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Abgract  Recently, video-based face recognition has become one of the hottest topicsin the do-
main of face recognition. How to fully utilize both spatial and temporal information in video to
overcome the difficulties existing in the video-based face recognition, such as low resolution of
face imagesin video, large variations of face scale, radical changes of illumination and pose as
well as occasonally occluson of different partsof faces, isthefocus. The paper reviews most ex-
isting typical methods for video-based face recognition (especially for the last 5 years) and analy-
sestheir respective pros and cons. Two commonly used video face databases and some experi men-
tal results are given. The prospects for future development and suggestions for further research
works are put forward in the end.
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During the past several years, many research efforts
have been concentrated on video-based face recognition.
Compared with still image-based face recognition, true video-
based face recognition algorithms that use both spatial and
tempora information started only afew years ago. No comr-
prehensive survey in thisfield has been made, and alot of is
sues in video-based face recognition still have not been ad-
dressed well. So the content of this paper gives an overview
of the most existing methods in the field of video-based face
recognition. A suitable classfication for different methods
has been made, the respective pros and cons of typical tech-
niques in each method group are analyzed. The important is
sues which need to be solved , the prospectsfor future devel-
opment and some suggestions for further research works are
put forward to meet the goa of this paper.



