IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 40, NO. 9, SEPTEMBER 2022

2717

Accurate Channel Prediction Based on Transformer:
Making Mobility Negligible

Hao Jiang™, Student Member, IEEE, Mingyao Cui, Student Member, IEEE,
Derrick Wing Kwan Ng*', Fellow, IEEE, and Linglong Dai*, Fellow, IEEE

Abstract— Accurate channel prediction is vital to address
the channel aging issue in mobile communications with fast
time-varying channels. Existing channel prediction schemes are
generally based on the sequential signal processing, i.e., the
channel in the next frame can only be sequentially predicted.
Thus, the accuracy of channel prediction rapidly degrades with
the evolution of frame due to the error propagation problem in
the sequential operation. To overcome this challenging problem,
we propose a transformer-based parallel channel prediction
scheme to predict future channels in parallel. Specifically, we first
formulate the channel prediction problem as a parallel channel
mapping problem, which predicts the channels in next several
frames in parallel. Then, inspired by the recently proposed par-
allel vector mapping model named transformer, a transformer-
based parallel channel prediction scheme is proposed to solve
this formulated problem. Relying on the attention mechanism
in machine learning, the transformer-based scheme naturally
enables parallel signal processing to avoid the error propagation
problem. The transformer can also adaptively assign more
weights and resources to the more relevant historical channels
to facilitate accurate prediction for future channels. Moreover,
we propose a pilot-to-precoder (P2P) prediction scheme that
incorporates the transformer-based parallel channel prediction as
well as pilot-based channel estimation and precoding. In this way,
the dedicated channel estimation and precoding can be avoided
to reduce the signal processing complexity. Finally, simulation
results verify that the proposed schemes are able to achieve a
negligible sum-rate performance loss for practical 5G systems in
mobile scenarios.

Index Terms— Channel prediction, error propagation, trans-
former, attention mechanism, machine learning.

I. INTRODUCTION

ILLIMETER-WAVE (mmWave) massive multiple-
input multiple-output (MIMO) has been a key
technique for the fifth-generation (5G) wireless communica-
tions [1]. Equipped with an array with a large number of

Manuscript received 16 December 2021; revised 17 June 2022;
accepted 22 June 2022. Date of publication 19 July 2022; date of current
version 19 August 2022. This work was supported in part by the National Key
Research and Development Program of China under Grant 2020YFB 1807201
and in part by the National Natural Science Foundation of China under
Grant 62031019. (Corresponding author: Linglong Dai.)

Hao Jiang, Mingyao Cui, and Linglong Dai are with the Beijing National
Research Center for Information Science and Technology (BNRist), Depart-
ment of Electronic Engineering, Tsinghua University, Beijing 100084, China
(e-mail: jiang-h18 @mails.tsinghua.edu.cn; cmy20@mails.tsinghua.edu.cn;
daill@tsinghua.edu.cn).

Derrick Wing Kwan Ng is with the School of Electrical Engineering and
Telecommunications, University of New South Wales, Sydney, NSW 2052,
Australia (e-mail: w.k.ng@unsw.edu.au).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/JSAC.2022.3191334.

Digital Object Identifier 10.1109/JSAC.2022.3191334

antennas, massive MIMO can achieve orders of magnitude
increase in the achievable sum-rate [2] through different
advanced precoding designs [3].

In fact, effective real-time precoding highly depends on the
quality of the estimated instantaneous channel state informa-
tion (CSI). According to the 5G standard [4], each frame in
the time-division duplex (TDD) mode contains multiple slots,
and the instantaneous CSI is estimated only in the first slot
of each frame by using the predefined sounding reference
signal (SRS). Then, the subsequent slots within the same frame
can only utilize the estimated channel in the first slot for the
precoding design.

Since the channel coherence time is inversely proportional
to the carrier frequency and user speed, it is possible that
the channel coherence time [5] is shorter than the channel
estimation period, i.e, the SRS period [4], in mobile scenarios.
For example, when the carrier frequency of 28 GHz and the
user speed of 60 km/h, the channel coherence time is roughly
0.32 ms, while the smallest SRS period is 0.625 ms according
to the 3GPP standard [4]. In such a typical scenario, the
actual channels for the second half of the slots in the same
frame are likely to have significant changes. This phenomenon
is known as channel aging [6], which could result in about
30% achievable sum-rate performance loss with the user speed
of 60 km/h [7]. Consequently, channel aging is an essential
issue that has to be addressed for mmWave MIMO in mobile
scenarios.

A. Prior Works

To alleviate the performance loss caused by channel aging,
channel prediction techniques have been extensively studied
to predict the future channel by exploiting the temporal
correlation between the historical CSI and the future chan-
nel [7]-[15]. Specifically, the channel prediction techniques
are utilized to predict channels in the next several frames.
Since the second half of the slots in the current frame are in
the channel coherence time of the predicted channel in the next
frame, these slots could perform precoding design according
to the predicted channel in the next frame. Furthermore, due
to the significant baseband processing delay, which aggravates
the channel aging issue, the prediction of the future channels
in the next several frames is required. The existing channel
prediction methods could be generally divided into two cate-
gories, i.e., the model-based methods and the neural network-
based methods.

For the model-based methods [7]-[11], several models have
been considered to characterize the time-varying channels with
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a set of filter parameters, such as the linear extrapolation
model [7], [8], the sum-of-sinusoids model [9], and the
autoregressive (AR) model [10], [11]. Unfortunately, due to
the multi-path effect and the Doppler effect, practical channels
usually evolve over time complicatedly, which makes the
existing channel prediction models difficult to match the actual
channel.

To this end, neural network-based channel prediction meth-
ods have been recently proposed to train a neural net-
work to flexibly match the actual channel in a data-driven
way [12]-[15]. Specifically, in [12], the fully-connected neural
networks (FCN) were trained to predict the future channel by
learning the channel characteristics from the input of historical
channels. Whereas, due to the high-dimensional input channels
in previous frames, training such an FCN can be intractable.
To avoid the high-dimensional input, [13]-[15] employed
recurrent neural networks (RNN) to iteratively input historical
channels in chronological order.

Nonetheless, the existing neural network-based methods can
only predict the channel in the first future frame according
to the historical channels in previous frames. As a result,
to predict the channel in the second future frame, the predicted
channel in the first future frame together with the historical
channels have to be jointly served as the input of the trained
RNN model for the next prediction. By this means, the future
channels in the next several frames can only be predicted one
by one over time. This procedure is called sequential channel
prediction in this paper, which has been widely considered in
existing works [7]-[15].

However, due to the sequential prediction of existing neural
network-based methods, the error of channel prediction could
be rapidly accumulated and becomes serious with the evo-
lution of frame, which is termed as prediction error prop-
agation. In fact, the prediction error propagation problem
caused by sequential prediction seriously degrades the achiev-
able sum-rate performance of existing neural network-based
schemes, particularly in mobile mmWave communications.
Whereas, to the best of our knowledge, the important channel
prediction error propagation problem has not been well studied
in the literature.

B. Our Contributions

To avoid the achievable sum-rate loss caused by the error
propagation problem, unlike the existing sequential channel
prediction schemes, we propose a transformer-based parallel
channel prediction scheme by processing historical channels
and predicting future channels in parallel'. Specifically, the
contributions of this paper can be summarized as follows.

o Unlike the classical sequential channel prediction
schemes that predict the future channels one by one con-
secutively, we formulate the channel prediction problem
as a parallel channel mapping problem to predict future
channels simultaneously. Specifically, the historical chan-
nels from past several frames are processed jointly and
the future channels in next several frames are predicted

!'Simulation codes are provided to reproduce the results presented in this
paper: http://oa.ee.tsinghua.edu.cn/dailinglong/publications/publications.html
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at once. In this way, future channels in next several
frames can be predicted in parallel, and thus the channel
prediction error propagation can be avoided.

o To solve the above parallel channel mapping problem,
inspired by the recently proposed parallel vector mapping
model named transformer in the field of natural language
processing [16], we propose a transformer-based parallel
channel prediction scheme in this paper. Specifically,
the most important module of the transformer model is
the attention mechanism, which is able to establish a
parallel mapping between the historical CSI and future
channels by simple matrix multiplication. Thus, error
propagation does not exist in the proposed problem
formulation. Furthermore, as a weighting operation, the
attention mechanism can adaptively assign more weights
and resources to the historical CSI that are more helpful
for predicting future channels. By taking advantage of
the above two factors, the transformer-based channel
prediction scheme can accurately predict future time-
varying channels.

« Finally, we further extend the proposed transformer-based
channel prediction scheme to a pilot-to-precoder (P2P)
prediction scheme. Specifically, we observe that the
inputs of the transformer-based channel prediction model
require complicated channel estimation in previous
frames, while the output predicted channels have to
be utilized for designing future precoders. The channel
estimation and precoding design may result in very high
computational complexity. As a remedy, P2P prediction
can utilize the transformer-based model to jointly perform
channel estimation, channel prediction, and precoding
by using a single model. This is achieved by replacing
the input historical CSI and output predicted channels
with the historical received pilots and the predicted pre-
coders in the transformer-based channel prediction model,
respectively. In this way, the explicit channel estimation
and precoding design do not exist in the P2P prediction,
and the associated signal processing complexity can be
avoided.

C. Organization and Notation

Organization: The rest of the paper is organized as follows.
In Section II, the system model of mmWave massive MIMO
is introduced. The problem of parallel channel prediction
mapping is formulated in Section III. Then, we elaborate on
the proposed transformer-based parallel channel prediction
scheme in Section IV, including the framework of the offline
training and the online prediction. After that, we further dis-
cuss the transformer-based pilot-to-precoder prediction scheme
in Section V. Simulation results are provided to verify the
advantages of the proposed schemes in Section VI. Finally,
conclusions are drawn in Section VII.

Notation: We denote the column vectors and matrices by
boldface lower-case and upper-case letters, respectively; R"
and C" denote the n-dimension real number and complex
number, respectively; ()T, ()%, ()71, | |, and || - || denote
the transpose, conjugate transpose, inverse, determinant, and
lo-norm of a matrix, respectively; E{-} denotes the statistical
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Fig. 1. The architecture of hybrid precoding for mmWave massive MIMO.

expectation. x; denotes the i-th element of the vector x; X[z, :],
X[:, 4], and X[é,j] denote the i-th row, the j-th column,
and the element at ¢-th row and the j-th column of the
matrix X, respectively; vec(X) denotes the vectorization of
the matrix X and dvec(x) denotes the inverse process of
vec(X); Iy denotes an N x N identity matrix; X®Y denotes
the Kronecker product of X and Y; R(-) and $(-) denote
the real and imaginary parts of a matrix, respectively; U|a, b]
denotes the probability density function of uniform distribution
on [a,b]; tril(x) denotes a lower triangular matrix with each
lower triangular element being x.

II. SYSTEM MODEL

For simplicity but without loss of generality, we consider
a massive MIMO system, where a single base station (BS)
with Npg antennas serves a single user with M antennas.’
To reduce the power consumption, the BS antenna array is
realized by a hybrid precoding architecture [17]. In partic-
ular, NrrpNps analog phase shifters (PSs) with low cost
and low power consumption are adopted to reduce the
number of radio-frequency (RF) chains from Npg to Ngp,
as shown in Fig. 1. Moreover, the TDD mode is considered,
where the time resource is divided into multiple frames,
and each frame contains N, slots. As shown in Fig. 2,
the N, slots could be divided into three phases, i.e., the
uplink channel estimation phase, the uplink data transmission
phase, and the downlink data transmission phase. Furthermore,
we assume that the channel is block fading, where the channel
remains time-invariant in each slot and changes from slot to
slot [18], [19]°.

It is well known that the mmWave channel is sparse,
since the mmWave propagation environment exhibits a limited
number of scattering clusters [20]. Thus, the widely used
geometric Saleh-Valenzuela channel model [17] is adopted
for describing the mmWave channel. Under this model, the
channel from the user to the BS in the ¢-th frame can be
expressed as

L
HO =Y " aje 2 apg (gps)all., (Gusers), (1)
=1

where L is the number of propagation paths; T is the period
of the frame, which equals the SRS period; oy, fi, ¢Bs,, and

2Note that a single-user massive MIMO system is considered in this paper,
while the results of this paper could be easily extended to multi-user scenarios
by utilizing orthogonal pilot sequences between users.

3For the scenario where the channel changes within a single slot, the
prediction of the channel in each slot is necessary. This slot-level channel
prediction could be regarded as the smaller time scale of the frame-level
channel prediction in this paper.
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Fig. 2. The frame structure in the TDD mode defined by 5G standard [4].

@user,l are the complex gain, Doppler shift, azimuth angle of
arrival (AoA), and azimuth angle of departure (AoD) of the
l-th path, respectively. Note that the time-varying channel is
mainly caused by the Doppler effect, while the AoA and AoD
are time-invariant. This is because the time scale of the frames
in the 3GPP standard is in the order of tens of milliseconds [4].
Furthermore, it has been experimentally verified that during
such a time scale, the AoA and AoD can be approximately
regarded as unchanged [21], [22]. In this paper, we consider
the uniform linear arrays (ULAs). Without loss of generality
and for ease of presentation, we neglect the subscripts of
¢Bs,1 and Pyser;. Then, the array steering vector apg(¢) and
auser(¢) could be presented by

aps(¢) = ! [1,ej27”dsin(¢),. . .,ej(NBs—1)2T”dsin(¢)}T7
Nps
(2
1 35 dsin(¢) J(M—1) 2= dsin(¢)]
auser((b):\/—M[Le by yoee L€ >y :| ,
(3)

where d is the antenna spacing and ) is the wavelength of the
carrier wave.

As shown in Fig. 2, to obtain the channel at the BS, the
uplink channel estimation phase is carried out in the first slot
by acquiring the uplink training pilot signals sent by the user.
Then, the subsequent N, — 1 slots are assigned to support the
uplink and the downlink data transmissions.

III. PROBLEM FORMULATION OF CHANNEL PREDICTION

In this section, we first introduce the signal model of
TDD mode. Then, the channel aging issue is illustrated, and
the parallel channel mapping problem is formulated to alleviate
the channel aging.

A. TDD Signal Model

In TDD mode,* for the uplink channel estimation, the
user is required to transmit the pilot sequence to the BS.
In this paper, the widely used orthogonal pilot transmission
strategy is adopted, i.e., the pilot sequence assigned to different
antennas are orthogonal to each other, which makes the
channel estimation for each user antenna independent [5].
Then, without considering user mobility, the received g-th pilot
signal y, € CVrr*1 is written as

yq:AqHSq+Aqnqa q:1a27 7Qa (4)
“In this paper, we consider a massive MIMO system in the TDD mode,
while the methods of this paper could be easily extended to the frequency

division duplexing (FDD) mode.
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where A, € CNrrxNes jg the BS analog combiner matrix
at the g-th pilot signal, H € CV8s*M denotes the channel
matrix without the Doppler effect, s, € CM*1 represents the
g-th transmitted pilot signal, n, € CVes*! is the zero-mean
additive white Gaussian noise (AWGN) with noise power o2,
and @ is the length of the pilot sequence.

For the design of the combiner matrix A,, we utilize the
discrete Fourier transform (DFT) codebook-based analog com-
biner matrix design method [23], in which each codeword in
the DFT codebook is orthogonal to each other and corresponds
to a beam directing on the desired AoA. All the codewords in
the pre-defined DFT codebook could cover the entire range
of AOA. By scanning the entire DFT codebook, the Npp
strongest beams can be obtained and then deployed as the
analog combiner. Fortunately, as we mentioned before since
the changes of the AoA and AoD of a user are negligible in
tens of milliseconds, the optimal analog combiner matrix is
supposed to remain unchanged in several frames [21], [22].
In this case, we assume A, = A, Vg € {1,2,---,Q}. After
the transmission of the pilot sequence, the BS could form
a matrix Y = [y1,y2,,yo] € CV*F*Q from its observa-
tions, that is given by

Y = AHS + AN = H,S + AN, 5)

where S = [s1,82,---,8g] € CM*X? is the training pilot
matrix for M antennas and each row of S is orthogonal to
other rows, N = [ny,ng,---,ng] is the AWGN noise, and
H, = AH € CNrrxM jg the effective channel matrix.

According to (5), the effective channel matrix H, could
be recovered given Y and S. In the following, we adopt the
classical least square (LS) and the minimum mean square
error (MMSE) channel estimation methods [1] to estimate
the effective channel. First, we vectorize the received signal
matrix Y as follows:

vec(Y) = (ST @ Ing, )vec(H,) + vec(N,). (6)

Let I:I{;S and I:IQ/[MSE denote the LS and MMSE estimators
of H,, respectively. Then, the vectorization of LS and MMSE
estimations are given by

vec(HYS) = (8T @ INRF)_lvec(Y), 7
2
A~ g, A~
vec(HMMSE) — Ry (Ry + U—ZINRFA,I)*lveC(Hgs), (8)

S

respectively, where Ry = [E{vec(H,)vec(H.)"} is the
auto-covariance matrix of the effective channel, 02 and o2 are
the noise power and the pilot power, respectively. According
to the estimated HYS or HMMSE  the achievable sum-rate
for the user in the downlink data transmission is calculated
when Gaussian symbols are transmitted over the mmWave
channel [24] that is written as

R =Ey |log,|Ty + MLUQDHEHE D|| . 9)

where p is the average transmitted power at the BS and we
assume p = 1 without loss of generality; D is the precoder
matrix adopted in the BS, which could be designed by the
classical zero-forcing (ZF) algorithm [2] according to the
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estimated channel H, using the LS or the MMSE method.
Note that, the achievable sum-rate obtained in (9) is actually
obtained by assuming that an optimal combiner calculated
according to the perfect channel is employed in UE, which
decouples the design of the precoding and combining [17]
and focuses on the design of the precoding. This is also an
important insight into the proposed P2P prediction, which
directly predicts the future precoders by maximizing the
future achievable sum-rate. The precoder matrix D could be
computed as:

D = (A7A,) Al (10)

B. Problem Formulation

In the current 3GPP standard, the precoder matrix D can
achieve a satisfactory achievable sum-rate performance in
stationary scenarios. By contrast, in the mobility scenarios,
due to the Doppler effect in the time-varying channel (1),
except for the first slot, the actual channels of other slots
could be significantly different from the acquired channel H,
and thus the sum-rate achieved by precoder D is severely
eroded, especially for the mmWave communications. Specif-
ically, according to [24], the channel coherence time T, is
defined as the time during which the channel can be reasonably
well viewed as time-invariant, which is inversely proportional
to the frequency and the user speed, i.e.,

_ 0.5¢  0.5A
Tuf T v
where v is the user speed and f is the mmWave carrier
frequency. Note that the channel coherence time is a rough
estimation, which is used to describe the strength of the
Doppler effect.’ The faster the user speed, the stronger the
Doppler effect, and the smaller the channel coherence time.
As shown in Fig. 2, the length of channel coherence time
could be shorter than the period of the frame period (the SRS
period) [4] in mmWave scenarios, i.e., 7. < Ts. For example,
in the typical case with the carrier frequency of 28 GHz in
the mmWave frequency band and the user speed of 60 km/h,
according to (11) the channel coherence time is roughly 7, =
0.32 ms, while the least SRS period is 75 = 0.625 ms [41°.
Due to the extremely short channel coherence time, a severe
channel aging issue is introduced inevitably. Since the channel
is expected to vary rapidly over time due to the user mobility,
using the channel estimated at the first slot for the remaining
slots would cause a substantial loss of the achievable sum-
rate. Besides, the baseband processing delay also aggravates
the channel aging issue [6].

Recently, some channel prediction techniques have been
proposed to address the aforementioned issues by exploiting
the temporal correlation of time-varying channels [7]-[15].
Existing model-based channel prediction could be used to

T. (1)

SIn particular, for the generally considered Jakes model, the channel

coherence time is defined as T, = O‘USJ?C [5].

6Since the OFDM symbol period is the inverse of the subcarrier spacing,
the larger subcarrier spacing leads to smaller slot lengths. In the 5G standard,
The 0.625 ms SRS period includes 5 slots when subcarrier spacing is 120 kHz
or 10 slots when subcarrier spacing is 240 kHz.
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Fig. 3.

characterize the time-varying channels. However, the con-
sidered channel prediction models in [7]-[11] were only
suitable for low-frequency scenarios and difficult to match
the complicated and fast changes of the actual channels in
high-frequency. To match the fast time-varying channel, neural
network-based methods (FCN-based and RNN-based) learn
the changes of actual channels by utilizing machine learn-
ing [11]-[15]. However, the existing neural network-based
methods serially predict the future channels as shown in
Fig. 3(a), which suffer from performance loss due to the
prediction error propagation problem.

Unlike the existing sequential channel prediction schemes,
we formulate the channel prediction problem as a parallel
channel mapping problem. Specifically, we adopt the estimated
historical channels from the past P frames to predict the
future channels in next L consecutive frames simultaneously,
as shown in Fig. 3(b). The parallel channel mapping problem
can be formulated as

L T+t
PO [L:
T, , (12a)

> [[He 7|
st (HTHD 0 AT = fo(AT-PHY o AD),
(12b)

oy (T+t
1

min £(©) = ]E{

where fg(-) is the proposed parallel mapping model; © is the
set of model parameters; He ’ is the actual effective channel at
the first slot of the ¢-th frame; I:Ig) is the predicted effective
channel; ﬁfﬁ is the estimated effective channel. Note that
the normalized MSE (NMSE) loss function is utilized as the
minimization target. On the one hand, the normalized loss
could produce a steady gradient rather than an oscillating
gradient, thereby speeding up model convergence. On the other
hand, for the evaluation of channel prediction performance,
the NMSE is a better metric than MSE. The MSE can be
affected by the amplitude of the channel, while the normalized
MSE could eliminate this effect by normalizing. Once the
channels in the future frames are accurately predicted, the
precoder matrix of the n-th slot at the ¢-th frame can thus
be designed according to the predicted IA{I(f) or fIgH). For
instance, for the ¢-th frame, the precoder matrix of the n-th
slot can be designed based on the predicted channel fII(,t) if
0 <n < Np/2 or be designed based on the predicted channel
I:Ig“) if Np/2 < n < Np. Since these slots are in the channel
coherence time of I:Ig) or I:Ig“), the loss of achievable

Comparison between the existing sequential channel prediction scheme and the proposed transformer-based parallel channel prediction scheme.

sum-rate caused by the channel aging issue is expected to
be mitigated.

IV. TRANSFORMER-BASED PARALLEL
CHANNEL PREDICTION

In this section, to alleviate the sum-rate performance loss
caused by the widely adopted sequential channel prediction,
we propose a transformer-based parallel channel prediction
scheme to avoid the prediction error propagation. At first,
we introduce the framework of the proposed transformer-
based scheme. Then, the structure of the transformer model
is elaborated. Finally, the computational complexity analysis
is provided.

A. Transformer-Based Parallel Channel Prediction
Framework

The aim of channel prediction is to design the mapping
function fe(-) in (12b), while in this paper, we propose a
transformer-based model to design the mapping function. The
framework of the proposed transformer-based parallel channel
prediction scheme consists of two phases, i.e., offline training
and online prediction. For the offline training phase, a super-
vised learning algorithm is applied to train the transformer
model according to (12a). To start with, the L-step actual
channel labels in the next L frames and the past P-step
estimated historical channels from the previous P frames are
required, which could be obtained by generating a simulation
dataset based on some acknowledged channel models, e.g.,
5G channel models [25].

According to the generated antenna-domain channel
dataset H, we first sample the channels {H(T—F+1 ...
H(T+5)Y as a training sample, which includes contiguous
P + L antenna-domain channels and these P + L channels are
sampled every other frame in the time domain. Next, by mul-
tiplying the DFT matrix UZ with the antenna-domain channel
H and considering the actual noise, each antenna-domain
channel H is transformed into an angle-domain channel H,,
which could be written as

)

13)

,aps(dngs)] € CNBsXNBs g the

where U, = [aps(¢1), -
arcsin(%

spatial discrete  DFT matrix and ¢, = N
(n — %)) with n =1,2,--- , Ngg are the Npg spatial

H, = U'H 4+ UIN,
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directions pre-defined by the DFT codebook. Since the lim-
itation of the number of RF chains in the hybrid precoding
architecture, only the Nrr codewords are selected to perform
analog combining. Specifically, based on the angle-domain
channel H,, we could obtain the index of the strongest spatial

directions n; (i = 1,---, Ngr) as follows:
n; = arg max ||Hg[n, ]||§7 i=1,--+, Ngr, (14)
neN /N;
where N' = {1,--- ,Ngs} and N; = {n1,--- ,n;—1}. The

corresponding columns of the DFT matrix constitute the
analog combining matrix A € CNre*Nes je

A= [aBS(¢n1)a T ’aBS((bnNRF )]H

Then, the effective channel H. could also be obtained
by multiplying the analog combining matrix A with the
antenna-domain channel H as shown in (5). The input
of the transformer-based parallel channel prediction model
AP 0 AHTY could be obtained by (7) or (8).
At the same time, the labels of the outputs of the
transformer-based parallel channel prediction model are the
actual effective channels {HgTH)7 . ,HéTJrL)}. Finally,
we aim to minimize the classical normalized mean square
error (NMSE) loss function shown in (12a) and the backprop-
agation (BP) algorithm [26] is used to calculate the gradient
of the transformer model.

After training the transformer-based parallel channel predi-
ction model, we deploy the well-trained model and implement
the online prediction. For the online prediction, to predict the
future effective channels {HS ™ ... HT ™1 we need
to input the estimated historical channels {I:IET_P'H), .
g £T>} in the previous P frames. To obtain the estimated
historical channels, unlike the offline training, which could
use the mathematical formula (13)-(15) directly calculate A
according to the full CSI data H, for the online prediction,
beam training is preferred due to an unacceptable overhead
for estimating H [27]. Specifically, to determine the analog
combining matrix A in BS, we first try to get the Ny spatial
directions where the channel is strongest. For this purpose, the
BS is required to sweep the entire beam space with the DFT
codebook. After sweeping the beams, BS could determine the
Ngpr spatial directions ¢,,, (i = 1,---, Ngr) by choosing the
Ngrr codewords with the strongest received power. Then, the
analog combining matrix could be constituted by incorporating
these codewords as shown in (15). Fortunately, since the
changes of the AoA and AoD are negligible in tens of
milliseconds, the strongest beams are supposed to remain
unchanged in the contiguous P + L frames. Thus, we can
reasonably assume that the analog combining matrix A holds
when predicting the future channels. In the following sections,
we elaborate on the details of the utilized mapping function
in (12b), i.e., the transformer model.

15)

)

7Actually, the calculation method of the analog combining matrix A at
offline training and online prediction is the same, while the difference is the
acquisition method of the angle-domain channel. Specifically, since the full
CSI H is available at offline training, the angle-domain channel could be
obtained by (13). In the stage of online prediction, due to the unacceptable
overhead for estimating the full CSI H, beam training is preferred to obtain
the angle-domain channel H,.
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Fig. 4. A sample of the channels in contiguous P+ L frames. The Matlab 5G
toolbox [28] is used to generate these channel samples, where v = 60km /h
and the delay spread is set as 30ns. The period of SRS is 0.625ms. The
highlighted part of P channels could be used to facilitate channel prediction
by utilizing the attention mechanism.

B. Attention Mechanism

Firstly, to make this paper self-contained, we provide a
brief review of the most important module of the transformer
model, termed the attention mechanism [16]. Essentially,
the attention mechanism is a neural network module that
can implement parallel signal weighting functions. Using an
attention mechanism can greatly improve the performance of
channel prediction for two reasons. First of all, different from
serial data processing of the conventional RNN, which causes
the prediction error propagation due to the sequential channel
prediction, the attention mechanism can perform parallel signal
processing. Thus, the CSI from the previous frames can be
adopted jointly to predict the channels for the next several
frames at once, avoiding any prediction error propagation.

On the other hand, there is another disadvantage of serial
data processing, that is, it is easy to forget the early input
data. By contrast, the attention mechanism can pay attention to
the early input in a parallel manner. Specifically, the attention
mechanism is a weighting mechanism [29], [30], such that
the weights of the model to the historical channels can be
adjusted adaptively to the most relevant past data for future
channel prediction. At the same time, since the time-varying of
the channel is caused by the Doppler effect, the channel itself
has a long periodicity. As shown in Fig. 4, for the highlighted
early historical channels that are most relevant to the future
channels, the attention mechanism can automatically assign
more weights to the early part such that the transformer model
focuses its learning on them, thereby improving the accuracy
of channel prediction. Consequently, as the core module of
the transformer, the attention mechanism is well-suited for
the problem of parallel channel prediction. Below we will
introduce the realization of the attention mechanism in detail.

The basic structure of the attention mechanism is shown
in Fig. 5. To realize the attention mechanism, the normalized
attention matrix is introduced to characterize different degrees
of attention to the input [31], [32]. The more important input
parts are given larger weights and the final output is obtained
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Fig. 5. The structure of the attention mechanism.

by weighting the input according to the attention weights in
the attention matrix. By utilizing the attention mechanism,
the input could produce a new representation of the feature
considering the time sequence information. Specifically, for
the input X = [xq,---,x,] € R™*", where n denotes the
length of the input historical channels and m denotes the
feature dimension of each historical channel, we apply three
different linear transformations to x; given by:

ki = Wkx;, i=1,---,n, (16a)
q = Wi;, i=1,---,n, (16b)
vV, = W’UX,L', 1= 1, e, n, (16C)

where k; € R¥1, q; € RY¥!, and v; € R™*! are the key
vector, the query vector, and the value vector, respectively;
Wk e Rixm W4 ¢ REX™ and WY € R™*™ gre the corre-
sponding trainable linear transformation matrices, respectively;
d is the feature dimension of the key vector. Specifically, the
function for weight allocation is realized by the key vector k;
and query vector q;. The correlation between k; and q;
represents the correlation between the ¢-th input signal and the
j-th output signal. The larger correlation k! q; implies the
j-th output has to pay more attention to the feature of
the ¢-th input x;, i.e., the value vector v;. Generally, this
correlation can be adaptively adjusted based on the input X
and the trainable matrix W* and W4, For a better illustration,
we show the matrix forms of (16a)-(16c) as follows:

K = W'X, (17a)

Q = WIX, (17b)

V = W'X, (17¢)
where K = [k, -+ ,k,] € R>*" Q =[qi,- -, qs] € R,
and V = [vq, - ,v,] € Rm*",

Based on K and Q, the attention matrix E € R"*" could
be obtained by computing the product between key matrix K”
and query matrix Q, which could be denoted by

KT
E= Softmax(—Q).

18
Nz (18)
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Algorithm 1:: Attention Mechanism
Inputs: X =[x, - ,Xp);
Outputs: O = [0y, ,0,];

1: Key matrix: K = W*X

2: Query matrix: Q = WX

3: Value matrix: V. = WX

4: Attention matrix: E = Softmax(
5: 0 =VE

KTQ)
Vd

Since the variance of the inner product between the key matrix
and query matrix increases as the feature dimension of the
key vector d increases, the result of the product is adjusted

by v/d. Then, the softmax operation Softmax(x) = %

is applied to normalize each column of the matrix. It is worth
noting that each column of the attention matrix is a probability
vector whose elements are all non-negative and add up to
one. If the key vector K[:,7] and the query vector Q[:,j]
match better, then the corresponding attention weight E[i, j]
would be larger. Thus, the output of the attention mechanism
corresponding to [-th component could be denoted by the
weighted sum of all inputs, written as

o, =Y vE[i,l] = VE[ 1], (19)
3

where o, € R™*! is the [-th output by paying adaptive
attention to the historical inputs according to the attention
weight E[i,[]. If the attention weight E[i,[] is larger, the
corresponding value vector v; will contribute more to the
output.

Finally, the overall representation of the attention mecha-
nism could be summarized as follows:

XTWH WX
Vd

in which O = [oy,---,0,] € R™*". Note that the three

different linear transformations W*, W?, and W4 could be

realized by trainable FCN without applying the activation

function. The procedure of the attention mechanism is sum-
marized in Algorithm 1.

0= W”XSoftmax( ), (20)

C. Encoder of Transformer Model

In this subsection, based on the attention mechanism intro-
duced in Subsection IV-B, we present the proposed channel
prediction scheme based on the transformer model. The overall
architecture of the transformer model is shown in Fig. 6,
which consists of two parts, i.e., an encoder and a decoder.
Generally, the encoder is to remember and extract the historical
CSI and refine the historical CSI as the channel features.
Correspondingly, the decoder is to infer and forms the future
channels by utilizing and recalling the features. Note that the
attention mechanism introduced in the previous subsection is
utilized in the encoder and the decoder simultaneously with
a little modification, e.g., the mask-attention mechanism and
the full-attention mechanism in Fig. 6.

For the encoder, the features of channels in previous
frames are extracted to assist the prediction at the decoder.
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Algorithm 2:: Encoder for Proposed Transformer-Based
Model
Inputs:
Channels in previous P frames:
iiﬁ):[ﬁHLP+D7”.7ﬁUﬂ;
Outputs:
Extracted feature ?(e);
1: Key matrix in encoder: K,y = W?’e)ﬁ(e)

: Query matrix in encoder: Q) = W‘(Ze)ﬁ(e)

: Value matrix in encoder: V) = W’(Je)H(e)

: Attention matrix in encoder: E(.) = Softmax(
+ Zy = IN(H) + V() E(o))

Yo = LN(Z(e) + FCN(Z(e)))

Kﬁ»Q@>)
Vd

AN R W
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Fig. 6. The proposed transformer-based parallel channel prediction model.

The procedure of the encoder is shown in Algorithm 2. For
the purpose of applying the attention mechanism, we first
extract the real and imaginary parts of each estimated historical
channel I:Igt) , and then we vectorize and concatenate them into
a vector h(®) € R2VerMx1 a4 follows:

h® = [vecREADDT, vec(SHD))T)T. (21)

After that, similar to (17a)-(17c), the attention mechanism
of the encoder generates key matrix K., query matrix
Q(e)» and value matrix V) by three different linear trans-
formations according to the historical channels in previous
P frames ﬁ(e) = [B(T’P“), e ,fl(T)]. Then, the attention

. K{,Q) | .
matrix E(.) = Softmax(—<==) is calculated.

Next, the output of the attention mechanism could be
obtained by summing the value matrix according to the
attention weights in the attention matrix. Moreover, to avoid
the gradient vanishing problem caused by unstable data
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distribution [33], several classic methods to mitigate this
problem are used in the encoder, such as residual connec-
tion [34] and layer normalization [35]. Thus, by taking residual
connection and layer normalization into consideration, we can
obtain hidden variables of inputs by adding the inputs and
normalizing as

K, Qe

_ " Q
Z(e) = LN (H(e) + V(e)SOftmaX(T

denotes the layer normalization

). e

where LN(X) = Xlinjl—pj

62+€
operation, which is used to speed up training by normalizing
the data into a standard normal distribution; and p; and 5]2
present the expectation and variance of the X[, j], respec-
tively. Also, a small amount € is added to the denominators to
avoid an ill-conditioned problem. Moreover, a two-layer FCN
is considered to further extract and synthesize features of each
historical input, which could be written as

Yo = IN(Z() + FON(Z)) ).

where FCN(X):W(Qe)ReLU(W(le X—i—b(le))—i-b%e); Wée) €
R2Nrr MX2Nrr M g b7(" ) € R2NreMX1 - are the weight
matrix and bias of i-th layer, respectively; and ReLU(z) =
max(0,x) is a non-linear activation function. The residual

connection and layer normalization are considered again.

(23)

D. Decoder of Transformer Model

For the decoder, its target is to accurately predict the future
channels in next several frames according to the features ?(e)
extracted by the encoder. The specific procedure of the decoder
is provided in Algorithm 3. Specifically, a G-step channel
in previous GG frames is firstly sampled as a start token of
the decoder. The start token, as well as L zeros padding, are
used as the decoder input. Then, the decoder aims to generate
the predicted L long channels for the next L frames at the
zeros padding position by measuring the attention weights
with ?(e). After that, the specific generation process of the
decoder will be described in detail.

First, similar to the attention mechanism used in encoder,
the key matrix K4, the query matrix Q4), and the value
matrix V4 in the decoder are produced by three different
linear transformations. Note that the input of the decoder
Hy = hT-G+D ... h(™ ... 0] € R2NerMx(G+L) jg
consisted of a combination of the historical channels in pre-
vious G frames and L long zeros padding. Note that the L
long zeros padding input could eventually be replaced by the
predicted L-step channels. Limited by this parallel decoder, the
input and output must be of the same size. The zero-padding
is what we don’t expect, and we just fill them in to form a
computable structure. Similar to (22), hidden variables of the
decoder input could be obtained by considering the time-series
information as follows:

_ K’
Z(d) =LN (H(d) + V(d)Softmax (Mask(%)))
(24)

Note that a slight difference from (22), an additional mask
operation is added in (24) to avoid paying attention to the
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Algorithm 3:: Decoder for Proposed Transformer-Based
Model
Inputs: -
Extracted feature by encoder Y (),
Hg = [0T=¢+D ... ™ 0, 0]
Outputs: -
Predicted channels H = [p(T+1) ... il(TJrL)];
Key matrix in decoder: K(4) = Wf“d)Hﬁ)
Query matrix in decoder: Q(g) = W?d)H(d)

1:
2:
3: Value matrix in decoder: V 4y = W’(’e)H(d)
4: Attention matrix in decoder}:< Q

Ewg = Softfax (Mask(%))
t Z(a) = LN(H(g) + V() E(a))
Q =Wz, B
K=WiY (), V=W'Y
. Full-attention matrix between encoder and decoder:

K

E = Softmax( \/EQ)
9: Z =LN(Z(q) + VE)
10: 7 = LN(Z + FCN(2))
11: H = [T+ ... Kh(T+L)] by extracting last L columns of H.

future channels. For example, when we predict the channel at
the (T + t)-th frame, the decoder currently only knows the
information before the (7" + t)-th frame and the channel after
(T + t)-th frames is still an unknown. For this purpose, the
mask operation is defined as

Mask(X) = X + tril(—inf), (25)

where tril(—inf) denotes a lower triangular matrix with each
lower triangular element being negative infinity. After the
Softmax operation, the attention weight of the (7' + t)-th
channel to (T' + ¢ + 7)-th channel is zero with 7 > 0.
Additionally, the masking operation could make the padded
zero value have no effect on subsequent calculations, which
simplifies the computation in the decoder. Specifically, since
the attention weights are zeros for the first G outputs to the last
L outputs after masking and Softmax operations, the invalid
analysis caused by zero-padding is avoided. Thus, the masking
operation is used to shield the effect caused by zero-padding.
Next, based on Z4) calculated at the decoder and ?(e)
calculated at the encoder, a full-attention mechanism between
the encoder and the decoder is carried out, which aims to
fully utilize the historical information by paying attention to
the features provided by the encoder. For example, a sample
obtained by the sampling of P + L channels is shown in
Fig. 4. The highlighted part in P historical channels could be
observed to be a perfect match with the L channels we aim
to predict. To pay more attention to the highlighted part, the
larger weights are expected to be assigned to the highlighted
part when we predict the L future channels. Specifically,
another three linear transformations are applied to ?(e) and
Z(d), respectively. A little different from mask-attention, the
key matrix K and value matrix 'V are calculated by feature
?(e) extracted by encoder while the query matrix Q is
calculated by the hidden variable Z 4 of the decoder.
Following, the attention matrix 1is acquired by

E= Softmax(&\/aq), where Eli,j] denotes the attention

weight of the Zg[:,j] to ?(e)[:,i]. Each output of the
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TABLE I

THE CONCEPTS OF THE PROPOSED TRANSFORMER-BASED CHANNEL
PREDICTION MODEL

Concepts of the transformer model Notations
Input of the enc/dec H) /Hg
Key matrix in enc/dec K) /K@)
Query matrix in enc/dec Q)/ Q)
Value matrix in enc/dec Viey/Via
Attention matrix in enc/dec E)/Ew
Hidden variable in enc/dec Ze)/Za
Key matrix in full-attention K
Query matrix in full-attention Q
Value matrix in full-attention \
Attention matrix in full-attention E
Output of the enc/dec Y /H

full-attention mechanism could establish the relationship
with the feature ?(e) by multiplying the value matrix V
with attention matrix E. Based on the parallel full-attention
mechanism, each future channel could naturally correlate with
channels in previous frames. Then, the predicted channels in
next L frames could be obtained by

K’Q
Z = LN(Za + VSoftmax( 7 ). o
H = LN(Z + FON(z) ), @7)
where ﬁ = [BI(DT_G+1)7 e ’ﬁéT)’ ﬁéT+1)7 T aﬁéT+L)] €

R2Nrr MX(G+L) "FCN(X) = W(Qd ReLU(W(ld)X + b%d )+
b%d), and Wfd) € R¥NVrrM>2Ner M- gpd bl | € R2VrrMx1
are the weight matrix and the bias of i-th layer, respectively.
Compared to the decoder input Y, the zeros padding position
is covered by the generative predicted channels. So, we could
extract the last L columns of H to obtain the expected
channels in next L frames, i.e., H = [fléT'H), e ,fléT+L)] €
R2NVee ML The matrix form of the effective channel could
be obtained by real-to-complex (R2C) and de-vectorization
operations as follows:

A) = dvee(R2C(R() ), t=T+1,--,T+L. (8)

Finally, we use the NMSE loss function in (12a) on predic-
tion w.r.t. the target actual channels in next L frames and use
the BP algorithm [26] to update the encoder and decoder of
the transformer model. To make the concepts of the proposed
transformer-based model clearer, the concepts are summarized
in Table L.

E. Complexity Analysis

In this subsection, we evaluate the complexity of the
proposed transformer-based parallel channel prediction in
the number of multiplication. Since the training process is
performed offline and will not affect the online prediction
overhead, we mainly consider the computational complexity
of the online prediction.

To calculate the complexity of the transformer-based paral-
lel channel prediction scheme, we first compute the complexity
of the crucial attention mechanism module. According to
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Algorithm 1, we observe that the complexity of the attention
mechanism is dominated by the matrix multiplication from
step 1 to step 5. In step 1, we need to calculate the multipli-
cation between the input X € R™*™ and linear transformation
matrix W# € R4*™ which has a complexity in the order of
O(mnd). Similarly, the matrix multiplication from step 2 to
step 5 have the complexity in the order of O(mnd), O(m?n),
O(n?d), and O(n?m), respectively. Note that the feature
dimension of key vector d is generally set to be consistent with
the input dimension m. Thus, the complexity of the attention
mechanism can be represented by O(m?n) + O(n?m).

Next, we calculate the complexity in the encoder of the
transformer model. According to Algorithm 2, we observe
that the complexity of the encoder mainly comes from the
attention mechanism from step 1 to 5 and the FCN processing
in step 6. Since the input of encoder ﬁ(e) € R2NreMX P
i.e., m = 2NgrrM and n = P, the attention mechanism of
encoder has a complexity in the order of O(NZpM?P) +
O(P?2NgrgM). In step 6, we compute the multiplication
between Z( and WE o at complexity in the order of
O(NApM?P). Thus, the encoder of transformer involves
complexity in the order of O(NZpM?P) + O(P*NgrM).
Then, according to Algorithm 3, which provides the procedure
of decoder, the complexity of the decoder is dominated by the
mask-attention mechanism from step 1 to 5, the full-attention
mechanism from step 6 to 9, and the FCN processing in step
10. In particular, from step 1 to 5, due to the negligible
complexity in the mask operation, the complexity of the
mask-attention mechanism is similar to the attention mech-
anism in the encoder. Therefore, the mask-attention mech-
anism has the complexity in the order of O(N2pM?(G +
L)) + O((G + L)*NgpM), based on the decoder input
H ;) € R2NeeMx(GHL) je m = 2NgpM and n = G + L.
As for the full-attention mechanism, the full-attention matrix
E € RP*(G+L) ig calculated, and the multiplication between
V € R2NeeMXP and E are required, which has the complex-
ity in the order of O(NZzM?P) + O(P(G + L)NrrM) +
O(NrM?(G+L)). In step 10, the FCN is used to calculate
the output of the full-attention mechanism, where the com-
plexity is in the order of O(N2pM?(G + L)) by multiplying
Z by Wz ) As a result, the decoder of transformer model
has a complexity in the order of O(NZzM?P) + O(P(G +
L)NrpM) + O((G + L) Nrp M) + O(NZpM?(G + L)).

Therefore, the overall complexity of the proposed
transformer-based parallel prediction model can be
summarized as O(NZpM?P) + O(NZzM?*(G + L)) +
O(PQNRFM) + O((G—l— L)QNRFM) + O(P(G+ L)NRFM),
which is closely related to the length of the encoder input P
and the length of the decoder input G' + L. Considering that
both the encoder and the decoder use a parallel computing
model, the results obtained by each computation based on the
previous input can be reused in the next computation, such as
the key matrix, query matrix, and value matrix last calculated.
Thus, in the next computation, the complexity of the attention
mechanism could be reduced from O(m?n) + O(n?m) to
O(m?) + O(n*m) for the input X € R™*". Following
this, the complexity of the attention mechanism in the
encoder and the mask-attention mechanism in the decoder
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Fig. 7. The proposed transformer-based P2P prediction scheme.

could be reduced from O(NZpM2P) + O(P?NgrpM) and
O(NZEM?(G+L))+O((G + L)*Nrp M) to O(NZp M?) +
O(P2NgrM) and O(N2pM?) + O((G + L)’ NrpM),
respectively. Furthermore, benefiting from parallel hardware
architecture [36], the time complexity of the parallel
transformer model could be further reduced. Since the different
columns of the matrix can be obtained simultaneously, the
time complexity of the attention mechanism could be
reduced to O(m?) + O(nm). Based on this, the time
complexity of the attention mechanism, the mask-attention
mechanism, and the full-attention mechanism could be
rewritten as O(NZpM?) + O(PNgrpM), O(NipM?) +
O((G + L)Ngp M), and O(NgprM?) + O(PNgpM). Besi-
des, considering the parallelization, the fully connected
networks have a time complexity in the order of O(N3pM?).
As a result, the encoder and decoder of transformer involve
complexities in the orders of O(NApM?) + O(PNrrpM)
and O(NI%FMQ) + O((G+L)NRFM) + O(PNRFM),
respectively. Therefore, by utilizing parallel computing
architecture [36], the overall complexity of the proposed
transformer-based parallel prediction model can be rewritten
as O(NI;Q{FMQ) + O(PNRFM) + O((G + L)NRFM)

V. TRANSFORMER-BASED PILOT-TO-PRECODER (P2P)
PREDICTION

In this section, to reduce the signal processing complexity,
we further extend the proposed transformer-based channel
prediction scheme to a pilot-to-precoder (P2P) prediction
scheme, as shown in Fig. 7. At first, we formulate the
P2P prediction problem. Then, the framework of transformer-
based P2P prediction is introduced. Finally, the reduced signal
processing complexity of P2P is analyzed.

A. Problem Formulation of P2P Prediction

For the transformer-based parallel channel prediction model,
the complicated channel estimation is required to estimate the
historical channels according to the historical received pilots
in previous several frames. Besides, complicated computations
are also acquired to the design of the future precoders in
next several frames based on predicted channels. As such, the
channel estimation and precoding design may cause extremely
high computational complexity. To address this issue, we fur-
ther consider the P2P mapping problem for mmWave massive
MIMO. Instead of regarding the channel estimation, channel
prediction, and precoding as three independent modules and
separately optimizing these modules, we consider the joint
design, which regards these three modules as a whole that can
be jointly optimized. Unlike the parallel channel prediction
problem formulated in Section III, we directly optimize the
achievable sum-rate for transformer model, rather than the
NMSE of the predicted future channels (12a). Specifically, the
same transformer model introduced in Section IV is utilized
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to directly predict the future precoders in next several frames
according to the received pilots in previous frames. Formally,
the P2P mapping problem can be formulated as

T+L
max IE{ > R“)} (29a)
® t=T+1
®) @& rt\H
PD(t)He (D ¢’)
s.t. R(t)—logQOIM—i— o? . (29b)

(DI o DIHL)) = e (YTPHD L ,Y(T))7
(29¢)

where fg(-) is the considered P2P mapping model, ® is
model parameters, D(*) is the predicted precoder matrix at the
t-th frame, H((f) is the actual effective channel at the first slot
of the ¢-th frame, and Y®) is noisy pilot observation at the
t-th frame shown in (5).

A key insight of the considered P2P prediction is that the
mutual information between the received pilot and actual chan-
nel is larger than the mutual information between the estimated
channel and actual channel, ie., I(He;Y) > I(He;ﬂe).
According to the data processing inequality [37], for a Markov
process X — Y — Z, then I(X;Y) > I(X; Z). This shows
that the more processing the data goes through, the less mutual
information it contains. For the considered communication
system, the effective channel H. is regarded as a random
variable that follows a distribution, such as the Rayleigh
channel following the Rayleigh distribution. Then, through the
channel, the transmitted pilot signal S is affected by channel
fading and noise, and noisy pilot observation Y can also be
considered as a random variable. Next, the data processing
process of channel estimation is performed according to the
received pilot signal Y, and the estimated channel H, is
obtained. Thus, H. — Y — I:Ie can be seen as a Markov
process. Based on the data processing inequality, the key
insight 1(H,;Y) > I(H,; H,) could be derived. By analogy,
the precoders calculated from the predicted channel contains
generally less information than that of the predicted channel.
Thus, it is reasonable to use the historical received pilots
to replace the estimated historical channels as the input of
the transformer model. For the same reason, the predicted
precoders could replace the predicted channel as the output
of the transformer model.

B. Proposed Transformer-Based P2P Prediction Framework

Similar to the parallel channel prediction framework pro-
posed in Subsection IV-A, the framework of the proposed
P2P prediction scheme consists of two phases, i.e., an offline
training and an online prediction. For the offline training phase,
the unsupervised learning algorithm is applied to train the
transformer model according to (29a). To train the transformer
model, the sampling of the P + L effective channels in
the contiguous P + L frames is required. The input of the
transformer model {Y(T=P+1 ... Y(T)1 can be obtained
by (5) based on the first P effective channels. Then, the last
L effective channels and the output of the transformer model
(DY ... DTHL)Y construct the optimization objective
of achievable sum-rate (29a). Finally, we aim to maximize
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the achievable sum-rate to obtain the precoding matrix for
mmWave massive MIMO.

After training the above transformer-based P2P prediction
model, we deploy the well-trained model and realize the
precoder prediction online. In the online prediction, we can
directly obtain the future precoders {D(T+1) ... DT+
in the next L frames, by inputting the historical noisy pilot
observations {Y(T=F+1 ... ¥(T)} from the past P frames
into the transformer model. In the process of P2P prediction,
by utilizing the powerful transformer model, there is no need
for explicit channel requirement, thereby eliminating the needs
for channel estimation and precoding modules in proposed the
parallel channel prediction scheme.

C. Complexity Analysis

In this subsection, we compare the computational com-
plexity of the proposed P2P prediction scheme with the
parallel channel prediction scheme in terms of the number
of multiplications. Note that the dedicated channel estimation
and precoding are no longer needed in the proposed P2P
prediction scheme by directly predicting precoders according
to the pilots. Thus, the signal processing complexity of channel
estimation and precoding is avoided for the P2P prediction
scheme.

To calculate the reduced complexity, we compute the com-
plexity of the dedicated channel estimation and precoding in
the parallel channel prediction scheme. Firstly, for the channel
estimation, the classical LS channel estimation algorithm (7)
and the MMSE channel estimation algorithm (8) are con-
sidered, both of which have the complexity in the order of
O(N3zM?) due to the high-dimensional matrix inversion.
Furthermore, to obtain the estimated channels in the previous
P frames, the channel estimation algorithms are executed P
times. Therefore, the channel estimation complexity is in the
order of O(NjxzM3P). Then, we resort to the zero-forcing
algorithm in (10) to solve the precoders, where the pseudo
inverse of the predicted channel I:Igt) e CNrrXM jnyolves
complexity in the order of O(Ng3p) + O(NEM). To obtain
the precoders in the next L frames, the precoding is also
executed L times. Thus, the complexity of the precoding
design is in the order of O(N3pL) + O(NZpML). There-
fore, the overall reduced computational complexity of the
P2P prediction scheme is in the order of O(N3pM?3P) +
O(NEpL)+O(NAR ML), in which the reduced complexity is
dominated by O(N3p M3 P). As a comparison, the complexity
of the transformer-based parallel channel estimation in Subsec-
tion IV-E is dominated by O(P?NgrpM). According to the 5G
standard [38], the number of antenna ports M is set to 2 or 4 or
8 based on different UE categories. The corresponding number
of RF chains Nir in BS is usually set to 4. Thus, considering
that the length of historical channel P is usually much smaller
than N2 M2, our proposed P2P prediction scheme can greatly
reduce the signal processing complexity compared with the
parallel channel prediction scheme.

VI. SIMULATION RESULTS

In this section, we present the performance comparison
among the proposed transformer-based parallel channel pre-
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diction scheme, the P2P prediction scheme, and some existing
sequential channel prediction schemes. In order to prove the
effectiveness of our work, we provide the simulation results
on the CDL-B 3GPP cluster delay line channel model and the
3GPP urban macro (UMa) channel model [25], respectively.

A. Simulation Setup

In our simulations, the parameters of the massive MIMO
system are set as: Npg = 64, Ngp =4, M = 2, and f = 28
GHz. For simplicity, the orthogonal pilot signal matrix S is
considered to be the identity matrix, i.e., S = I»;. Due to
the orthogonality, the length of the training pilot sequence
is set to @ = M = 2 [39]. The analog combiner is designed
based on the first 4 strongest beams in the DFT codebook.
In addition, as the displacement of the user is small in tens
of milliseconds, the analog combiner is assumed to remain
unchanged for considered contiguous P + L frames where
P =25 and L = 5. Additionally, the length of channels in the
previous frames served as the start token of the decoder is set
as G = 10. The achievable sum-rate performance is calculated
by applying (9) for parallel channel prediction and the signal-
to-noise ratio (SNR) is defined as a%. According to the 3GPP
standard [4], the SRS period is set as 0.625 ms.

To improve the generalization of our results, 10000 training
samples with different user speeds are randomly generated
according to the distribution of the user speeds v follow-
ing U[30km/h, 60km/h]. After training, we test the trained
transformer model at the speed of 30 km/h and 60 km/h,
respectively, and each speed contains 400 test samples. Con-
sidering the multi-path effect, the delay spread of the channel
is set from 50 to 300 ns randomly, and the SNR is set from
10 dB to 15 dB randomly in the training samples. Note
that both the proposed transformer-based prediction schemes
and the neural network-based methods use channel parameters
introduced above.

B. Simulation Results on the CDL-B Channel Model

In this subsection, based on the CDL-B channel model [25]
generated by the Matlab 5G toolbox [28], we provide the
performance comparison of the proposed transformer-based
parallel channel prediction scheme, the P2P prediction scheme,
and some existing sequential channel prediction schemes.

Fig. 8 shows the channel prediction accuracy of the pro-
posed transformer-based channel prediction scheme, where the
channel prediction results of L = 5 are shown according to
P = 25 channels in previous frames. The SNR, user speed v,
and the delay spread are set as 14 dB, 30 km/h, and 100 ns,
respectively. From Fig. 8, we can observe that the proposed
transformer-based channel prediction scheme could predict
future channels with high accuracy. The gaps between the
actual channels and predicted channels are small. We also
notice that the prediction accuracy will not degrade with the
evolution of the frames. To verify this, we further compare the
NMSE performance.

In Fig. 9 and Fig. 10, we compare the NMSE performance
versus frame between the proposed transformer-based parallel
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Fig. 8. A parallel channel prediction results of the proposed
transformer-based parallel channel prediction scheme, where the v =
30km /h, the delay spread is set as 100ns, and SNR = 14 dB. The period of
SRS is 0.625ms. The blue and orange lines are the real part of the channels
and the real part of the predicted channels, respectively. The 4 sub-figures
shown above are the effective channels between the 4 RF chains and the first
user antenna.
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Fig. 9. The NMSE performance versus frame in the CDL-B channel model
at v = 30 km/h.

channel prediction scheme and some existing sequential chan-
nel prediction schemes, such as LSTM-based method [14],
RNN-based method [13], linear model based prony angular-
delay (PAD), and prony vector (PVEC) prediction methods [7].
The SNR is set as 10 dB. The no prediction scheme is also
provided by computing the NMSE between the future channel
with the current channel. The test scenarios with different
user speeds are set as 30 km/h in Fig. 9 and 60 km/h
in Fig. 10, while the channel coherence times are roughly
equal to 0.643 ms and 0.321 ms, respectively. We can observe
from Fig. 9 and Fig. 10 that the proposed transformer-based
parallel channel prediction scheme could achieve almost the
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Fig. 10. The NMSE performance versus frame in the CDL-B channel model
at v = 60 km/h.

best performance in both v = 30 km/h and v = 60 km/h,
especially the best performance is obtained when predicting
the channels from the second to the fifth future frames. Despite
the LSTM-based method having comparable NMSE perfor-
mance when predicting the channel at the first future frame,
the transformer-based method shows its stability in performing
future channel prediction. For example, for the prediction of
the channel at the fifth future frame, the transformer-based
scheme could achieve 5 dB and 10 dB NMSE performance
gain compared with LSTM-based method at v = 30 km /h and
v = 60 km/h, respectively.

The improvements of the proposed transformer-based par-
allel channel prediction scheme in Fig. 9 and Fig. 10 come
from two aspects. On the one hand, thanks to the parallel signal
processing, the future channels in the next several frames could
be predicted in parallel, thereby avoiding the prediction error
propagation. On the other hand, for the channel with long
periodicity, the attention mechanism applied in the transformer
model could pay attention to the early parts of historical
channels, improving the prediction accuracy. In addition, com-
pared with model-based methods, the NN-based methods have
significant performance benefits as the latter can adaptively
match the predicted channels with the actual ones.

Fig. 11 and Fig. 12 show the corresponding achievable
sum-rate performance versus frame. Additionally, the achiev-
able sum-rate performance of transformer-based P2P predic-
tion is also shown. The upper bound is achieved by the scheme
with perfect channel information available. The user speeds
are set as 30 km/h in Fig. 11 and 60 km/h in Fig. 12.
From Fig. 11 and Fig. 12, we can observe that the proposed
transformer model for parallel channel prediction and P2P pre-
diction could approach the near-optimal achievable sum-rate
performance achieved by the perfect channel information at
two different user speeds scenarios. For example, for the pre-
diction of the channel at the fifth future frame, the channel pre-
diction method with proposed transformer-based can achieve
nearly 98% and 97% sum-rate performance of the upper bound
exploiting perfect channel information at v = 30 km/h and
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Fig. 11. The achievable sum-rate performance versus frame in the CDL-B
channel model at v = 30 km/h.
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Fig. 12. The achievable sum-rate performance versus frame in the CDL-B

channel model at v = 60 km/h.

v = 60 km/h, respectively. Besides, we can observe that the
proposed transformer-based parallel channel prediction and the
P2P prediction scheme maintain robustness even in a higher
mobility scenario with v = 60 km/h, while the LSTM-based
method has shown a severe performance degradation.

From Fig. 11, we can observe that the P2P prediction is
not always better than the parallel channel prediction. In our
view, the parallel transformer P2P prediction mainly adopts
unsupervised learning, and there is no precoder label for
supervised learning. Thus, the training efficiency of the P2P
prediction is slightly worse than that of the supervised channel
prediction, and sometimes the performance will not be better
than the channel prediction method.

Through the summary of the simulation results in Fig. 8-12,
we could conclude that the proposed transformer-based
parallel channel prediction scheme can realize higher accu-
racy when predicting future channels. Besides, both the pro-
posed transformer-based parallel channel prediction and the
P2P prediction schemes can effectively alleviate the negative
impacts caused by user mobility such that they can approach
near-optimal achievable sum-rate performance.

Authorized licensed use limited to: Tsinghua University. Downloaded on August 29,2022 at 06:28:21 UTC from IEEE Xplore. Restrictions apply.



2730

~—&— No prediction
Sequential PAD [7]
—<— Sequential PVEC [7]
—w%— Sequential RNN [13] | |
—6— Sequential LSTM [14]
—A— Parallel Transformer

1 2 3 4 5
Frame (0.625 ms)

Fig. 13.  The NMSE performance versus frame in the UMa channel model
at v = 30 km/h.

C. Simulation Results on the UMa Channel Model

Since the power of the per-cluster is fixed in the CDL-B
model®. Thus, we first utilize the QuaDRiGa (QUAsi Deter-
ministic RadlO channel GenerAtor) [40], [41] to generate
the 3GPP UMa channel model with random PDP. Then
we compare the performance between the proposed parallel
channel prediction scheme and the existing sequential channel
prediction schemes in the UMa channel model.

The QuaDRiGa channel model [40], [41] follows a
geometry-based stochastic channel modeling approach, where
the channel parameters such as delay, power, AoA, and AoD,
are determined stochastically. Based on statistical distribution
for delay spread, delay values, angle spread, shadow fading,
etc., specific channel realizations are generated by summing
contributions of rays with specific channel parameters. There-
fore, the QuaDRiGa channel model can generate the chan-
nels with random PDP. Furthermore, the QuaDRiGa channel
model also provides a realization of the 3GPP UMa channel
model [25].

In Fig. 13 and Fig. 14, we compare the NMSE performance
versus frames between the proposed transformer-based parallel
channel prediction scheme and some existing sequential chan-
nel prediction schemes in the UMa channel model. Testing
SNR is set as 20 dB. The no prediction scheme is also
provided by computing the NMSE between the future channel
with the current channel. The test scenarios with different user
speeds are set as 30 km/h in Fig. 13 and 60 km/h in Fig. 14.
We can observe from Fig. 13 and Fig. 14 that the proposed
transformer-based parallel channel prediction scheme could
achieve almost the best performance in both v =30 km/h
and v = 60 km/h cases.

8The CDL-B channel model is suitable for representing the spatial cor-
relation and modelling the channel of analog beamforming architecture
which is considered in our paper. Therefore, in our simulation, we first
adopted the CDL channel model to show the effectiveness of the proposed
transformer-based scheme and further extended it to the UMa channel model.,
the proposed channel prediction scheme should be verified in the random
power delay profile (PDP) channel model to ensure performance improvement.
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Fig. 14. The NMSE performance versus frame in the UMa channel model
at v = 60 km/h.
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Fig. 15. The achievable sum-rate performance versus frame in the UMa
channel model at v = 30 km/h.

However, unlike the NMSE performance in the CDL-B
channel, which keeps stable when predicting channels in future
5 frames, the NMSE performance in the UMa channel model
degrades as the frame increases. One important reason is that
the channel parameters such as delay values, angle spread,
power, etc. are fixed in the 3GPP CDL-B channel, and thus
the trained results converge to the channel model determined
by the channel parameters. By contrast, the channel parameters
are sampled randomly in the 3GPP UMa channel model,
which makes the generated channel more random and less pre-
dictable. In this more complex UMa channel model, the pro-
posed transformer-based parallel channel prediction scheme
still achieves the best NMSE performance compared with the
existing sequential channel prediction schemes. For example,
for the prediction of the channel at the second future frames,
the transformer-based scheme could achieve 2.5 dB and 1 dB
NMSE performance gain compared with LSTM-based method
at v = 30 km/h and v = 60 km/h, respectively.

Furthermore, we show the corresponding achievable
sum-rate performance versus frame in Fig. 15 and Fig. 16. The
upper bound is achieved by the scheme with perfect channel
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Fig. 16. The achievable sum-rate performance versus frame in the UMa
channel model at v = 60 km/h.

information available. From Fig. 15 and Fig. 16, we can
observe that the proposed transformer model for parallel chan-
nel prediction could also achieve the best achievable sum-rate
performance. For example, compared with the LSTM-based
channel prediction scheme, the channel prediction method
with proposed transformer-based at the third future frame can
achieve nearly 10% and 15% sum-rate performance improve-
ment at v = 30 km/h and v = 60 km/h, respectively.

VII. CONCLUSION

In this paper, we investigated the challenging channel pre-
diction for the mmWave massive MIMO system in the mobil-
ity scenarios. Compared to the classical sequential channel
prediction methods with severe error propagation problems,
we proposed a transformer-based parallel channel prediction
scheme to accurately predict the time-varying channels. More-
over, we also proposed a transformer-based P2P prediction
scheme to carry out channel estimation, channel prediction,
and precoding jointly to significantly reduce the computation
complexity for practical communications.

This paper demonstrated that the transformer model, based
on the attention mechanism, can process the channel sequence
in parallel. In addition, this paper also illustrated that a lower
signal processing complexity could be achieved by consid-
ering the joint system design of several independent signal
processing modules. In future research, we will utilize the
transformer-based model to investigate the channel prediction
problem in other domains, such as the frequency-domain and
the beam-domain channel prediction.
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