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Abstract

The influence of image segmentation over the measurement accuracy of object features is studied. Seven features are examined
under different image conditions by using a common segmentation procedure. The results indicate that accurate measures of
image properties profoundly depend on the quality of image segmentation.
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1. Introduction

“Image analysis is concerned with the extraction of
information from an image; an image in yields data
out” (Young, 1988). Here the out data are the mea-
surements of image properties. In most image analy-
sis applications, the interest is only in parts of images
- the objects are extracted and their properties are
measured. The process of extracting objects from the
background is called image segmentation. It is ob-
vious that the measurement of object features de-
pends upon object extraction and that the quality of
the segmentation process will affect the final mea-
surement results.

In this paper, we investigate how the results of ob-
ject feature measurement are affected by image seg-
mentation. A number of controlled tests are carried
out to examine the dependence of feature measure-
ments on the quality of segmented images. In the next
section, the method employed for such a study is de-
scribed. Experimental results and the result analysis
are presented in Section 3. Finally, some concluding
remarks are given in Section 4.
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2. Method description

To study the dependence of object feature mea-
surements on the quality of image segmentation, the
test images, segmentation procedure, test object fea-
tures and criteria for judging the goodness of mea-
surements are needed to be first selected. We de-
scribe them separately in the following. '

2.1. Test images

Since synthetic images have the advantage that they
can easily be manipulated, i.e., conditions can be pre-
cisely controlled and experiments can be easily re-
peated, synthetically generated test images are used
in this study. They are produced by using the system
for generating synthetic images as described in
(Zhang and Gerbrands, 1992a). In this system, a set
of synthetic images is produced in several steps. First
an image that serves as a basis for all other images is
designed, which is a realization of a simple model of
application. Starting from this basic image, other im-
ages can be obtained by alternating the objects con-
tained in the basic image with respect to different
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shape and size and/or by incorporating the various
distortion phenomena, such as noise and blur. The
combination of object variation and distortion fac-
tors finally produces images that approximate differ-
ent real-world scenes. In practice, the blurring effect
can be obtained by filtering images with low-pass fil-
ters. Noisy images can be simulated by adding zero-
mean white Gaussian noise. The standard deviation
of noise can be varied to provide images of different
Signal to Noise Ratio (SNR) which is defined as
(Kitchen and Rosenfeld, 1981):

. 2
contrast between object and background)

SNR= — -
( standard deviation of noise

(1)

In this study, we use images of 256 X256 pixels,
with 256 gray-levels. The basic image is composed of
a centered circular disc object (diameter 128) with
gray-level 144 on a homogeneous background of gray-
level 112. Test images generated from this basic im-
age will be described in the next section along with
the experiments.

2.2. Segmentation procedure

As will be made clear in the next section, a segmen-
tation procedure that can provide gradually changing
segmented images and which is relatively indepen-
dent of the shape/size of objects in images is useful
for our study. A large number of segmentation algo-
rithms have been proposed in the literature (Fu and
Mui, 1981; Haralick and Shapiro, 1985; Sahoo et al.,
1988). Among them, thresholding techniques are
popularly employed (Sahoo et al., 1988). The global
thresholding techniques differ mainly in the way they
determine the threshold values. To make the study
more general, not a specific thresholding technique is
used but many different threshold values are applied.
The goal of this study is not to compare different
thresholding techniques but to investigate the depen-
dence of feature measurements on the threshold
value, so on the segmentation procedure. In order to
obtain a group of gradually changing segmented im-
ages, the test images are first multiply thresholded
with a sequence of values. These threshold values are
taken from the original gray-levels between that of
object and background. This gives us a series of la-

belled images. Then one opening process is applied
to each labelled image to reduce random noise ef-
fects. Finally the biggest object is selected in each im-
age and the holes inside are filled. Such a procedure
is simple but is also effective in practice.

2.3. Test features

In various image analysis applications geometric
features are commonly employed (Mui and Fu,
1980). Seven geometric features will be considered
here. These are the area (A4), perimeter (P), form
factor (F), sphericity (S), eccentricity (£), normal-
ized mean absolute curvature (N) and bending en-
ergy (B) of objects. Area and perimeter are self-ex-
plaining. The others are shortly described as follows.

The form factor is derived from the area and
perimeter:

PZ
F=ama

(2)

The sphericity is determined from two circles,
whose centers are located at the object’s center-of-
mass:

radius of inscribed circle
™ radius of circumscribed circle ’

(3)
The eccentricity is obtained on the basis of fitting
an ellipse to the object boundary:

__ major axis length of fitting ellipse
~ minor axis length of fitting ellipse ’

4

The normalized mean absolute curvature is pro-
portional to the average of the absolute values of the
curvature function K(m) of an object contour:

M
Nec 3 |K(m)] (3)
m=1
where M is the number of points on the object con-
tour and K(m) can be expressed with the chain code
C(-) of the object contour by

C(m)—-C(m-1)
L{C(m)]+L[C(m-1)]"

K(m)=

the L(-) is the half-length of the curve segments sur-
rounding the contour point (Bowie and Young,
1977).
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Finally, the bending energy is proportional to the
sum of the squared curvature around an object con-
tour (Bowie and Young, 1977)

M
B 5 KX(m). (6)

Having obtained the contour of an object, formu-
las (2) to (6) can be directly applied.

2.4. Measurement judging criteria

In image analysis the goodness of object feature
measurements can be assessed by their accuracy. Since
the object feature measurement is often the ultimate
goal of analysis, the accuracy can be called Ultimate
Measurement Accuracy (UMA) (Zhang and Ger-
brands, 1992b). This accuracy is expressed by the
difference between the feature values of generated
objects and segmented objects. The Relative UMA of
a feature f (RUMA,) is given by:

RUMA,= 1O =Ml . 100% . (7)
Oy

In (7), the original feature value (O)) is directly
obtained from the image generation process and the
measured feature value (/) is derived from the seg-
mentation result. The RUMA represents the disparity
between true and segmented objects. The smaller the
value, the better is the segmentation accuracy.

3. Experiments and results

The following four quantitative experiments have
been carried out to study the dependence of RUMA
on image segmentation. The test images will be de-
scribed along with each experiment. Some test results
are presented in the related figures. Since the seg-
mented images are indexed by the threshold values
used for obtaining the respective images, we plot the
RUMA of features as the function of the threshold
values used in the segmentation procedure.

3.1. Feature difference

The first experiment is to compare the RUMA of
these seven features for the same segmented images.

As an example, we show in Fig. 1 the results obtained
from one image that contains the same object as in
the basic image. The SNVR of this image is 16. The
resulted values of different features have been nor-
malized for the purpose of comparison.

Three points can be remarked from Fig. 1. The first
is that all curves have a local minimum located at the
inner region between the gray-levels of object and
background, and have higher values at the two sides.
Intuitively, this implies that the measurement accu-
racy of those features is connected to the quality of
segmented images. The second, however, is that those
minima are not located at the same place. This means
there exists no unique best segmented image with re-
spect to all these features. The third is that the seven
curves have different forms. The A curve has a deeper
valley and decreases or increases around the valley
quite consistently. In other words, it steadily follows
the change of the threshold values. Other features are
not always so sensitive to such a change. We can say
that the accurate measurement of object area de-
pends more upon the segmentation procedure than
that of other features. The measurement accuracy is
a function of segmentation and the measurement ac-
curacies of different features are different functions
of segmentation.

3.2. SNR influence

The second experiment is to look at the depen-
dence of RUMA on segmentation when images have
various SNR levels. Four test images with different
SNR levels are generated by adding Gaussian noise

RUMA
100

12 116 120 124 128 132 136 140

Fig. 1. Experimental results about feature difference.
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with standard deviations 4, 8, 16 and 32. According
to formula (1), the SNR levels are 64, 16, 4, and 1,
respectively. These values cover the range of many
applications and they are compatible with other
studies (Kitchen and Rosenfeld, 1981). These four
images contain the same object as in the basic image.
In Fig. 2, the RUMA curves of three features, namely
A, E and P are presented.

The noise influences on the results are quite differ-
ent as can be seen from Fig. 2. The A curves are grad-
ually shifted to the left as the SNR level decreases,
though their forms remain likewise. It is thus possi-
ble, by choosing the appropriate values of algorithm
parameters, to obtain a similar measurement accu-
racy from images of different SNR levels. On the con-
trary, the £ and P curves are gradually moved up as
the SNR level decreases. In other words, the best
measurement accuracy of £ and P is associated with
the SNR level of images. The bigger the SNR level,
the better is the expected measurement accuracy. In
figs. 2(B) and 2(C), the E curves are jagged, whereas
the P curves are more smooth. This implies that E is
more sensitive to the variation of segmented objects
due to noise. Among other features, the B, N and F
curves are also smooth like the P curves, while the S
curves show some jags as the E curves.

3.3. Object size influence

In real applications, the objects of interest con-
tained in images can have different shapes and/or
sizes. The size of objects can affect the dependence of
RUMA on segmentation, as shown in the third exper-

iment. Four test images with objects of different sizes
are generated. Their diameters are 128, 90, 50 and
28, respectively. The SNR of these images is fixed to
64 to eliminate the influence of SNR. The results for
three features, namely 4, B and F are shown in Fig.
3.

In Figs. 3(A) and 3(B), the measurement accu-
racy of A and that of B show opposite tendency with
respect to the change of object size. When the images
to be segmented contain smaller objects, the ex-
pected measurement accuracy for 4 becomes worse
while the expected measurement accuracy for B be-
comes better. Among other features, E and S exhibit
similar tendency as A but less significantly, while the
N curves are more comparable with the B curves. Not
all features show clear relations with object size, for
example, the four F curves in Fig. 3(C) are mixed.
The P curves also have similar behavior.

3.4. Object shape influence

The fourth experiment is made to examine how the
dependence of RUMA on segmentation is affected by
object shape. Four test images containing elliptical
objects of different eccentricity (£=1.0, 1.5, 2.0, 2.5)
are generated. Though the shapes of these four ob-
jects are quite distinct, we demand these objects have
similar sizes (as the object size in the basic image) to
avoid the influence of object size. This was achieved
by adjusting both the long and short axes of these el-
lipses. In Fig. 4, the results obtained from these four
images with SNR =64 for three features, 4, N and S
are given.
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Fig. 2. Experimental results about SNR influence.
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Fig. 3. Experimental results about object size influence.
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Fig. 4. Experimental results about object shape influence.

The difference among the four curves of a same
feature in Fig. 4 is less notable than that in Fig. 3. In
Fig. 4(A), for example, the four 4 curves are almost
overlapped with each other. This means that the in-
fluence of object shape on the measurement accuracy
is much less important than that of object sizes. Other
feature curves, except the B curves, have similar be-
havior as the S curves in Fig. 4(C), while the B curves
are more like the N curves in Fig. 4(B).

4, Discussion

Young (1988) has pointed out that “The ability to
derive accurate measures of image properties is pro-
foundly affected by a number of issues”. This study
shows that the quality of image segmentation is one
of such issues. The quality of image segmentation, in

turn, is determined by the performance of the seg-
mentation techniques applied to get segmented im-
ages. In this study, the segmentation procedure takes
all possible values as threshold to segment images.
This is equivalent to using various thresholding al-
gorithms because they are all covered by this proce-
dure. The results show that the influence of algo-
rithms over the measurement of certain features (for
example, A) is quite considerable. The accuracy of
feature measurements can be seriously reduced by a
tiny degradation of algorithm performance. To ob-
tain accurate measurements of these features, select-
ing appropriate segmentation techniques is primary.

In addition, various factors have also influences
over the relation between segmentation of objects and
measurement of different features. In this study, the
influences of SNR level, the object size and shape are
separately investigated. If we look at Figs. 2(A), 3(A)
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and 4(A) together, for example, we see that the SNR
level has more influences than the object shape over
the measurement of feature 4. Results of other fea-
tures also give similar appearance. The difference
gives us indications that some factors are more im-
portant than others to feature measurements. In
practice, one should reduce these influences to achieve
feasible measurements. If more attention were paid
to these factors, it would be possible to obtain better
results with fewer efforts.

Many features can be used as descriptors of object
properties. Various features can be ranked according
to their power in discriminating object shape. For in-
stance, it has been shown that B and N are superior
over the F in describing (segmented) objects of dif-
ferent shapes (Young et al., 1974). When the seg-
mentation phase is to be taken into account, the fea-
ture ranking must be reconsidered due to the different
dependence of the feature measurement accuracy over
image segmentation. As can be seen from Figs. 3(B)
and 4(B), the expected measurement accuracy of B
and N is relatively lower (under the present segmen-
tation scheme), so their form description power in
such cases would be reduced. In conclusion, the ca-
pability of useful features in describing and classify-
ing objects also depends on the accuracy of their
measurements from segmented images.
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