

电磁信息论:基础与应用

戴凌龙

清华大学电子工程系

2023年4月2日

J. Zhu, Z. Wan, L. Dai, M. Debbah, and H. V. Poor, "Electromagnetic information theory: Fundamentals, modeling, applications and open problems," *IEEE Wireless Commun.*, 2023.

从冰山效应讲起……

- 无线通信研究的不同视角

电磁学是否可以为未来通信研究带来什么新启发

电磁信息论:基础与应用

3/28

什么是电磁信息论?

● 电磁信息论^[1]: 融合确定性的物理机理与统计性的数学规律的交叉学科,为无线 信息系统的性能评估和优化设计提供理论基础

随机变量的熵: $H(X) = \sum p(x) \log_2(\frac{1}{p(x)})$

随机变量的互信息: I(X;Y) = H(X) - H(X|Y)

加性高斯噪声信道容量:

$$C = \int_0^W \log\left(1 + \frac{P(f)}{N(f)}\right) df$$

高斯定律: $\bigtriangledown \cdot \mathbf{D} = \rho$ 高斯磁定律: $\bigtriangledown \cdot \mathbf{B} = 0$ 麦克斯韦-安培定律: $\bigtriangledown \times \mathbf{H} = \mathbf{j} + \frac{\partial \mathbf{D}}{\partial t}$ 法拉第电磁感应定律: $\bigtriangledown \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$

[1] J. Zhu, Z. Wan, L. Dai, M. Debbah, and H. V. Poor, "Electromagnetic information theory: Fundamentals, modeling, applications and open problems," *IEEE Wireless Commun.*, 2023.

电磁信息论中的信道建模

● 电磁场<mark>输入输出</mark>之间的关系

电场强度 格林函数 电流密度 从发端电流密度 $\mathbf{E}(\mathbf{r}) = \int_{V_s} \mathbf{G}(\mathbf{r}, \mathbf{s}) \mathbf{J}(\mathbf{s}) d\mathbf{s}, \ \mathbf{r} \in V_r$ 考虑场噪声的收端电场强度 $\mathbf{Y}(\mathbf{r}) = \mathbf{E}(\mathbf{r}) + \mathbf{N}(\mathbf{r}) \ \mathbf{r} \in V_r$

● 其中的格林函数(<u>空间冲激响应</u>)

格林函数:
$$\mathbf{G}(\mathbf{r}, \mathbf{s}) = \frac{\mathbf{j}\kappa Z_0}{4\pi} \frac{e^{\mathbf{j}\kappa \|\mathbf{r}-\mathbf{s}\|}}{\|\mathbf{r}-\mathbf{s}\|} \left(\mathbf{I} + \frac{\nabla_{\mathbf{r}}\nabla_{\mathbf{r}}^{\mathrm{H}}}{\kappa^2}\right) \approx \frac{\mathbf{j}\kappa Z_0}{4\pi} \frac{e^{\mathbf{j}\kappa \|\mathbf{r}-\mathbf{s}\|}}{\|\mathbf{r}-\mathbf{s}\|} \left(\mathbf{I} - \hat{\mathbf{p}}\hat{\mathbf{p}}^{\mathrm{H}}\right)$$

 $\hat{\mathbf{p}} = \frac{\mathbf{p}}{\|\mathbf{p}\|} \qquad \mathbf{p} = \mathbf{r} - \mathbf{s} \qquad \mathbf{成}$ 立条件: 无边界条件,均匀介质,时谐场假设(单频点)

电磁信息论中的信道模型是由格林函数决定的确定信道

电磁信息论中的信号建模

- 源端电流密度自相关 $R_{J}(s_1, s_2) \coloneqq \mathbb{E}[J(s_1)J^{H}(s_2)]$
- 接收端电场强度自相关 $R_{E}(r_{1}, r_{2}) \coloneqq \mathbb{E}[E(r_{1})E^{H}(r_{2})]$
- 格林函数刻画了源场转化关系

电磁信息论中的收发信号模型用空域随机场进行刻画

Z. Wan, J. Zhu, Z. Zhang, L. Dai, and C.-B. Chae, "Mutual information for electromagnetic information theory based on random fields," IEEE Trans. Commun., Feb. 2023.

经典MIMO信息论 v.s. 电磁信息论

	经典MIMO信息论	电磁信息论
信道描述	数学信道	物理信道
信道特征	离散信道	连续信道
信道形式	矩阵	算子
信道分解	SVD <mark>矩阵分解,特征向量</mark>	<mark>算子谱分解,本征</mark> 函数
信号建模	高斯随机向量	高斯 <mark>随机场</mark>
噪声建模	i.i.d. 高斯白噪声	电磁 <mark>有色</mark> 噪声
容量计算	矩阵行列式	算子Fredholm行列式

7/28

建立了从离散域数学信道到连续域物理信道的迁移

J. Zhu, Z. Wan, L. Dai, M. Debbah, and H. V. Poor, "Electromagnetic information theory: Fundamentals, modeling, applications and open problems," IEEE Wireless Commun., 2023.

KL展开求互信息

- 通用的<u>互信息</u>求解方法:建立随机场模型,考虑接收端任意自相关
- KL(Karhunen-Loeve)展开: 获取任意随机场的正交基

$$R_E(r,r') = \int_0^L \int_0^L g(r,s) R_J(s,s') g^*(r',s') \mathrm{d}s \mathrm{d}s'.$$

KL展开 $R_E(r,r') = \sum_{k=1}^{+\infty} \lambda_k \phi_k(r) \phi_k(r'),$ $\lambda_k \phi_k(r') = \int_0^L R_E(r,r') \phi_k(r) dr; k > 0, k \in \mathbb{N}.$ $\int_0^L \phi_{k_1}(r) \phi_{k_2}(r) dr = \delta_{k_1 k_2}.$

J(s)E(r)既保证基底的正交,
又使得展开系数无关J(s)MIMO信息论电磁信息论互信息
$$I = B \sum_{k=1}^{N} \log \left(1 + \frac{\lambda_k}{n_0/2}\right)$$
 $I = B \sum_{k=1}^{+\infty} \log \left(1 + \frac{\lambda_k}{n_0/2}\right)$

Z. Wan, J. Zhu, Z. Zhang, L. Dai, and C.-B. Chae, "Mutual information for electromagnetic information theory based on random fields," IEEE Trans. Commun., Feb. 2023.

Fredholm行列式求闭式互信息

● Fredholm行列式: 算子的行列式, 在物理学中有广泛应用, 有完善的数值方法
 ● 白噪声和有色噪声(空域意义下)下的互信息表达式

Z. Wan, J. Zhu, Z. Zhang, L. Dai, and C.-B. Chae, "Mutual information for electromagnetic information theory based on random fields," IEEE Trans. Commun., Feb. 2023.

离散阵列MIMO与连续口面性能对比

● 离散阵列MIMO(半波长天线间距)能否逼近连续口面性能极限?

10/28

Z. Wan, J. Zhu, and L. Dai, "Can continuous aperture MIMO achieve much better performance than discrete MIMO?," arXiv preprint arXiv:2301.08411, Jan. 2023.

电磁信息论:基础与应用

11/28

电磁场传播特性的质变:近场通信

- 从大规模MIMO远场到超大规模MIMO近场
 - ➢ 随着天线数提升,电磁场传播特性将发生本质变化,通信环境将由远场变为近场

表1. 瑞利距离(数据来源: 文献[1])

f D	0.1 m	0.5 m	1 m	3 m
3 GHz	0.21 m	5 m	20 m	180 m
28 GHz	1.9 m	(47 m)	187 m	/
142 GHz	9.0 m	237 m	/	/

量变产生质变:超大规模MIMO系统引入近场通信特性

[1] A. Pizzo, L. Sanguinetti, and T. L. Marzetta, "Fourier plane-wave series expansion for holographic MIMO communications," *IEEE Trans. Wireless Commun.*, vol. 21, no. 9, pp. 6890-6905, Sep. 2022.

利用近场波束聚焦特性抑制干扰

- 远场波束: 仅可聚焦在特定角度, 同一角度用户间干扰严重
- 近场波束: 可聚焦在特定空间位置, 有效抑制不同距离用户间通信干扰

13/28

利用近场波束聚焦特性,有望突破传统空分多址的局限

近场波束距离域渐近正交性

● 远场波束角度域渐近正交性

相位: $\phi_n^{\text{far}}(\theta) = -\frac{2\pi}{\lambda} n d\theta$ 信道相关性: $f^{\text{far}} = |\mathbf{a}^H(\theta_1)\mathbf{a}(\theta_2)| = \frac{1}{N} \left| \frac{\sin(\frac{1}{2}Nkd(\sin\theta_1 - \sin\theta_2))}{\sin(\frac{1}{2}kd(\sin\theta_1 - \sin\theta_2))} \right|$ 当天线数 $N \to \infty$, 不同角度信道相关性 $f^{\text{far}} \to 0$ ($\theta_1 \neq \theta_2$)

• 引理:近场波束距离域渐近正交性 相位: $\phi_n^{\text{near}}(\theta) = -\frac{2\pi}{\lambda}nd\theta + \frac{1-\theta^2}{\lambda r}\pi n^2 d^2$ 信道相关性: $f^{\text{near}} = |\mathbf{a}^H(\theta, r_1)\mathbf{a}(\theta, r_2)| \approx |G(\beta)| = \left|\frac{C(\beta)+jS(\beta)}{\beta}\right|$ 其中 $\beta = \sqrt{\frac{N^2 d^2(1-\theta^2)}{2\lambda}} \left|\frac{1}{r} - \frac{1}{r}\right|$ 当天线数 $N \to \infty$, 同角度不同距离信道相关性 $f^{\text{near}} \to 0$

 $(\forall \theta, r_1 \neq r_2)$

电磁信息论:基础与应用

14/28

远场空分多址 v.s. 近场位分多址

- 远场空分多址(SDMA):不同波束同时服务不同角度的用户
- 近场位分多址(LDMA):利用近场距离域渐近正交性,同时服务不同距离用户

15/28

相比于远场空分多址,近场位分多址可为提升频谱效率提供一种新的技术路径

Z. Wu, and L. Dai, "Multiple access for near-field communications: SDMA or LDMA?," IEEE J. Sel. Area Commun. (major revision), Nov. 2022.

- 仿真场景1: 用户<mark>线性分布</mark>在同一角度、不同距离的区域
- 仿真场景2: 用户均匀分布在扇形小区范围内

BS Antennas	UE Antennas	Frequency	UE Numbers	Elevation/ Azimuth Angle Range	Distance Range
256	1	30 GHz	20	$[-\pi/2,\pi/2]$	[4m, 100m]

Z. Wu, and L. Dai, "Multiple access for near-field communications: SDMA or LDMA?," IEEE J. Sel. Area Commun. (major revision), Nov. 2022.

电磁信息论:基础与应用

17/28

RIS的控制难题

- RIS通常受基站控制
 - ≻ 控制流程复杂:信道估计→预编码计算→RIS控制信令
 - ▶ 有线控制:有线铺设成本,部署位置受限
 - ≻ 无线控制: RIS上需要额外配置无线接收机

18/28

RIS受基站控制,流程复杂、成本高,大规模部署困难

- 全息成像的物理原理是<mark>光学干涉</mark>
- 通过算法恢复物体三维信息

19/28

丹尼斯·加博尔 1971年<mark>诺贝尔物理学奖</mark>

从全息成像到全息RIS

J. Zhu, K. Liu, Z. Wan, L. Dai, T. J. Cui, and H. V. Poor, "Sensing RISs: Enabling dimension-independent CSI acquisition for beamforming," IEEE Trans. Inf. Theory, Feb. 2022.

拍频: 从静态干涉图样到动态干涉场

- 全息RIS如何检测信道相位信息?
 - 拍频现象将快变的声音振荡变成缓变的包络起伏
- ▶ 利用旋转符号法产生电磁拍频 用户发射旋转符号 $\prod_{n=1}^{n} P(t) = \alpha^{2} + \beta^{2} + 2\alpha\beta\cos(\varphi + \omega t)$ 基站发固定符号 P(t)jIm(s)干涉功率变化曲线 拍频 初相位差 _{、 \} φ 用户-RIS信号 #####S### 全息RIS OO $\operatorname{Re}(s)$ 物理实验: 音叉

21/28

全息RIS: 相位估计算法

- 信号: 带初相位 φ 的余弦信号P(t)
- 算法: 傅里叶变换 + EM迭代更新

相位估计算法:从动态干涉场信号中提取信道相位信息

J. Zhu, K. Liu, Z. Wan, L. Dai, T. J. Cui, and H. V. Poor, "Sensing RISs: Enabling dimension-independent CSI acquisition for beamforming," IEEE Trans. Inf. Theory, Feb. 2022.

全息RIS: 仿真结果

- 相位估计的MSE接近克拉美罗界
- 波束赋形后,平均速率逼近已知信道下基站控制的传统RIS情形

J. Zhu, K. Liu, Z. Wan, L. Dai, T. J. Cui, and H. V. Poor, "Sensing RISs: Enabling dimension-independent CSI acquisition for beamforming," IEEE Trans. Inf. Theory, Feb. 2022.

全息RIS: 硬件研制与实测

- 研制了一块32×32单元全息RIS硬件,实测到电磁干涉现象
- 算法可估计用户方位,初步验证了全息RIS的原理和软硬联合设计方案

24/28

现场测试视频

全息RIS有望摆脱基站的控制而独立工作!

电磁信息论:基础与应用

25/28

报告小结

● 电磁信息论

- 电磁学信息论的建模:确定信道与随机信号场
- ➢ 基于算子理论的有限口面内互信息分析框架
- ➢ 离散阵列MIMO与连续口面的极限性能的比较
- 电磁近场: 位分多址
 - ➢ 挖掘近场距离域正交特性
 - > 利用近场波束聚焦特性,有效抑制用户干扰
 - ▶ 提出位分多址接入技术(LDMA)
- 电磁干涉: 全息RIS
 - ➢ 从全息成像到全息RIS
 - ▶ 硬件获取功率数据,算法提取相位信息
 - ▶ 全息RIS硬件测试验证

对通信未来发展的一点思考……

- 冰山效应
 - ▶ 水面之上:基于随机理论的数学方法刻画的经典通信理论范式
 - > 水面之下: 基于确定性物理过程的电磁学理论

27/28

电磁学将有望启发通信理论与技术的新突破!

R. P. Feynman, "There's plenty of room at the bottom," J. Microelectromech. Syst., vol. 1, no. 1, pp. 60-66, Mar. 1992.

可重复研究: <u>http://oa.ee.tsinghua.edu.cn/dailinglong/</u>