions give the EM algorithm:

Initialization. Choose values for the parameters $\hat{\theta}$ (randomly, or cleverly).

E Step. Minimize $F(Q, P)$ w.r.t. Q using exact inference, by setting

$$
Q\left(h^{(t)}\right) \leftarrow P\left(h^{(t)} \mid v^{(t)}, \hat{\theta}\right)
$$

for each training case, given the parameters $\hat{\theta}$ and the data $v^{(t)}$.

M Step. Minimize $F(Q, P)$ with regard to the model parameters $\hat{\theta}$ by solving

$$
\begin{aligned}
& \text { ICM } \\
& \text { E Step (Variable Updates) } \\
& \text { For } t=1, \ldots, T \text { : } \\
& \qquad f \leftarrow \operatorname{argmax}_{f}\left(\pi_{f} \prod_{i=1}^{K}\left(\alpha_{f i}^{m_{i}}\left(1-\alpha_{f i}\right)^{1-m_{i}} \mathcal{N}\left(z_{i} ; \mu_{f i}, \psi_{f i}\right)^{m_{i}}\right)\right) \\
& \text { For } i=1, \ldots, K: \\
& \quad m_{i} \leftarrow \operatorname{argmax}_{m_{i}}\left\{\begin{array}{cc}
\alpha_{f i} \mathcal{N}\left(z_{i} ; \mu_{f i}, \psi_{f i}\right) & \text { if } m_{i}=1 \\
\left(1-\alpha_{f i}\right) \mathcal{N}\left(z_{i} ; \mu_{b i}, \psi_{b i}\right) & \text { if } m_{i}=0
\end{array}\right\} \\
& \quad b \leftarrow \operatorname{argmax}_{b}\left(\pi_{b} \prod_{i=1}^{K} \mathcal{N}\left(z_{i} ; \mu_{b i}, \psi_{b i}\right)^{1-m_{i}}\right)
\end{aligned}
$$

M Step (Parameter Updates)

For $j=1, \ldots, J: \pi_{j} \leftarrow \frac{1}{2 T} \sum_{t=1}^{T}\left(\left[f^{(t)}=j\right]+\left[b^{(t)}=j\right]\right)$
For $j=1, \ldots, J:$ For $i=1, \ldots, K$:

$$
\begin{aligned}
& \alpha_{j i} \leftarrow \frac{\sum_{t=1}^{T}\left[f^{(t)}=j\right] m_{i}^{(t)}}{\sum_{t=1}^{T}\left[f^{(t)}=j\right]} \\
& \mu_{j i} \leftarrow \frac{\sum_{t=1}^{T}\left[f^{(t)}=j \text { or } b^{(t)}=j\right] z_{i}^{(t)}}{\sum_{t=1}^{T}\left[f^{(t)}=j \text { or } b^{(t)}=j\right]} \\
& \psi_{j i} \leftarrow \frac{\sum_{t=1}^{T}\left[f^{(t)}=j \text { or } b^{(t)}=j\right]\left(z_{i}^{(t)}-\mu_{j i}\right)^{2}}{\sum_{t=1}^{T}\left[f^{(t)}=j \text { or } b^{(t)}=j\right]}
\end{aligned}
$$

Gibbs Sampling EM

E Step

$$
\begin{aligned}
& \text { For } t=1, \ldots, T \text { : } \\
& \qquad \begin{aligned}
f & \leftarrow \operatorname{sample}_{f}\left(\pi_{f} \prod_{i=1}^{K}\left(\alpha_{f i} \mathcal{N}\left(z_{i} ; \mu_{f i}, \psi_{f i}\right)\right)^{m_{i}}\left(1-\alpha_{f i}\right)^{1-m_{i}}\right) \\
\text { For } i & =1, \ldots, K: \\
& m_{i} \leftarrow \operatorname{sample}_{m_{i}}\left\{\begin{array}{cc}
\alpha_{f i} \mathcal{N}\left(z_{i} ; \mu_{f i}, \psi_{f i}\right) & \text { if } m_{i}=1 \\
\left(1-\alpha_{f i}\right) \mathcal{N}\left(z_{i} ; \mu_{b i}, \psi_{b i}\right) & \text { if } m_{i}=0
\end{array}\right\} \\
b & \leftarrow \operatorname{sample}_{b}\left(\pi_{b} \prod_{i=1}^{K} \mathcal{N}\left(z_{i} ; \mu_{b i}, \psi_{b i}\right)^{1-m_{i}}\right)
\end{aligned}
\end{aligned}
$$

M Step

For $j=1, \ldots, J: \pi_{j} \leftarrow \frac{1}{2 T} \sum_{t}\left(\left[f^{(t)}=j\right]+\left[b^{(t)}=j\right]\right)$
For $j=1, \ldots, J:$ For $i=1, \ldots, K$:

$$
\begin{aligned}
& \alpha_{j i} \leftarrow \frac{\sum_{t}\left[f^{(t)}=j\right] m_{i}^{(t)}}{\sum_{t}\left[f^{(t)}=j\right]} \\
& \mu_{j i} \leftarrow \frac{\sum_{t}\left[f^{(t)}=j \text { or } b^{(t)}=j\right] z_{i}^{(t)}}{\sum_{t}\left[f^{(t)}=j \text { or } b^{(t)}=j\right]} \\
& \psi_{j i} \leftarrow \frac{\sum_{t}\left[f^{(t)}=j \text { or } b^{(t)}=j\right]\left(z_{i}^{(t)}-\mu_{j i}\right)^{2}}{\sum_{t}\left[f^{(t)}=j \text { or } b^{(t)}=j\right]}
\end{aligned}
$$

Exact EM

E Step

For $t=1, \ldots, T$:
$Q(b, f) \leftarrow c_{2} \pi_{b} \pi_{f} \prod_{i=1}^{K}\left(\alpha_{f i} \mathcal{N}\left(z_{i} ; \mu_{f i}, \psi_{f i}\right)+\left(1-\alpha_{f i}\right) \mathcal{N}\left(z_{i} ; \mu_{b i}, \psi_{b i}\right)\right)$
$Q(b) \leftarrow \sum_{f} Q(b, f), \quad Q(f) \leftarrow \sum_{b} Q(b, f)$
For $i=1, \ldots, K$:

$$
Q\left(m_{i}=1 \mid b, f\right) \leftarrow c_{1} \alpha_{f i} \mathcal{N}\left(z_{i} ; \mu_{f i}, \psi_{f i}\right)
$$

$$
Q\left(m_{i}=0 \mid b, f\right) \leftarrow c_{1}\left(1-\alpha_{f i}\right) \mathcal{N}\left(z_{i} ; \mu_{b i}, \psi_{b i}\right)
$$

For $i=1, \ldots, K$:
$Q\left(m_{i}, b\right) \leftarrow \sum_{f} Q\left(m_{i} \mid b, f\right) Q(b, f), \quad Q\left(m_{i}, f\right) \leftarrow \sum_{b} Q\left(m_{i} \mid b, f\right) Q(b, f)$

M Step

$$
\begin{aligned}
& \text { For } j=1, \ldots, J: \pi_{j} \leftarrow \frac{1}{2 T} \sum_{t}\left(Q\left(f^{(t)}=j\right)+Q\left(b^{(t)}=j\right)\right) \\
& \text { For } j=1, \ldots, J: \text { For } i=1, \ldots, K: \\
& \qquad \begin{aligned}
\alpha_{j i} & \leftarrow \frac{\sum_{t} Q\left(m_{i}^{(t)}=1, f^{(t)}=j\right)}{\sum_{t} Q\left(f^{(t)}=j\right)} \\
\mu_{j i} & \leftarrow \frac{\sum_{t}\left(Q\left(m_{i}^{(t)}=1, f^{(t)}=j\right)+Q\left(m_{i}^{(t)}=0, b^{(t)}=j\right)\right) z_{i}^{(t)}}{\sum_{t}\left(Q\left(m_{i}^{(t)}=1, f^{(t)}=j\right)+Q\left(m_{i}^{(t)}=0, b^{(t)}=j\right)\right)} \\
\psi_{k i} & \leftarrow \frac{\sum_{t}\left(Q\left(m_{i}^{(t)}=1, f^{(t)}=j\right)+Q\left(m_{i}^{(t)}=0, b^{(t)}=j\right)\right)\left(z_{i}^{(t)}-\mu_{j i}\right)^{2}}{\sum_{t}\left(Q\left(m_{i}^{(t)}=1, f^{(t)}=j\right)+Q\left(m_{i}^{(t)}=0, b^{(t)}=j\right)\right)}
\end{aligned}
\end{aligned}
$$

Variational EM

E Step

For $t=1, \ldots, T$:

$$
\begin{aligned}
& Q(f) \leftarrow c_{3} \pi_{f} \prod_{i=1}^{K}\left(\left(\alpha_{f i} \mathcal{N}\left(z_{i} ; \mu_{f i}, \psi_{f i}\right)\right)^{Q\left(m_{i}=1\right)}\left(1-\alpha_{f i}\right)^{Q\left(m_{i}=0\right)}\right) \\
& \text { For } i=1, \ldots, K \\
& \quad Q\left(m_{i}=1\right) \leftarrow c_{1} \prod_{f}\left(\alpha_{f i} \mathcal{N}\left(z_{i} ; \mu_{f i}, \psi_{f i}\right)\right)^{Q(f)} \\
& \quad Q\left(m_{i}=0\right) \leftarrow c_{1}\left(\prod_{f}\left(1-\alpha_{f i}\right)^{Q(f)}\right)\left(\prod_{b} \mathcal{N}\left(z_{i} ; \mu_{b i}, \psi_{b i}\right)^{Q(b)}\right)
\end{aligned}
$$

$$
Q(b) \leftarrow c_{2} \pi_{b} \prod_{i=1}^{K} \mathcal{N}\left(z_{i} ; \mu_{b i}, \psi_{b i}\right)^{Q\left(m_{i}=0\right)}
$$

M Step

$$
\begin{aligned}
& \text { For } j=1, \ldots, J: \pi_{j} \leftarrow \frac{1}{2 T}\left(\sum_{t} Q\left(f^{(t)}=j\right)+\sum_{t} Q\left(b^{(t)}=j\right)\right) \\
& \text { For } j=1, \ldots, J: \text { For } i=1, \ldots, K: \\
& \qquad \begin{aligned}
\alpha_{j i} & \leftarrow \frac{\sum_{t} Q\left(m_{i}^{(t)}=1\right) Q\left(f^{(t)}=j\right)}{\sum_{t} Q\left(f^{(t)}=j\right)} \\
\mu_{j i} & \leftarrow \frac{\sum_{t}\left(Q\left(m_{i}^{(t)}=1\right) Q\left(f^{(t)}=j\right)+Q\left(m_{i}^{(t)}=0\right) Q\left(b^{(t)}=j\right)\right) z_{i}^{(t)}}{\sum_{t}\left(Q\left(m_{i}^{(t)}=1\right) Q\left(f^{(t)}=j\right)+Q\left(m_{i}^{(t)}=0\right) Q\left(b^{(t)}=j\right)\right)} \\
\psi_{k i} & \leftarrow \frac{\sum_{t}\left(Q\left(m_{i}^{(t)}=1\right) Q\left(f^{(t)}=j\right)+Q\left(m_{i}^{(t)}=0\right) Q\left(b^{(t)}=j\right)\right)\left(z_{i}^{(t)}-\mu_{j i}\right)^{2}}{\sum_{t}\left(Q\left(m_{i}^{(t)}=1\right) Q\left(f^{(t)}=j\right)+Q\left(m_{i}^{(t)}=0\right) Q\left(b^{(t)}=j\right)\right)}
\end{aligned}
\end{aligned}
$$

Fig. 5a. Inference and learning algorithms for the occlusion model. Iverson's notation is used, where $[$ expr $]=1$ if expr is true, and $[$ expr $]=0$ if expr is false. The constant c is used to normalize distributions.
$-\frac{\partial}{\partial \hat{\theta}} \ln P(\hat{\theta})-\sum_{t=1}^{T}\left(\int_{h^{(t)}} Q\left(h^{(t)}\right) \frac{\partial}{\partial \hat{\theta}} \ln P\left(h^{(t)}, v^{(t)} \mid \hat{\theta}\right)\right)=0$.
This is the derivative of the expected log-probability of the complete data. For M parameters, this is a system of M equations. Often, the prior on the parameters is assumed
to be uniform, $P(\hat{\theta})=$ const, in which case, the first term in the above expression vanishes.

Repeat for a fixed number of iterations or until convergence.

In Section 5.5, we showed that, when $Q(h)=P(h \mid v)$, $F(Q, P)=-\ln P(v)$. So, the EM algorithm alternates between

```
Structured Variational EM
E Step
For \(t=1, \ldots, T\) :
    \(Q(f) \leftarrow c_{1} \pi_{f} \prod_{i=1}^{K}\left(\frac{\alpha_{f i}}{Q\left(m_{i}=1 \mid f\right)} \mathcal{N}\left(z_{i} ; \mu_{f i}, \psi_{f i}\right)\right)^{Q\left(m_{i}=1 \mid f\right)}\)
    \(\cdot\left(\frac{1-\alpha_{f i}}{Q\left(m_{i}=0 \mid f\right)} \prod_{b=1}^{J} \mathcal{N}\left(z_{i} ; \mu_{b i}, \psi_{b i}\right)^{Q(b)}\right)^{Q\left(m_{i}=0 \mid f\right)}\)
    For \(i=1, \ldots, K\) :
        \(Q\left(m_{i}=1 \mid f\right) \leftarrow c_{2} \alpha_{f i} \mathcal{N}\left(z_{i} ; \mu_{f i}, \psi_{f i}\right)\)
        \(Q\left(m_{i}=0 \mid f\right) \leftarrow c_{2}\left(1-\alpha_{f i}\right) \prod_{b} \mathcal{N}\left(z_{i} ; \mu_{b i}, \psi_{b i}\right)^{Q(b)}\)
        \(Q\left(m_{i}, f\right) \leftarrow Q\left(m_{i} \mid f\right) Q(f), \quad Q\left(m_{i}\right) \leftarrow \sum_{f} Q\left(m_{i}, f\right)\)
    \(Q(b) \leftarrow c_{3} \pi_{b} \prod_{i=1}^{K} \mathcal{N}\left(z_{i} ; \mu_{b i}, \psi_{b i}\right)^{Q\left(m_{i}=0\right)}\)
```


M Step

For $j=1, \ldots, J: \pi_{j} \leftarrow \frac{1}{2 T}\left(\sum_{t} Q\left(f^{(t)}=j\right)+\sum_{t} Q\left(b^{(t)}=j\right)\right)$
For $j=1, \ldots, J$: For $i=1, \ldots, K$:
$\alpha_{j i} \leftarrow \frac{\sum_{t} Q\left(m_{i}^{(t)}=1, f^{(t)}=j\right)}{\sum_{t} Q\left(f^{(t)}=j\right)}$
$\mu_{j i} \leftarrow \frac{\sum_{t}\left(Q\left(m_{i}^{(t)}=1, f^{(t)}=j\right)+Q\left(m_{i}^{(t)}=0\right) Q\left(b^{(t)}=j\right)\right) z_{i}^{(t)}}{\sum_{t}\left(Q\left(m_{i}^{(t)}=1, f^{(t)}=j\right)+Q\left(m_{i}^{(t)}=0\right) Q\left(b^{(t)}=j\right)\right)}$
$\psi_{k i} \leftarrow \frac{\sum_{t}\left(Q\left(m_{i}^{(t)}=1, f^{(t)}=j\right)+Q\left(m_{i}^{(t)}=0\right) Q\left(b^{(t)}=j\right)\right)\left(z_{i}^{(t)}-\mu_{j i}\right)^{2}}{\sum_{t}\left(Q\left(m_{i}^{(t)}=1, f^{(t)}=j\right)+Q\left(m_{i}^{(t)}=0\right) Q\left(b^{(t)}=j\right)\right)}$

Sum-Product EM

```
E Step
For \(t=1, \ldots, T\) :
    For \(i=1, \ldots, K: \lambda_{i}^{f}(f) \leftarrow c_{1}\left(\alpha_{f i} \mathcal{N}\left(z_{i} ; \mu_{f i}, \psi_{f i}\right)\right.\)
            \(\left.+\left(1-\alpha_{f i}\right) \sum_{b} \rho_{i}^{b}(b) \mathcal{N}\left(z_{i} ; \mu_{b i}, \psi_{b i}\right)\right)\)
    \(Q(f) \leftarrow c_{2} \pi_{f} \prod_{i} \lambda_{i}^{f}(f)\)
    For \(i=1, \ldots, K: \rho_{i}^{f}(f) \leftarrow c_{3} Q(f) / \lambda_{i}^{f}(f)\)
    For \(i=1, \ldots, K\) :
        \(\lambda_{i}^{m}(1) \leftarrow c_{4} \sum_{f} \rho_{i}^{f}(f) \alpha_{f i} \mathcal{N}\left(z_{i} ; \mu_{f i}, \psi_{f i}\right)\)
        \(\lambda_{i}^{m}(0) \leftarrow c_{4}\left(\sum_{f} \rho_{i}^{f}(f)\left(1-\alpha_{f i}\right)\right)\left(\sum_{b} \rho_{i}^{b}(b) \mathcal{N}\left(z_{i} ; \mu_{b i}, \psi_{b i}\right)\right)\)
        \(Q\left(m_{i}\right) \leftarrow \lambda_{i}^{m}\left(m_{i}\right)\)
```

 For \(i=1, \ldots, K: \lambda_{i}^{b}(b) \leftarrow c_{5}\left(\left(\sum_{f} \rho_{i}^{f}(f) \alpha_{f i} \mathcal{N}\left(z_{i} ; \mu_{f i}, \psi_{f i}\right)\right)\right.\)
 \(\left.+\left(\sum_{f} \rho_{i}^{f}(f)\left(1-\alpha_{f i}\right)\right) \mathcal{N}\left(z_{i} ; \mu_{b i}, \psi_{b i}\right)\right)\)
 \(Q(b) \leftarrow c_{6} \pi_{b} \prod_{i} \lambda_{i}^{b}(b)\)
 For \(i=1, \ldots, K: \rho_{i}^{b}(b) \leftarrow Q(b) / \lambda_{i}^{b}(b)\)
 M Step
For $j=1, \ldots, J: \pi_{j} \leftarrow \frac{1}{2 T}\left(\sum_{t} Q\left(f^{(t)}=j\right)+\sum_{t} Q\left(b^{(t)}=j\right)\right)$
For $j=1, \ldots, J$: For $i=1, \ldots, K$:
$\alpha_{j i} \leftarrow \frac{\sum_{t} Q\left(m_{i}^{(t)}=1\right) Q\left(f^{(t)}=j\right)}{\sum_{t} Q\left(f^{(t)}=j\right)}$
$\mu_{j i} \leftarrow \frac{\sum_{t}\left(Q\left(m_{i}^{(t)}=1\right) Q\left(f^{(t)}=j\right)+Q\left(m_{i}^{(t)}=0\right) Q\left(b^{(t)}=j\right)\right) z_{i}^{(t)}}{\sum_{t}\left(Q\left(m_{i}^{(t)}=1\right) Q\left(f^{(t)}=j\right)+Q\left(m_{i}^{(t)}=0\right) Q\left(b^{(t)}=j\right)\right)}$
$\psi_{k i} \leftarrow \frac{\sum_{t}\left(Q\left(m_{i}^{(t)}=1\right) Q\left(f^{(t)}=j\right)+Q\left(m_{i}^{(t)}=0\right) Q\left(b^{(t)}=j\right)\right)\left(z_{i}^{(t)}-\mu_{j i}\right)^{2}}{\sum_{t}\left(Q\left(m_{i}^{(t)}=1\right) Q\left(f^{(t)}=j\right)+Q\left(m_{i}^{(t)}=0\right) Q\left(b^{(t)}=j\right)\right)}$

Fig. 5b. (continued).
obtaining a tight lower bound on $\ln P(v)$ and then maximizing this bound with regard to the model parameters. This means that with each iteration the \log-probability of the data, $\ln P(v)$, must increase or stay the same.

EM in the occlusion model. As with ICM, we approximate the distribution over the parameters using $Q(\theta)=$ $\delta(\theta-\hat{\theta})$. As described above, in the E step, we set $Q(b, f, m) \leftarrow P(b, f, m \mid z)$ for each training case, where, as described in Section 5.4, $P(b, f, m \mid z)$ is represented in the form $P(b, f \mid z) \prod_{i} P\left(m_{i} \mid b, f, z\right)$. This distribution is used in the M step to minimize the free energy with regard to the model parameters, $\theta=\left\{\alpha_{k}, \mu_{k}, \psi_{k}, \pi_{k}\right\}_{k=1}^{K}$. The resulting updates are given in Fig. 5, where we have dropped the training case index in the E step for brevity and the constant c is computed to normalize the appropriate distribution. Starting with random parameters, the E and M steps are iterated until convergence or for a fixed number of iterations.

5.10 Generalized EM

The above derivation of the EM algorithm makes obvious several generalizations, all of which attempt to decrease $F(Q, P)$ [31]. If $F(Q, P)$ is a complex function of the parameters θ, it may not be possible to exactly solve for the θ that minimizes $F(Q, P)$ in the M step. Instead, θ can be modified so as to decrease $F(Q, P)$, e.g., by taking a step downhill in the gradient of $F(Q, P)$. Or, if θ contains many parameters, it may be that $F(Q, P)$ can be optimized with regard to one parameter while holding the others constant. Although doing this does not solve the system of equations, it does decrease $F(Q, P)$.

Another generalization of EM arises when the posterior distribution over the hidden RV s is too complex to perform the exact update $Q\left(h^{(t)}\right) \leftarrow P\left(h^{(t)} \mid v^{(t)}, \hat{\theta}\right)$ that minimizes $F(Q, P)$ in the E step. Instead, the distribution $Q\left(h^{(t)}\right)$ from the previous E step can be modified to decrease $F(Q, P)$. In fact, ICM is a special case of EM where, in the E step, $F(Q, P)$ is decreased by finding the value of $\hat{h}^{(t)}$ that minimizes $F(Q, P)$ subject to $Q\left(h^{(t)}\right)=\delta\left(h^{(t)}-\hat{h}^{(t)}\right)$.

5.11 Gibbs Sampling and Monte Carlo Methods

Gibbs sampling is similar to ICM, but to circumvent local minima, Gibbs sampling stochastically selects the value of h_{i} at each step instead of picking the MAP value of h_{i} :

Initialization. Pick values for all hidden RVs h (randomly or cleverly).

Gibbs Sampling Step. Consider one of the hidden RVs, h_{i}. Holding all other RVs constant, sample h_{i} :

$$
h_{i} \sim P\left(h_{i} \mid h \backslash h_{i}, v\right)=f\left(h_{i}, x_{M_{i}}\right) /\left(\sum_{h_{i}} f\left(h_{i}, x_{M_{i}}\right)\right)
$$

where $x_{M_{i}}$ are the RVs in the Markov blanket of h_{i} and $f\left(h_{i}, x_{M_{i}}\right)$ is the product of all conditional distributions or potentials that depend on h_{i}.

Repeat for a fixed number of iterations or until convergence.

Algorithmically, this is a minor modification of ICM, but, in many applications, it is able to escape poor local minima (cf., [14], [18]). Also, the stochastically chosen values of h_{i} can be monitored to estimate the uncertainty in h_{i} under the posterior.

If n counts the number of sampling steps, then as $n \rightarrow \infty$ the nth configuration of the hidden RVs is guaranteed to be an unbiased sample from the exact posterior $P(h \mid v)$. In fact, although a single Gibbs sampler is not guaranteed to
minimize the free energy, an infinite ensemble of Gibbs samplers does minimize free energy, regardless of the initial distribution of the ensemble. Let $Q^{n}(h)$ be the distribution over h given by the ensemble of samplers at step n. Suppose we obtain a new ensemble by sampling h_{i} in each sampler. Then, $Q^{n+1}(h)=Q^{n}\left(h \backslash h_{i}\right) P\left(h_{i} \mid h \backslash h_{i}, v\right)$. Substituting Q^{n} and Q^{n+1} into (6), we find that $F^{n+1} \leq F^{n}$.

Generally, in a Monte Carlo method, the distribution over h is represented by a set of configurations h^{1}, \ldots, h^{S}. Then, the expected value of any function of the hidden RVs, $f(h)$, is approximated by $\mathrm{E}[f(h)] \approx \frac{1}{S} \sum_{s=1}^{S} f\left(h^{s}\right)$. For example, if h contains binary ($0 / 1$) RVs and h^{1}, \ldots, h^{S} are drawn from $P(h \mid v)$, then, by selecting $f(h)=h_{i}$, the above equation gives an estimate of $P\left(h_{i}=1 \mid v\right)$. There are many approaches to sampling, but the two general classes of samplers are exact samplers and Markov chain Monte Carlo (MCMC) samplers (cf., [30]). Whereas exact samplers produce a configuration with probability equal to the probability under the model, MCMC samplers produce a sequence of configurations such that, in the limit, the configuration is a sample from the model. If a model $P(h, v)$ is described by a BN , then an exact sample of h and v can be obtained by successively sampling each RV given its parents, starting with parentless RVs and finishing with childless RVs. Gibbs sampling is an example of an MCMC technique.

MCMC techniques and Gibbs sampling in particular are guaranteed to produce samples from the probability model only after the memory of the initial configuration has vanished and the sampler has reached equilibrium. For this reason, the sampler is often allowed to "burn in" before samples are used to compute Monte Carlo estimates. This corresponds to discarding the samples obtained early on.

Gibbs sampling for EM in the occlusion model. Here, we describe a learning algorithm that uses ICM-updates for the model parameters, but uses stochastic updates for the RVs. This technique can be viewed as a generalized EM algorithm, where the E-Step is approximated by a Gibbs sampler. Replacing the MAP RV updates in ICM with sampling, we obtain the algorithm in Fig. 5. The notation sample $_{b}$ indicates the expression on the right should be normalized with regard to b and then b should be sampled.

5.12 Variational Techniques and the Mean Field Method

A problem with ICM and Gibbs sampling is that, when updating a particular RV, they do not account for uncertainty in the neighboring RVs. Clearly, a neighbor that is untrustworthy should count less when updating an RV. If exact EM can be applied, then at least the exact posterior distribution is used for a subset of the RVs. However, exact EM is often not possible because the exact posterior is intractable. Also, exact EM does not account for uncertainty in the parameters.

Variational techniques assume that $Q(h)$ comes from a restricted family of distributions that can be efficiently searched over. Inference proceeds by minimizing $F(Q, P)$ with regard to $Q(h)$, but the restriction on $Q(h)$ implies that a tight bound, $F=-\ln P(v)$, is not in general achievable. In practice, the family of distributions is usually chosen so that a closed form expression for $F(Q, P)$ can be obtained and optimized.

The "starting point" when deriving variational techniques is the product form (also known as fully factorized, or
mean-field) Q-distribution. If h consists of L hidden RVs $h=\left(h_{1}, \ldots, h_{L}\right)$, the product form Q distribution is

$$
\begin{equation*}
Q(h)=\prod_{i=1}^{L} Q\left(h_{i}\right) \tag{9}
\end{equation*}
$$

where there is one variational parameter or one set of variational parameters that specifies the marginal $Q\left(h_{i}\right)$ for each hidden RV h_{i}.

The advantage of the product form approximation is most readily seen when $P(h, v)$ is described by a BN . Suppose the k th conditional probability function or potential is a function of RVs $h_{C_{k}}$ and $v_{D_{k}}$ and denote it by $g_{k}\left(h_{C_{k}}, v_{D_{k}}\right)$. So, $P(h, v)=\prod_{k} g_{k}\left(h_{C_{k}}, v_{D_{k}}\right)$. Substituting this and (9) into (6), we obtain the mean field free energy:

$$
\begin{aligned}
F(Q, P)= & \sum_{i}\left(\int_{h_{i}} Q\left(h_{i}\right) \ln Q\left(h_{i}\right)\right) \\
& -\sum_{k}\left(\int_{h_{C_{k}}}\left(\prod_{i \in C_{k}} Q\left(h_{i}\right)\right) \ln g_{k}\left(h_{C_{k}}, v_{D_{k}}\right)\right) .
\end{aligned}
$$

The high-dimensional integral over all hidden RVs simplifies into a sum over the conditional probability functions of low-dimensional integrals over small collections of hidden RVs. The first term is the sum of the negative entropies of the Q-distributions for individual hidden RVs. For many scalar RVs (e.g., Bernoulli, Gaussian, etc.), the entropy can be written in closed form quite easily.

The second term is the sum of the expected logconditional distributions or pontentials, where, for each term, the expectation is taken with respect to the product of the Q-distributions for the hidden RVs. For appropriate forms of the conditional distributions, this term can also be written in closed form. For example, suppose $P\left(h_{1} \mid h_{2}\right)=$ $\exp \left(-\ln \left(2 \pi \sigma^{2}\right) / 2-\left(h_{1}-a h_{2}\right)^{2} / 2 \sigma^{2}\right)$ (i.e., h_{1} is Gaussian with mean $a h_{2}$) and $Q\left(h_{1}\right)$ and $Q\left(h_{2}\right)$ are Gaussian with means ϕ_{11} and ϕ_{21} and variances ϕ_{12} and ϕ_{22}. The entropy terms for h_{1} and h_{2} are $-\ln \left(2 \pi e \phi_{12}\right) / 2$ and $-\ln \left(2 \pi e \phi_{22}\right) / 2$. The other term is the expected value of a quadratic form under a Gaussian, which is straightforward to compute. The result is $-\ln$ $\left(2 \pi \sigma^{2}\right) / 2-\left(\phi_{11}-a \phi_{21}\right)^{2} / 2 \sigma^{2}-\phi_{12} / 2 \sigma^{2}-a^{2} \phi_{22} / 2 \sigma^{2}$. These expressions are easily-computed functions of the variational parameters. Their derivatives (needed for minimizing $F(Q, P)$) can also be computed quite easily.

In general, variational inference consists of searching for the value of the variational parameter ϕ that minimizes $F(Q, P)$. For convex problems, this optimization is easy. Usually, $F(Q, P)$ is not convex in Q and iterative optimization is required:

Initialization. Pick values for the variational parameters, ϕ (randomly or cleverly).

Optimization Step. Decrease $F(Q, P)$ by adjusting the parameter vector ϕ or a subset of ϕ.

Repeat for a fixed number of iterations or until convergence.

This variational technique accounts for uncertainty in both the hidden RVs and the hidden model parameters. If the amount of training data is small, a variational approximation to the parameters can be used to represent uncertainty in the model due to the sparse training data.

Often, variational techniques are used to approximate the distribution over the hidden RVs in the E step of the EM algorithm, but point estimates are used for the model parameters. In such variational EM algorithms, the Q-distribution is $Q(h)=\delta(\theta-\hat{\theta}) \prod_{t=1}^{T} Q\left(h^{(t)} ; \phi^{(t)}\right)$. Note that there is one set of variational parameters for each training case. In this case, we have the following generalized EM steps:

Initialization. Pick values for the variational parameters $\phi^{(1)}, \ldots, \phi^{(T)}$ and the model parameters $\hat{\theta}$ (randomly or cleverly).

Generalized E Step. Starting from the variational parameters from the previous iteration, modify $\phi^{(1)}, \ldots, \phi^{(T)}$ so as to decrease F.

Generalized M Step. Starting from the model parameters from the previous iteration, modify $\hat{\theta}$ so as to decrease F.

Repeat for a fixed number of iterations or until convergence.

Variational inference for EM in the occlusion model. The fully factorized Q-distribution over the hidden RVs for a single data sample in the occlusion model is $Q(m, f, b)=$ $Q(b) Q(f) \prod_{i=1}^{K} Q\left(m_{i}\right)$. Substituting this Q-distribution into the free energy for a single observed data sample in the occlusion model, we obtain

$$
\begin{aligned}
F= & \sum_{b} Q(b) \ln \frac{Q(b)}{\pi_{b}}+\sum_{f} Q(f) \ln \frac{Q(f)}{\pi_{f}} \\
& +\sum_{i} \sum_{f} Q(f)\left(Q\left(m_{i}=1\right) \ln \frac{Q\left(m_{i}=1\right)}{\alpha_{f i}}\right. \\
& \left.+Q\left(m_{i}=0\right) \ln \frac{Q\left(m_{i}=0\right)}{1-\alpha_{f i}}\right) \\
& +\sum_{i} \sum_{f} Q(f) Q\left(m_{i}=1\right)\left(\frac{\left(z_{i}-\mu_{f i}\right)^{2}}{2 \psi_{f i}}+\frac{\ln 2 \pi \psi_{f i}}{2}\right) \\
& +\sum_{i} Q\left(m_{i}=0\right)\left(\sum_{b} Q(b)\left(\frac{\left(z_{i}-\mu_{b i}\right)^{2}}{2 \psi_{b i}}+\frac{\ln 2 \pi \psi_{b i}}{2}\right)\right)
\end{aligned}
$$

The first two terms keep $Q(b)$ and $Q(f)$ close to their priors π_{b} and π_{f}. The third term keeps $Q\left(m_{i}\right)$ close to the mask priors $\alpha_{f i}$ for foreground classes that have high posterior probability $Q(f)$. The last two terms favor mask values and foreground/ background classes that minimize the variance-normalized squared differences between the predicted pixel values and the observed pixel values.

Setting the derivatives of F to zero, we obtain the updates for the Q-distributions in the E step. Once the variational parameters are computed for all observed images, the total free energy $F=\sum_{t} F^{(t)}$ is optimized with regard to the model parameters to obtain the variational M step. The resulting updates are given in Fig. 5. Each E step update can be computed in $O(K J)$ time, which is a K-fold speed-up over exact inference used for exact EM. This speed-up is obtained because the variational method assumes that f and b are independent in the posterior. Also, note that, if the Q-distribitions place all mass on one configuration, the E step updates reduce to the ICM updates The M step updates are similar to the updates for exact EM, except that the exact posterior distributions are replaced by their factorized surrogates.

Fig. 6. Starting with the BN of the original occlusion model (a) variational techniques ranging from the fully factorized approximation to exact inference can be derived. (b) The BN for the factorized (mean field) Q-distribution. z is observed, so it is not included in the graphical model for the Q-distribution. (c) The BN for a Q-distribution that can represent the exact posterior. (d) The BN for a Q-distribution that can represent the dependence of the mask RVs on the foreground class. Accounting for more dependencies improves the bound on the data likelihood, but the choice of which dependencies are retained has a large impact on the improvement in the bound.

The above updates can be iterated in a variety of ways. For example, each iteration may consist of repeatedly updating the variational distributions until convergence and then updating the parameters. Or, each iteration may consist of updating each variational distribution once and then updating the parameters. There are many possibilities and the update order that is best at avoiding local minima depends on the problem.

5.13 Structured Variational Techniques

The product-form (mean-field) approximation does not account for dependencies between hidden RVs. For example, if the posterior has two distinct modes, the variational technique for the product-form approximation will find only one mode. With a different initialization, the technique may find another mode, but the exact form of the dependence is not revealed. In structured variational techniques [22], the Q-distribution is itself specified by a graphical model such that $F(Q, P)$ can still be optimized. Fig. 6a shows the original BN for the occlusion model and Fig. 6b shows the BN for the fully factorized (mean field) Q-distribution described above. Recall that the exact posterior can be written $P(m, f, b \mid z)=$ $Q(m, f, b)=Q(f, b) \prod_{i=1}^{K} Q\left(m_{i} \mid f, b\right)$. Fig. 6c shows the BN for this Q-distribution. Generally, increasing the number of dependencies in the Q-distribution leads to more exact inference algorithms, but also increases the computational demands of variational inference. In the occlusion model, whereas mean field inference takes $K J$ time, exact inference takes $K J^{2}$ time. However, additional dependencies can sometimes be accounted for at no extra computational cost. As described below, it turns out that the Q-distribution shown in Fig. 6d leads to an inference algorithm with the same complexity as the mean field method ($K J$ time), but can account for dependencies of the mask RVs on the foreground class.

Structured variational inference for EM in the occlusion model. The Q-distribution corresponding to the BN in Fig. 6d is $Q(m, f, b)=Q(b) Q(f) \prod_{i=1}^{K} Q\left(m_{i} \mid f\right)$. Defining $q_{f i}=Q\left(m_{i}=\right.$ $1 \mid f)$, we have $Q(m, f, b)=Q(b) Q(f) \prod_{i=1}^{K} q_{f i}^{m_{i}}\left(1-q_{f i}\right)^{1-m_{i}}$. Substituting this Q-distribution into the free energy for the occlusion model, we obtain

$$
\begin{aligned}
F= & \sum_{b} Q(b) \ln \frac{Q(b)}{\pi_{b}}+\sum_{f} Q(f) \ln \frac{Q(f)}{\pi_{f}} \\
& +\sum_{i} \sum_{f} Q(f)\left(Q\left(m_{i}=1 \mid f\right) \ln \frac{Q\left(m_{i}=1 \mid f\right)}{\alpha_{f i}}\right. \\
& \left.+Q\left(m_{i}=0 \mid f\right) \ln \frac{Q\left(m_{i}=0 \mid f\right)}{1-\alpha_{f i}}\right) \\
& +\sum_{i} \sum_{f} Q(f) Q\left(m_{i}=1 \mid f\right)\left(\frac{\left(z_{i}-\mu_{f i}\right)^{2}}{2 \psi_{f i}}+\frac{\ln 2 \pi \psi_{f i}}{2}\right) \\
& +\sum_{i}\left(\left(\sum_{f} Q(f) Q\left(m_{i}=0 \mid f\right)\right)\right. \\
& \left.\sum_{b} Q(b)\left(\frac{\left(z_{i}-\mu_{b i}\right)^{2}}{2 \psi_{b i}}+\frac{\ln 2 \pi \psi_{b i}}{2}\right)\right)
\end{aligned}
$$

Setting the derivatives of F to zero, we obtain the updates given in Fig. 5. With some care, these updates can be computed in $O(K J)$ time, which is a K-fold speed-up over exact inference. Although the dependencies of f and m_{i}, $i=1, \ldots, K$ on b are not accounted for, the dependence of m_{i} on f is accounted for by the $q_{f i}$. The parameter updates in the M step have a similar form as for exact EM, except that the exact posterior is replaced by the above, structured Q-distribution.

5.14 The Sum-Product Algorithm and (Loopy) Belief Propagation

The sum-product algorithm (also known as belief propagation, probability propagation) performs inference by passing messages along the edges of the graphical model (see [23] for an extensive review). The message arriving at an RV is a probability distribution (or a function that is proportional to a probability distribution) that represents the inference for the RV as given by the part of the graph that the message came from. Pearl [33] showed that the algorithm is exact if the graph is a tree. When the graph contains cycles, the sum-product algorithm (also known as "loopy belief propagation") is not exact and can diverge and oscillate. However, it has been used in vision algorithms [8]. Surprisingly, we have also found that its oscillatory behavior can be used to jump between modes of the posterior. Also, it has produced state-of-the-art results on several difficult problems, including error-correcting decoding [13], medical diagnosis [28], random satisfiability [26], and phase-unwrapping in two dimensions [12].

To see how the sum-product algorithm works, consider computing $P(a)$ in the model $P(a, b, c, d)=P(a \mid b) P(b \mid c)$ $P(c \mid d) P(d)$. One approach is to compute $P(a, b, c, d)$ for all values of a, b, c, and d and then compute $P(a)=\sum_{b} \sum_{c} \sum_{d}$ $P(a, b, c, d)$. For binary RVs, this takes $(3+1)(2 \cdot 2 \cdot 2 \cdot 2)$ operations. Alternatively, we can move the sums inside the products: $P(a)=\sum_{b} P(a \mid b)\left\{\sum_{c} P(b \mid c)\left[\sum_{d} P(c \mid d) P(d)\right]\right\}$. If the terms are computed from the innermost term out, this takes $(3)(2+2+2)$ operations, giving an exponential speedup in the number of RVs. The computation of each term in braces corresponds to the computation of a message in the sum-product algorithm.

In a graphical model, the joint distribution can be written $P(h, v)=\prod_{k} g_{k}\left(h_{C_{k}}, v_{D_{k}}\right)$, where $h_{C_{k}}$ and $v_{D_{k}}$ are the hidden and visible RVs in the k th local function (or conditional distribution). The sum-product algorithm approximates $P(h \mid v)$ by $Q(h)$, where $Q(h)$ is specified by marginals $Q\left(h_{i}\right)$
and clique marginals $Q\left(h_{C_{k}}\right)$. These are computed by combining messages that are computed iteratively in the FG. Denote the message sent from variable h_{i} to function g_{k} by $\mu_{i k}\left(h_{i}\right)$ and denote the message sent from function g_{k} to variable h_{i} by $\mu_{k i}\left(h_{i}\right)$. Note that the message passed on an edge is a function of the neighboring variable. A userspecified message-passing schedule is used to determine which messages should be updated at each iteration. The sumproduct algorithm proceeds as follows:

Initialization. Set all messages to be uniform.
Message Update Step. Update the messages specified in the message-passing schedule. The message sent from variable h_{j} to function g_{k} is updated as follows:

$$
\begin{equation*}
\mu_{j k}\left(h_{j}\right) \leftarrow c \prod_{n: j \in C_{n}, n \neq k} \mu_{n j}\left(h_{j}\right) \tag{10}
\end{equation*}
$$

where c is computed so as to normalize the message. The message sent from function g_{k} to variable h_{j} is updated as follows:

$$
\begin{equation*}
\mu_{k j}\left(h_{j}\right) \leftarrow c \sum_{h_{C_{k} \backslash j}}\left(g_{k}\left(h_{C_{k}}, v_{D_{k}}\right) \prod_{i \in C_{k}, i \neq j} \mu_{i k}\left(h_{i}\right)\right) \tag{11}
\end{equation*}
$$

where $C_{k} \backslash j$ is the set of indices C_{k} with j removed.
Fusion. A single-variable marginal or clique marginal can be computed at any time as follows:

$$
\begin{gather*}
Q\left(h_{j}\right) \leftarrow c \prod_{n: j \in C_{n}} \mu_{n j}\left(h_{j}\right) \tag{12}\\
Q\left(h_{C_{k}}\right) \leftarrow c g_{k}\left(h_{C_{k}}, v_{D_{k}}\right) \prod_{i \in C_{k}} \mu_{i k}\left(h_{i}\right) \tag{13}
\end{gather*}
$$

Repeat for a fixed number of iterations or until convergence.

If the graph is a tree, once messages have flowed from every node to every other node, the estimates of the posterior marginals are exact. So, if the graph has E edges, exact inference is accomplished by propagating $2 E$ messages according to the following message-passing schedule. Select one node as the root and arrange the nodes in layers beneath the root. Propagate messages from the leaves to the root (E messages) and then propagate messages from the root to the leaves (another E messages). This procedure ensures that messages flow from every node to every other node. Note that, if the graph is a tree, if normalizations are not performed during message-passing, the fusion equations compute the joint probability of the hidden variable(s) and the observed variables: $\prod_{n: j \in C_{n}} \mu_{n j}\left(h_{j}\right)=P\left(h_{j}, v\right)$.

If the graph contains cycles, messages can be passed in an iterative fashion for a fixed number of iterations until convergence is detected or until divergence is detected. Also, various schedules for updating the messages can be used and the quality of the results may depend on the schedule. It is proven in [35] that, when the "max-product" algorithm converges, all configurations that differ by perturbing the RVs in subgraphs that contain at most one cycle will have lower posterior probabilities.

If the graphical model is a BN , so that $\mathcal{Z}=1$, the sumproduct algorithm can be used for inference in a generalized EM algorithm as follows:

Fig. 7. (a) The FG for the occlusion model with K pixels after the observations (z_{1}, \ldots, z_{K}) are absorbed into function nodes, $g_{i}\left(f, b, m_{i}\right)=P\left(z_{i} \mid m_{i}, f, b\right) P\left(m_{i} \mid f\right)$. (b) The sum-product algorithm (belief propagation) passes messages along each edge of the graph. This graph fragment shows the different types of messages propagated in the occlusion model.

Initialization. Pick values for the model parameters θ (randomly or cleverly) and set all messages to be uniform.

Generalized E Step. For each training case $v^{(t)}$, apply one or more iterations of the sum-product algorithm. Then, fuse messages as described above to compute $Q\left(h_{C_{k}}^{(t)}\right)$ for every child and its parents.

Generalized M Step. Modify the parameters θ so as to maximize

$$
\sum_{t} \sum_{k} \sum_{h_{C_{k}}^{(t)}} Q\left(h_{C_{k}}^{(t)}\right) \ln g_{k}\left(h_{C_{k}}^{(t)}, v_{D_{k}}^{(t)} ; \theta\right)
$$

Repeat for a fixed number of iterations or until convergence.

The sum-product algorithm for EM in the occlusion model. For an occlusion model with K pixels, exact inference takes $O\left(K J^{2}\right)$ time. In contrast, loopy belief propagation takes $O(K J)$ time, assuming the number of iterations needed for convergence is constant. Generally, the computational gain from using loopy belief propagation is exponential in the number of RVs that combine to explain the data.

The graphical model has cycles, so, before applying the sum-product algorithm, we modify it to reduce the number of cycles, as shown in in Fig. 7a, where the observed pixels z_{1}, \ldots, z_{K} are not shown for visual clarity. For each pixel i, there is one local function g_{i} that combines the conditional distributions for each mask RV and its corresponding pixel:

$$
\begin{aligned}
g_{i}\left(f, b, m_{i}\right)= & P\left(z_{i} \mid m_{i}, f, b\right) P\left(m_{i} \mid f\right)=\mathcal{N}\left(z_{i} ; \mu_{f i}, \psi_{f i}\right)^{m_{i}} \\
& \mathcal{N}\left(z_{i} ; \mu_{b i}, \psi_{b i}\right)^{1-m_{i}} \alpha_{f i}^{m_{i}}\left(1-\alpha_{f i}\right)^{1-m_{i}} .
\end{aligned}
$$

Fig. 7 b shows how we have labeled the messages along the edges of the FG. During message passing, some messages will always be the same. In particular, a message leaving a singly connected function node will always be equal to the function. So, the messages leaving the nodes corresponding to $P(f)$ and $P(b)$ are equal to $P(f)$ and $P(b)$, as shown in Fig. 7b. Also, a message leaving a singly-connected variable node will always be equal to the constant 1 . So, the messages leaving the mask RVs, m_{i}, are 1 . Initially, all other messages are set to the value 1 .

Before updating messages in the graph, we must specify in what order the messages should be updated. This choice will influence how quickly the algorithm converges and, for graphs with cycles, can influence whether or not it converges at all. Messages can be passed until convergence or for a fixed amount of time. Here, we define one iteration to consist of passing messages from the $g s$ to b, from b to the $g s$, from the $g s$ to f, from f to the $g s$, and from the g s to the $m s$. Each iteration
ensures that each RV propagates its influence to every other RV. Since the graph has cycles, this procedure should be repeated.

The message updates are derived from the general rules described above. From (11), it is straightforward to show that the message sent from g_{i} to f should be updated as follows: $\lambda_{i}^{f}(f) \leftarrow \sum_{b} \sum_{m_{i}} \rho_{i}^{b}(b) \cdot 1 \cdot g_{i}\left(f, b, m_{i}\right)$. Note that, since the resulting message is a function of f alone, b and m_{i} must be summed over. Substituting $g_{i}\left(f, b, m_{i}\right)$ from above and assuming that $\rho_{i}^{b}(b)$ is normalized, this update can be simplified: $\lambda_{i}^{f}(f) \leftarrow \alpha_{f i} \mathcal{N}\left(z_{i} ; \mu_{f i}, \psi_{f i}\right)+\left(1-\alpha_{f i}\right) \sum_{b} \rho_{i}^{b}(b) \mathcal{N}$ $\left(z_{i} ; \mu_{b i}, \psi_{b i}\right)$. The last step in computing this message is to normalize it: $\lambda_{i}^{f}(f) \leftarrow \lambda_{i}^{f}(f) /\left(\sum_{f} \lambda_{i}^{f}(f)\right)$.

According to (10), the message sent from f to g_{i} is given by the product of the other incoming messages, $\rho_{i}^{f}(f) \leftarrow \pi_{f} \prod_{j \neq i}$ $\lambda_{i}^{f}(f)$, and it is then normalized: $\rho_{i}^{f}(f) \leftarrow \rho_{i}^{f}(f) /\left(\sum_{f} \rho_{i}^{f}(f)\right.$.

The message sent from g_{i} to b is given by $\lambda_{i}^{b}(b) \leftarrow \sum_{f}$ $\sum_{m_{i}} \rho_{i}^{f}(f) \cdot 1 \cdot g_{i}\left(f, b, m_{i}\right)$, which simplifies to $\lambda_{i}^{b}(b) \leftarrow\left(\sum_{f}\right.$ $\left.\rho_{i}^{f}(f) \alpha_{f i} \mathcal{N}\left(z_{i} ; \mu_{f i}, \psi_{f i}\right)\right)+\left(\sum_{f} \rho_{i}^{f}(f)\left(1-\alpha_{f i}\right)\right) \mathcal{N}\left(z_{i} ; \mu_{b i}, \psi_{b i}\right)$. Note that the terms in large parentheses don't depend on b, so they need to be computed only once when updating this message. Again, before proceeding, the message is normalized: $\lambda_{i}^{b}(b) \leftarrow \lambda_{i}^{b}(b) /\left(\sum_{b} \lambda_{i}^{b}(b)\right)$.

The message sent from b to g_{i} is given by $\rho_{i}^{b}(b) \leftarrow$ $\pi_{b} \prod_{j \neq i} \lambda_{i}^{b}(b)$ and then normalized: $\rho_{i}^{b}(b) \leftarrow \rho_{i}^{b}(b) /\left(\sum_{b} \rho_{i}^{b}(b)\right.$.

Finally, the message sent from g_{i} to m_{i} is updated as follows: $\lambda_{i}^{m}\left(m_{i}\right) \leftarrow \sum_{f} \sum_{b} \rho_{i}^{f}(f) \cdot \rho_{i}^{b}(b) \cdot g_{i}\left(f, b, m_{i}\right)$. For $m_{i}=$ 1 and $m_{i}=0$, this update simplifies to $\lambda_{i}^{m}(1) \leftarrow \sum_{f} \rho_{i}^{f}(f)$ $\alpha_{f i} \mathcal{N}\left(z_{i} ; \mu_{f i}, \psi_{f i}\right)$ and $\lambda_{i}^{m}(0) \leftarrow\left(\sum_{f} \rho_{i}^{f}(f)\left(1-\alpha_{f i}\right)\right)\left(\sum_{b} \rho_{i}^{b}(b)\right.$ $\left.\mathcal{N}\left(z_{i} ; \mu_{b i}, \psi_{b i}\right)\right)$. Normalization is performed by setting $\lambda_{i}^{m}\left(m_{i}\right) \leftarrow \lambda_{i}^{m}\left(m_{i}\right) /\left(\lambda_{i}^{m}(0)+\lambda_{i}^{m}(1)\right)$.

At any point during message-passing, the fusion rule in (12) can be used to estimate posterior marginals of variables. The estimates of $P(f \mid z), P(b \mid z)$ and $P\left(m_{i} \mid z\right)$ are $Q(f) \leftarrow\left(\pi_{f} \prod_{i}\right.$ $\left.\lambda_{i}^{f}(f)\right) /\left(\sum_{f} \pi_{f} \prod_{i} \lambda_{i}^{f}(f)\right), Q(b) \leftarrow\left(\pi_{b} \prod_{i} \lambda_{i}^{b}(b)\right) /\left(\sum_{b} \pi_{b} \prod_{i} \lambda_{i}^{b}\right.$ $(b))$, and $Q\left(m_{i}\right) \leftarrow \lambda_{i}^{m}\left(m_{i}\right)$. It is common to compute these during each iteration. In fact, computing the posterior marginals is often useful as an intermediate step for more efficiently computing other messages. For example, direct implementation of the above updates for $\rho_{i}^{f}(f)$ requires order $J K^{2}$ time. However, if $Q(f)$ is computed first (which takes order $J K$ time), then $\rho_{i}^{f}(f)$ can be updated in order $J K$ time using $\rho_{i}^{f}(f) \leftarrow Q(f) / \lambda_{i}^{f}(f)$, followed by normalization.

Fig. 5 shows the generalized EM algorithm where the E step uses the sum-product algorithm. Whereas algorithms presented earlier have one update for each variable (whether in terms of its value or its distribution), the sum-
product algorithm has one update for each edge in the graph. Note that, when updating $Q(b)$ and $Q(f)$, whereas variational methods adjust the effect of each likelihood term by raising it to a power, the sum-product algorithm adds an offset that depends on how well the other hidden variables account for the data. In the M step, we have used a factorized approximation to $Q\left(m_{i}, f\right)$ and $Q\left(m_{i}, b\right)$. In fact, these clique marginals can be computed using (13) to obtain a more exact M step.

The sum-product algorithm as a variational method. The sum-product algorithm can be thought of as a variational technique. Recall that, in contrast to product-form variational techniques, structured variational techniques account for more of the direct dependencies (edges) in the original graphical model by finding Q-distributions over disjoint substructures (subgraphs). However, one problem with structured variational techniques is that dependencies induced by the edges that connect the subgraphs are accounted for quite weakly through the variational parameters in the Q-distributions for the subgraphs. In contrast, the sumproduct algorithm uses a set of subgraphs that cover all edges in the original graph and accounts for every direct dependence approximately, using one or more Q-distributions.

To derive the sum-product algorithm as a variational method, we follow [37]. As described earlier, the sum-product algorithm approximates $P(h \mid v)$ by $Q(h)$, where $Q(h)$ is specified by marginals $Q\left(h_{i}\right)$ and clique marginals $Q\left(h_{C_{k}}\right)$. Notice that these sets of marginals cover all edges in the graphical model. Substituting the expression for $P(h, v)$ into (6), the free energy is $F=\sum_{h} Q(h) \ln Q(h)-\sum_{k} \sum_{h_{C_{k}}} Q\left(h_{C_{k}}\right)$ $\ln g_{k}\left(h_{C_{k}}, v_{D_{k}}\right)$. The second term is a local expectation that can usually be computed or approximated efficiently. However, since we don't have a factorized expression for $Q(h)$, the first term is generally intractable. We can approximate $Q(h)$ inside the logarithm using the Bethe approximation: $Q(h) \approx$ $\left(\prod_{k} Q\left(h_{C_{k}}\right)\right) /\left(\prod_{i} Q\left(h_{i}\right)^{d_{i}-1}\right)$, where d_{i} is the degree of h_{i}, i.e., the number of terms $Q\left(h_{C_{k}}\right)$ that h_{i} appears in. The denominator is meant to account for the overlap between the clique marginals. For trees, the Bethe approximation is exact (cf., [24]).

Substituting the Bethe approximation for the term $\ln Q(h)$, we obtain the Bethe free energy $F_{\text {Bethe, }}$ which approximates the true free energy, $F_{\text {Bethe }} \approx F$:

$$
\begin{aligned}
F_{\text {Bethe }}= & \sum_{k} \sum_{h_{C_{k}}} Q\left(h_{C_{k}}\right) \ln Q\left(h_{C_{k}}\right)-\sum_{i}\left(d_{i}-1\right) \\
& \sum_{h_{i}} Q\left(h_{i}\right) \ln Q\left(h_{i}\right)-\sum_{k} \sum_{h_{C_{k}}} Q\left(h_{C_{k}}\right) \ln g_{k}\left(h_{C_{k}}, v_{D_{k}}\right)
\end{aligned}
$$

This approximation becomes exact if the graph is a tree. If the graph is not a tree, we can still try to minimize $F_{\text {Bethe }}$ with regard to $Q\left(h_{C_{k}}\right)$ and $Q\left(h_{i}\right)$, but, during optimization, the marginals may not be consistent with any probability distribution on h. The statistical physics community has developed more complex, but more accurate approximations, such as the Kikuchi approximation, which can be used to derive inference algorithms [37].

The minimization of $F_{\text {Bethe }}$ must account for the marginalization constraints, $\forall k: \sum_{h_{C_{k}}} Q\left(h_{C_{k}}\right)=1, \forall i: \sum_{h_{i}} Q\left(h_{i}\right)$ $=1$, and $\forall k, \forall i \in C_{k}: \sum_{h_{C \backslash i}} Q\left(h_{C_{k}}\right)=Q\left(h_{i}\right)$, where $C_{k} \backslash i$ is the set of indices C_{k} with i removed. The last constraint ensures that the single-variable marginals and the clique marginals agree. Denote the Lagrange multipliers for these
constraints by v_{k}, ν_{i}, and $\gamma_{i k}\left(h_{i}\right)$, where the last multiplier depends on the value h_{i} since there is one constraint for each value of h_{i}. Setting the derivatives of $F_{\text {Bethe }}$ subject to these constraints to 0 , we obtain $Q\left(h_{j}\right)^{d_{j}-1} \propto \prod_{k: j \in C_{k}} e^{\gamma_{j k}\left(h_{j}\right)}$ and $Q\left(h_{C_{k}}\right) \propto g_{k}\left(h_{C_{k}}, v_{D_{k}}\right) \prod_{i \in C_{k}} e^{\gamma_{i k}\left(h_{i}\right)}$.

The sum-product algorithm can be viewed as an algorithm that recursively computes the Lagrange multipliers, $\gamma_{i k}\left(h_{i}\right)$, so as to satisfy the above two equations and the marginalization constraint everywhere in the network. In the standard form of the sum-product algorithm, we define $\mu_{i k}\left(h_{i}\right)=e^{\gamma_{i k}\left(h_{i}\right)}$ to be a "message" sent from variable h_{i} to function g_{k}. Using this notation, the equations and the marginalization constraint give the following system of equations: $Q\left(h_{j}\right)^{d_{j}-1} \propto \prod_{k: i \in C_{k}} \mu_{j k}\left(h_{j}\right), Q\left(h_{C_{k}}\right) \propto g_{k}\left(h_{C_{k}}, v_{D_{k}}\right)$ $\prod_{i \in C_{k}} \mu_{i k}\left(h_{i}\right)$, and $\sum_{h_{C_{k} \mid i}} Q\left(h_{C_{k}}\right)=Q\left(h_{i}\right)$.

One way of solving the system is to find a set of update equations whose fixed points satisfy the system. To do this, introduce "messages" that are sent from functions to variables: $\mu_{k j}\left(h_{j}\right)$ is a message sent from function g_{k} to variable h_{j}. A fixed point of the sum-product updates in (10) to (13) satisfies the system of equations. From (10), we have

$$
\prod_{k: i \in C_{k}} \mu_{j k}\left(h_{j}\right)=\prod_{k: i \in C_{k}} \prod_{n: j \in C_{n}, n \neq k} \mu_{n j}\left(h_{j}\right)=\left(\prod_{n: j \in C_{n}} \mu_{n j}\left(h_{j}\right)\right)^{d_{j}-1}
$$

Combiningthiswith(12), weobtain $\prod_{k: i \in C_{k}} \mu_{j k}\left(h_{j}\right)=Q\left(h_{j}\right)^{d_{j}-1}$, which satisfies the first equation in the system. The second equation is satisfied trivially by sum-product update (13). To see how the third equation is satisfied, first sum over $h_{C_{k} \backslash j}$ in (13) and then use (11) to obtain $\sum_{h_{C_{k} \backslash j}} Q\left(h_{C_{k}}\right) \propto \mu_{j k}\left(h_{j}\right) \mu_{k j}\left(h_{j}\right)$. Then, substitute $\mu_{j k}\left(h_{j}\right)$ from (10) and use (12) to obtain $\sum_{h_{C_{k} \backslash j}} Q\left(h_{C_{k}}\right) \propto \prod_{n: j \in C_{n}} \mu_{n j}\left(h_{j}\right) \propto Q\left(h_{j}\right)$, which satisfies the third equation.

5.15 Annealing

In all of the above techniques, when searching for $Q(h)$, local minima of F can be a problem. One way to try to avoid local minima is to introduce an inverse temperature, β : $F(\beta)=\int_{h} Q(h) \ln Q(h) / P(h, v)^{\beta}$. When $\beta=0, P(h, v)^{\beta}$ is uniform and inference is easy. When $\beta=1, P(h, v)^{\beta}=$ $P(h, v)$ and $F(\beta)=F$, the free energy we want to minimize. By searching over Q while annealing the system-adjusting β from 0 to 1 -the search may avoid local minima. In practice, the use of annealing raises the difficult question of how to adjust β during inference.

6 Comparison of Algorithms

Each of the above techniques iteratively updates an approximation to the exact posterior distribution while searching for a minimum of the free energy. It is useful to study how the behaviors of the algorithms differ. In Table 1, we give the update equations for the mask variables in the occlusion model. These updates have been written in a slightly different form than presented in Fig. 5, to make comparisons between different methods easier.

Whereas exact inference computes the distribution over m_{i} for every configuration of the neighboring variables b and f, ICM and Gibbs sampling select a new value of m_{i} based on the single current configuration of b and f. Whereas updating all

TABLE 1
A Comparison of the Updates for the Mask Variables for Various Algorithms Discussed in This Paper

Method	Update for mask variables	Complexity
Exact inference (used in EM)	$\frac{Q\left(m_{i}=1 \mid b, f\right)}{Q\left(m_{i}=0 \mid b, f\right)} \leftarrow \frac{\alpha_{f i} \mathcal{N}\left(z_{i} ; \mu_{f i}, \psi_{f i}\right)}{\left(1-\alpha_{f i}\right) \mathcal{N}\left(z_{i} ; \mu_{b i}, \psi_{b i}\right)}$	$J^{2} K$
Iterative conditional modes	$m_{i} \leftarrow \begin{cases}1, & \text { if } \frac{\alpha_{f} \mathcal{N}\left(z_{i} ; \mu_{f i} \psi_{f i}\right)}{\left(1-\alpha_{f i}\right) \mathcal{N}\left(z_{i} ; \mu_{b i}, \psi_{b i}\right)}>1 \\ 0, & \text { otherwise }\end{cases}$	K
Gibbs sampling	$m_{i} \leftarrow \operatorname{sample}_{m_{i}}\left\{\begin{array}{cc}\alpha_{f i} \mathcal{N}\left(z_{i j} ; \mu_{f i}, \psi_{f i}\right) & \text { if } m_{i}=1 \\ \left(1-\alpha_{f i}\right) \mathcal{N}\left(z_{i} ; \mu_{b i}, \psi_{b i}\right) & \text { if } m_{i}=0\end{array}\right\}$	K
Mean field	$\frac{Q\left(m_{i}=1\right)}{Q\left(m_{i}=0\right)} \leftarrow \frac{\Pi_{f}\left(\alpha_{f i} \mathcal{N}\left(z_{i} ; \mu_{f i}, \psi_{f i}\right)\right)^{Q(f)}}{\left(\Pi_{f}\left(1-\alpha_{f i}\right)^{Q(f)}\right)\left(\Pi_{b} \mathcal{N}\left(z_{i} ; \mu_{b i}, \psi_{b i}\right)^{Q(b)}\right)}$	$J K$
Structured variational	$\frac{Q\left(m_{i}=1 \mid f\right)}{Q\left(m_{i}=0 \mid S\right)} \leftarrow \frac{\alpha_{f i} \mathcal{N}\left(z_{i} ; \mu_{f i}, \psi_{f i}\right)}{\left(1-\alpha_{f i}\right) \Pi_{b} \mathcal{N}\left(z_{i} ; \mu_{b i}, \psi_{b i}\right)^{Q(b)}}$	$J K$
Sum-product algorithm	$\frac{Q\left(m_{i}=1\right)}{Q\left(m_{i}=0\right)} \leftarrow \frac{\sum_{f} \rho_{i}^{f}(f) \alpha_{f i} \mathcal{N}\left(z_{i} ; \mu_{f i}, \psi_{f i}\right)}{\left(\sum_{f} \rho_{i}^{f}(f)\left(1-\alpha_{f i}\right)\right)\left(\sum_{b} \rho_{i}^{b}(b) \mathcal{N}\left(z_{i} ; \mu_{b i}, \psi_{b i}\right)\right)}$	$J K$

mask variables takes $J^{2} K$ time for exact inference, it takes K time for ICM and Gibbs sampling.

The update for the distribution $Q\left(m_{i}\right)$ over m_{i} in the mean field (fully factorized) variational method can be compared to the update for exact inference. The updates are similar, but an important difference is that each term that depends on f or b is replaced by its geometric average with regard to the current distribution $Q(f)$ or $Q(b)$. Each such geometric average takes J time and there are K mask variables, so updating all mask variables takes $J K$ time.

In the structured variational method, the dependence of m_{i} on f is taken into account. The update for the distribution $Q\left(m_{i} \mid f\right)$ is similar to the update in the mean field method, but the geometric averages for terms that depend on f are not taken (since one Q-distribution is computed for each value of f). The term that depends on b does not depend on f, so its geometric average with regard to b can be computed once for all f. The resulting updates for all mask variables take $J K$ time, which is the same as for the mean field method. This example shows that, sometimes, accounting for more dependencies does not significantly increase the timecomplexity of a variational method.

Comparing the update for $Q\left(m_{i}\right)$ in the sum-product algorithm with the corresponding update in the fully factorized variational method, we see that the geometric averages are replaced with arithmetic averages. This is an important difference between the two methods. While the geometric average favors values of m_{i} that have high weight in all terms, the arithmetic average favors values of m_{i} that have high weight in at least one term. In this sense, the sum-product algorithm is more "inclusive" of possible configurations of hidden variables than fully factorized variational methods. Another difference between these two methods is that, while the variational method takes averages with regard to the same distribution for all pixels, $Q(f)$ or $Q(b)$, the sum-product algorithm uses pixel-specific distributions, $\rho_{i}^{f}(f)$ or $\rho_{i}^{b}(b)$.

7 Experimental Results

We explored the following algorithms for learning the parameters of the occlusion model using the data illustrated in Fig. 1: ICM, exact EM, Gibbs sampling; variational EM with a fully factorized posterior, structured variational EM, and the sum-product algorithm for EM. The MATLAB scripts we used are available on our Web sites.

We found that the structured variational method performed almost identically to the fully factorized variational method, so we do not report results on the structured variational method. Generally, there usually are structured variational approximations that produce bounds that are significantly better than mean field, but are much more computationally efficient than exact inference.

Each technique can be tweaked in a variety of ways to improve performance. However, our goal is to provide the reader with a "peek under the hood" of each inference engine and convey a qualitative sense of the similarities and differences between the techniques, so we strove to make the initial conditions, variable/parameter update schedules, etc., as similar as possible. For details of training conditions, see the MATLAB scripts posted on our Web sites.

The learning algorithms are at best guaranteed to converge to a local minimum of the free energy, which is an upper bound on the negative log-likelihood of the data. A common local minimum is a set of images in which some of the true classes in the data are repeated while the others are merged into blurry images. To help avoid this type of local minimum, we provided the model with 14 clusters-two more than the total number of different foregrounds and backgrounds. (If too many clusters are used, the model tends to overfit and learn specific combinations of foreground and background.)

Each learning algorithm was run five times with different random initializations and the run with the highest loglikelihood was kept. For complex models, computing the loglikelihood is intractable and the free energy was used instead. The pixels in the class means were initialized to independent values drawn from the uniform density in $[0,1)$, the pixel

Fig. 8. Comparison of the learned parameters of the model in Section 2.1 using various learning methods. For each method, we show the mask probabilities α_{k}, pixel means μ_{k}, and pixel variances ψ_{k} for each class k as images, where black indicates a variance of 0 . For exact EM and variational EM, we also show the total posterior probability that each class is used in modeling the foreground (ν^{f}) and background (ν^{b}): $\nu_{k}^{f}=\frac{1}{T} \sum_{t} Q\left(f^{(t)}=k\right), \nu_{k}^{b}=\frac{1}{T} \sum_{t}\left(b^{(t)}=k\right)$. These indicate when a class accounts for too much or too little data. Note that there is no reason for the same class index for two techniques to correspond to the same object.
variances were set to 1 , and the mask probability for each pixel was set to 0.5 . All classes were allowed to be used in both foreground and background images. To avoid numerical problems, the model variances and the prior and posterior probabilities on discrete $\mathrm{RVs} f, b, m_{i}$ were not allowed to drop below 10^{-6}.

Fig. 9. Free energy versus number of floating-point operations used during training for ICM, exact EM, and EM using Gibbs sampling, variational inference, and the sum-product algorithm in the E step.

Fig. 8 shows the parameters after convergence of the learning algorithms and Fig. 9 shows the free energy as a function of the number of computations needed during learning. Most techniques managed to find all classes of appearance, but the computational requirements varied by two orders of magnitude. However, the greediest technique, ICM, failed to find all classes. The ability to disambiguate foreground and background classes is indicated by the estimated mask probabilities α (see, also, the example in Fig. 11), as well as the total posterior probability of a class being used as a background $\left(\nu^{b}\right)$, and foreground $\left(\nu^{f}\right)$.

Exact EM for the most part correctly infers which of the classes are used as foreground or background. The only error it made is evident in the first two learned classes, which are sometimes swapped to model the combination of the background and foreground layers, shown in the last example from the training set in Fig. 1. This particular combination (12 images in the data set) is modeled with class 2 in the background and class 1 in the foreground. This is a consequence of using 14 classes, rather than the required 12 classes. Without class 2, which is a repeated version of class 6 , class 6 would be correctly used as a foreground class for these examples. The other redundancy is class 13 , which ends up with a probability close to zero, indicating it is not used by the model.

The variational technique does not properly disambiguate foreground from background classes, as is evident from the total posterior probabilities of using a class in each layer ν^{f} and ν^{b}. For the classes that exact EM always inferred as background classes, the variational technique learned masks probabilities that allow cutting holes in various places in

Fig. 10. How good are the free energy approximations to the negative log-likelihood? In (a), we compare the mean-field variational free energy, the point estimate free energy, and the negative log-likelihood during variational $E M$. In (b), we compare the same three quantities during exact $E M$. To further illustrate the advantage of modeling uncertainty in the posterior, in (c), we show the point-estimate free energy and the negative log-likelihood during ICM learning. In (d), we compare the same two quantities during Gibbs sampling EM.
order to place the classes in the foreground and show the faces behind them. The mask probabilities for these classes show outlines of faces and have values that are between zero and one, indicating that the corresponding pixels are not consistently used when the class is picked to be in the foreground. Such mask values reduce the overall likelihood of the data and increase the variational free energy because the mask likelihood $P\left(m_{i} \mid f\right)=\alpha_{f i}^{m_{i}}\left(1-\alpha_{f i}\right)^{1-m_{i}}$ has the highest value when $\alpha_{f i}$ is either 0 or 1 and m_{i} has the same value. Consequently, the variational free energy is always somewhat above the negative likelihood of the data for any given parameters (see Fig. 10a). Similar behavior is evident in the results of other approximate learning techniques that effectively decouple the posterior over the foreground and background classes, such as loopy belief propagation (last column of Fig. 8) and the structured variational technique. Note that small differences in free energy may or may not indicate a difference in the visual quality of the solution.

One concern that is sometimes raised about minimizing the free energy is that the approximate Q-distribution used for the hidden RVs may not be well-suited to the model, causing the free energy to be a poor bound on the negative log-likelihood.

However, as pointed out in [17], since the free energy is $F(Q, P)=D(Q, P)-\ln P(v)$ (see (6)), if two models fit the data equally well ($\ln P(v)$ is the same), minimizing the free energy will select the model that makes the approximate Q-distribution more exact (select P to minimize $D(Q, P)$).

We see this effect experimentally in Fig. 10. In Fig. 10a, we show the free energy for the variational mean-field method during 30 iterations of learning. In this case, a single iteration corresponds to the shortest sequence of steps that update all variational parameters $\left(Q(b), Q(f), Q\left(m_{i}\right)\right.$ for each training case) and all model parameters. In the same plot, we show the true negative log-likelihood after each iteration. We also show the point estimate of the free energy, which is evaluated at the modes of the variational posterior. Since the parameters are updated using the variational technique, the variational bound is the only one of the curves that theoretically has to be monotonic. While the negative of the log-likelihood is consistently better than the other estimates, the bound does appear to be relatively tight most of the time. Note that, early on in learning, the point estimate gives a poor bound, but, after learning is essentially finished, the point estimate gives a good bound. The fact that ICM performs poorly for learning,

Fig. 11. An illustration of learning using loopy belief propagation (the sum-product algorithm). For each iteration, we show: (a) model parameters, including mask priors, mean, and variance parameters for each class, and (b) inferred distribution over the mask and the most likely foreground and background class for two of the 300 training cases. Although the algorithm (Section 5.14) converges quickly, it cannot escape a local minimum caused by an overly greedy decision made in the very first iteration in which the foreground object is placed into the background layer for the first illustrated training case. In this local minimum, some "background classes" (e.g., $k=12$) are used as foregrounds (see the mask). An additional two iterations of exact EM (Section 5.9), which uses the exact posterior $Q(f, b) Q(m \mid f, b)$, allows the inference process to flip the foreground and background where needed and escape the local minimum (see the mask of class $k=12$ after EM).
but performs well for inference after learning using a better technique indicates the importance of accounting for uncertainty early in the learning process.

As shown in Fig. 10b, if the same energies are plotted for the parameters after each iteration of exact EM, the curves converge by the fifth iteration. Here, the mean-field variational free energy is computed using the factorized posterior $Q(f) Q(b) \prod_{i} Q\left(m_{i}\right)$ fitted by minimizing the KL distance to the exact posterior $P(f, b, m \mid z)$, while the point estimate is computed by further discarding everything but the peaks in the variational posterior. When the posterior is still broad early in the learning process, the variational posterior leads to a tighter bound on the negative log-likelihood than the point estimate. However,
the point estimate catches up quickly as EM converges and the true posterior itself becomes peaked.

If the parameters are updated using ICM (which uses point estimates), as shown in Fig. 10c, poor local minima are found and both the free energy and the true negative loglikelihood are significantly worse than the same quantities found using exact EM and variational EM. Also, even after convergence, the point estimate free energy is not a tight bound on the negative log-likelihood.

These plots are meant to illustrate that, while fairly severe approximations of the posterior can provide a tight bound near the local optimum of the log-likelihood, it is the behavior of the learning algorithm in the early iterations that determines how close an approximate technique will get to
a local optimum of the the true log-likelihood. In the early iterations, to give the model a chance to get to a good local optimum, the model parameters are typically initialized to model broad distributions, allowing the learning techniques to more broadly explore the space of possibilities through relatively flat posteriors (e.g., in our case, we initialize the variances to be equal to one, corresponding to a standard deviation of 100 percent of the dynamic range of the image). If the approximate posterior makes greedy decisions early in the learning process, it is often difficult to correct the errors in later iterations. ICM, while very fast, is the most greedy of all the techniques. Even if variances are initialized to large values, ICM makes poor, greedy decisions for the configuration of the hidden RVs early on in learning and does not recover from these mistakes.

Importantly, even computationally simple ways of accounting for uncertainty can improve performance significantly, in comparison with ICM. In Fig. 10d, we show the point estimate free energy and the negative log-likelihood when the ICM technique is modified to take some uncertainty into account by performing a Gibbs sampling step for each RV instead of picking the most probable value. ${ }^{5}$ This method does not increase the computational cost per iteration compared to ICM, but it obtains much better values of both energies. Sampling sometimes makes the free energy worse during the learning, but allows the algorithm to account for uncertainty early on, when the true posterior distributions for RVs are broad. While this single-step Gibbs sampling technique obtains better energies than ICM, it does not achieve the lower energies obtained by exact EM and variational EM.

The effect of approximate probabilistic inference on the visual quality of the parameters is illustrated in Fig. 11, where we show how the model parameters change during several iterations of EM where the E step is performed using the sumproduct algorithm. On the far right of the figure, we illustrate the inference over hidden RVs (foreground class f, background class b, and the mask m) for two training cases. After the first iteration, while finding good guesses for the classes that took part in the formation process, the foreground and background are incorrectly inverted in the posterior for the first training case and this situation persists even after convergence. Interestingly, by applying an additional two iterations of exact EM after 30 iterations of sum-product EM, the model leaves the local minimum. This is evident not only in the first training case, but also in the rest of the training data, as evidenced by the erasure of holes in the estimated mask probabilities for the background classes. The same improvement can be observed for the variational technique. In fact, adding a small number of exact EM iterations to improve the results of variational learning can be seen as part of the same framework of optimizing the variational free energy, except that not only the parameters of the variational posterior, but also its form can be varied to increase the bound at each step.

When the nature of the local minima to which a learning technique is susceptible is well understood, it is often possible to change either the model or the form of the approximation to the posterior to avoid these minima without too much extra computation. In the occlusion model, the problem is the background-foreground inversion, which can be avoided by simply testing the inversion hypothesis and switching the inferred background and foreground classes to check if this
5. Note that, because this technique does not use an ensemble of samples, it is not guaranteed to minimize free energy at each step.
lowers the free energy, rather than exploring all possible combinations of classes in the exact posterior. An elegant way of doing this within the variational framework is to add an additional "switch" RV to the model, which, in the generative process, can switch the two classes. Then, the mean field posterior would have a component that models the uncertainty about foreground-background inversion. While this would render the variational learning two times slower, it would still be much faster than the exact EM.

8 Future Directions

In our view, the most interesting and potentially high-impact areas of current research include introducing effective representations and models of data; inventing new inference and learning algorithms that can efficiently infer combinatorial explanations of data; developing real-time, or near-realtime, modular software systems that enable researchers and developers to evaluate the effectiveness of combinations of inference and learning algorithms for solving real-world tasks; advancing techniques for combining information from multiple sources, e.g., camera images, spectral features, microphones, text, tactile information, etc.; developing inference algorithms for active tasks, that effectively account for uncertainties in the sensory inputs and the model of the environment when making decisions about investigating the environment. In our view, a core requirement in all of these directions of research is that uncertainty should be properly accounted for, both in the representations of problems and in adapting to new data. Large-scale, hierarchical probability models and efficient inference and learning algorithms will play a large role in the successful implementation of these systems.

References

[1] E.H. Adelson and P. Anandan, "Ordinal Characteristics of Transparency," Proc. AAAI Workshop Qualitative Vision, 1990.
[2] O.E. Barndorff-Nielson, Information and Exponential Families. Chichester: Wiley, 1978.
[3] J. Besag, " On the Statistical Analysis of Dirty Pictures," J. Royal Statistical Soc. B, vol. 48, pp. 259-302, 1986.
[4] R.G. Cowell, A.P. Dawid, S.L. Lauritzen, and D.J. Spiegelhalter, Probabilistic Networks and Expert Systems. New York: Springer, 1999.
[5] R.G. Cowell, A.P. Dawid, and P. Sebastiani, "A Comparison of Sequential Learning Methods for Incomplete Data," J. Bayesian Statistics, vol. 5, pp. 581-588, 1996.
[6] A.P. Dempster, N.M. Laird, and D.B. Rubin, "Maximum Likelihood from Incomplete Data via the EM Algorithm," Proc. Royal Statistical Soc., vol. 39, pp. 1-38, 1977.
[7] Hermann von Helmholtz, D. Cahan, ed. Los Angeles: Univ. of Calif. Press, 1993.
[8] W. Freeman and E. Pasztor, "Learning Low-Level Vision," Proc. Int'l Conf. Computer Vision, pp. 1182-1189, 1999.
[9] B.J. Frey, "Extending Factor Graphs so as to Unify Directed and Undirected Graphical Models," Proc. 19th Conf. Uncertainty in Artificial Intelligence, 2003.
[10] B.J. Frey and N. Jojic, "Transformed Component Analysis: Joint Estimation of Spatial Transformations and Image Components," Proc. IEEE Int'l Conf. Computer Vision, Sept. 1999.
[11] B.J. Frey and N. Jojic, "Transformation-Invariant Clustering Using the EM Algorithm," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 25, no. 1, pp. 1-17, Jan. 2003.
[12] B.J. Frey, R. Koetter, and N. Petrovic, "Very Loopy Belief Propagation for Unwrapping Phase Images," Advances in Neural Information Processing Systems 14, T.G. Dietterich, S. Becker, and Z. Ghahramani, eds. MIT Press, 2002.
[13] B.J. Frey and D.J.C. MacKay, "A Revolution: Belief Propagation in Graphs with Cycles," Advances in Neural Information Processing Systems 1997, M.I. Jordan, M.I. Kearns, and S.A. Solla, eds., vol. 10. pp. 479-485. MIT Press, 1998.
[14] S. Geman and D. Geman, "Stochastic Relaxation, Gibbs Distribution and the Bayesian Restoration of Images," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 6, pp. 721-741, 1984.
[15] Z. Ghahramani and M. Beal, "Propagation algorithms for Variational Bayesian Learning," Advances in Neural Information Processing Systems 13, T. Leen, T. Dietterich, and V. Tresp, eds. MIT Press, 2001.
[16] D. Heckerman, "A Tutorial on Learning with Bayesian Networks," Learning in Graphical Models, M.I. Jordan, ed. Norwell, Mass.: Kluwer Academic, 1998.
[17] G.E. Hinton, P. Dayan, B.J. Frey, and R.M. Neal, "The Wake-Sleep Algorithm for Unsupervised Neural Networks," Science, vol. 268, pp. 1158-1161, 1995.
[18] G.E. Hinton and T.J. Sejnowski, "Learning and Relearning in Boltzmann Machines," Parallel Distributed Processing: Explorations in the Microstructure of Cognition, D.E. Rumelhart and J.L. McClelland, eds., vol. I, pp. 282-317, 1986.
[19] N. Jojic and B.J. Frey, "Learning Flexible Sprites in Video Layers," Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2001.
[20] N. Jojic, B.J. Frey, and A. Kannan, "Epitomic Analysis of Appearance and Shape," Proc. IEEE Int'l Conf. Computer Vision, Sept. 2003.
[21] N. Jojic, N. Petrovic, B.J. Frey, and T.S. Huang, "Transformed Hidden Markov Models: Estimating Mixture Models of Images and Inferring Spatial Transformations in Video Sequences," Proc. IEEE Conf. Computer Vision and Pattern Recognition, June 2000.
[22] M.I. Jordan, Z. Ghahramani, T.S. Jaakkola, and L.K. Saul, "An Introduction to Variational Methods for Graphical Models," Learning in Graphical Models, M.I. Jordan, ed. Norwell, Mass.: Kluwer Academic, 1998.
[23] F.R. Kschischang, B.J. Frey, and H.-A. Loeliger, "Factor Graphs and the Sum-Product Algorithm," IEEE Trans. Information Theory, special issue on codes on graphs and iterative algorithms, vol. 47, no. 2, pp. 498-519, Feb. 2001.
[24] S.L. Lauritzen, Graphical Models. New York: Oxford Univ. Press, 1996.
[25] D.J.C. MacKay, "Bayesian Neural Networks and Density Networks," Nuclear Instruments and Methods in Physics Research, vol. 354, pp. 73-80, 1995.
[26] M. Mézard, G. Parisi, and R. Zecchina, "Analytic and Algorithmic Solution of Random Satisfiability Problems," Science, vol. 297, pp. 812-815, 2002.
[27] T.P. Minka, "Expectation Propagation for Approximate Bayesian Inference," Proc. 17th Conf. Uncertainty in Artificial Intelligence, 2001.
[28] K.P. Murphy, Y. Weiss, and M.I. Jordan, "Loopy Belief Propagation for Approximate Inference: An Empirical Study," Proc. 15th Conf. Uncertainty in Artificial Intelligence, 1999.
[29] R.M. Neal, "Bayesian Mixture Modeling by Monte Carlo Simulation," Technical Report CRG-TR-91-2, Univ. of Toronto, 1991.
[30] R.M. Neal, "Probabilistic Inference Using Markov Chain Monte Carlo Methods," technical report, Univ. of Toronto, 1993.
[31] R.M. Neal and G.E. Hinton, "A View of the EM Algorithm that Justifies Incremental, Sparse, and Other Variants," Learning in Graphical Models, M.I. Jordan, ed. pp. 355-368, Norwell, Mass.: Kluwer Academic, 1998.
[32] A.Y. Ng and M.I. Jordan, "A Comparison of Logistic Regression and Naive Bayes," Advances in Neural Information Processing Systems 14, T. G. Dietterich, S. Becker, and Z. Ghahramani, eds., Cambridge, Mass.: MIT Press, 2002.
[33] J. Pearl, Probabilistic Reasoning in Intelligent Systems. San Mateo, Calif.: Morgan Kaufmann, 1988.
[34] M.J. Wainwright and M.I. Jordan, "Graphical Models, Variational Inference and Exponential Families," Technical Report 649, Dept. of Statistics, Univ. of California, Berkeley, 2003.
[35] Y. Weiss and W. Freeman, "On the Optimaility of Solutions of the Max-Product Belief Propagation Algorithm in Arbitrary Graphs," IEEE Trans. Information Theory, special issue on codes on graphs and iterative algorithms, vol. 47, no. 2, pp. 736-744, Feb. 2001.
[36] C.W. Williams and M.K. Titsias, "Learning about Multiple Objects in Images: Factorial Learning without Factorial Search," Advances in Neural Information Processing Systems 15, S. Becker, S. Thrun, and K. Obermayer, eds., Cambridge, Mass.: MIT Press, 2003.
[37] J. Yedidia, W.T. Freeman, and Y. Weiss, "Understanding Belief Propagation and Its Generalizations," Proc. Int'l Joint Conf. Artificial Intelligence, 2001.

Brendan J. Frey's university education included engineering, physics, and computer science, culminating with a doctorate from Geoffrey Hinton's Neural Networks Research Group at the University of Toronto. From 1997 to 1999, he was a Beckman Fellow at the University of Illinois at Urbana-Champaign, where he continues to be an adjunct faculty member in electrical and computer engineering. From 1998 to 2001, he was a faculty member in computer science at the University of Waterloo. Currently, he is the head of the Probabilistic and Statistical Inference Group in the Department of Electrical and Computer Engineering at the University of Toronto and consults for Microsoft Research, Redmond, Washington. He has received several awards, given more than 40 invited talks, and published more than 100 papers on probabilistic inference and machine learning for computer vision, computational biology, and information processing. In the past, he cochaired the Workshop on Artificial Intelligence and Statistics and the Canadian Workshop on Information Theory and acted as co-editor-in-chief of a special issue of the IEEE Transactions on Information Theory, titled Codes on Graphs and Iterative Algorithms. He was also an associate editor of the IEEE Transactions on Pattern Analysis and Machine Intelligence. He is a senior member of the IEEE.

Nebojsa Jojic received the PhD degree from the University of Illinois at Urbana-Champaign in 2001, where he received a Microsoft Fellowship in 1999 and a Robert T. Chien excellence in research award in 2000. He has been a researcher at Microsoft Research in Redmond, Washington, since 2000. Dr. Jojic also spent a semester at the University of Illinois at Chicago and consulted for the Hong Kong University of Science and Technology. He has published more than 40 papers in the areas of computer vision, machine learning, signal processing, computer graphics, and computational biology.
\triangleright For more information on this or any other computing topic, please visit our Digital Library at www.computer.org/publications/dlib.

