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Abstract—Hybrid precoding design is a high-complexity prob-
lem due to the coupling of analog and digital precoders as
well as the constant modulus constraint for the analog precoder.
Fortunately, the deep learning based hybrid precoding methods
can significantly reduce the complexity, but the performance re-
mains limited. In this paper, inspired by the attention mechanism
recently developed for machine learning, we propose an attention-
based hybrid precoding scheme for millimeter-wave (mmWave)
MIMO systems with improved performance and low complexity.
The key idea is to design each user’s beam pattern according to
its attention weights to other users’. Specifically, the proposed
attention-based hybrid precoding scheme consists of two parts,
i.e., the attention layer and the convolutional neural network
(CNN) layer. The attention layer is used to identify the features
of inter-user interferences. Then, these features are processed
by the CNN layer for the analog precoder design to maximize
the achievable sum-rate. Simulation results demonstrate that the
attention layer could mitigate the inter-user interferences, and the
proposed attention-based hybrid precoding with low complexity
can achieve higher achievable sum-rate than the existing deep
learning based method.

I. INTRODUCTION

Millimeter-Wave (mmWave) multiple-input multiple-output

(MIMO) has been regarded as one of the key techniques for

5G wireless communications [1], [2]. For the classical fully-

digital precoding, the hardware cost and power consumption

are unaffordable due to the use of a very large number

of expensive radio-frequency (RF) chains, which have high

energy consumption (about 250 mW per RF chain [3]). To

address this issue, hybrid precoding has been proposed by

using fewer RF chains to design a low-dimensional digital

precoder [4]. At the same time, the analog phase shifters

(PSs) with low cost and power consumption are introduced to

design the high-dimensional analog precoder to achieve high

array gains. However, the joint design of analog and digital

precoders is difficult due to the constant modulus constraint

of the analog PSs [5].

Existing dominant hybrid precoding algorithms could be

generally divided into two categories, i.e., the codebook-

based beamforming and the non-codebook beamforming. For

the codebook-based beamforming, the analog beam to be

used is acquired by searching from the predefined codebook,

aiming to maximize the desired received signal power for

each user. An intuitive design of the codebook is the discrete

Fourier transform (DFT) codebook [6], in which the beams

are orthogonal to each other, and all beams cover the entire

beam domain. Unfortunately, this method suffers from a low

degrees of freedom due to the finite codebook space, and

consequently the performance is limited. By contrast, the

non-codebook beamforming could obtain the near-optimal

performance by optimizing the hybrid precoders to approach

the performance of the fully digital precoding. In [7]–[12],

the manifold optimization [7], Barzilai-Borwein gradient [8],

matrix decomposition [9], gradient projection [10], geometric

mean decomposition [11], and complex oblique manifold [12]

are utilized to minimize the Euclidean distance between the

hybrid precoder and the fully digital precoder. However, the

optimization algorithms mentioned above have high computa-

tional complexity.

To reduce the complexity of the optimal hybrid precoding

designs, several deep learning (DL) based hybrid precoding

methods have been recently proposed by using low-complexity

neural networks [13]–[17]. The DL-based methods could be

generally divided into two categories according to the learning

style, i.e., the supervised learning based method and the

unsupervised learning based method. For supervised learning

based method [14], the hybrid precoders are labeled according

to the classical singular value decomposition (SVD), which

requires a lot of computation resources to calculate the SVD.

Moreover, it is difficult to have a performance gain based on

supervised learning, since the results are bounded by classical

optimization algorithms [15]. Unlike supervised learning, the

unsupervised learning based method [16] learns the precoder

without labeled samples. In this case, the unsupervised learn-

ing methods directly take sum-rate as loss function to train the

DL model. However, the existing works just use simple fully-

connected (FC) neural networks, which is difficult to learn the

constrained analog precoder. As a result, the performance of

unsupervised learning based method remains limited.

To improve the performance of the unsupervised learn-

ing based method without using labeled samples, in this

paper, inspired by the recently developed attention mecha-

nism [18], we propose an attention-based hybrid precoding

scheme for mmWave MIMO systems. To be specific, the

proposed attention-based hybrid precoding mainly consists of

the following two parts. First, based on the attention mech-
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Fig. 1. The architecture of hybrid precoding.

anism, we design the attention layer to identify the features

of inter-user interferences. Then, we apply a low-complexity

convolutional neural network (CNN) layer to learn the analog

precoder according to the features of inter-user interferences.

Simulation results show that the proposed low-complexity

attention-based hybrid precoding could achieve better sum-

rate performance than existing unsupervised learning based

scheme.

Notation: We denote the column vectors and matrices

by boldface lower-case and upper-case letters, respectively.

(·)T , (·)H , (·)−1 denote the transpose, the conjugate transpose,

and the inverse of the matrix, respectively. Xi,j denote the

element of the matrix X in row i and column j. |·| and ‖·‖2
denote the absolute value and l2-norm, respectively. CN (0, 1)
is the standard complex Gaussian distribution with mean 0 and

variance 1.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a downlink hybrid precoding mmWave massive

MU-MIMO system, as shown in Fig. 1, in which the base

station (BS) are deployed with Nt antennas and NRF
t RF

chains to transmit Ns data streams in parallel. In the practical

hybrid precoding system, the number of RF chains is far less

than the number of antennas, i.e., NRF
t < Nt. Assuming there

are K single antenna users to be severed by a BS, the downlink

system model can be given by

y =
√
ρHADs+ n, (1)

where ρ is the transmitted power, y = [y1, · · ·, yk]T ∈ C
K×1

is the received signal vector for Ns single-antenna

users; H = [h1, · · ·,hk]
T ∈ C

K×Nt
is the channel matrix;

A ∈ C
Nt×NRF

t and D = [d1, · · ·,dNs
] ∈ C

NRF
t ×Ns are ana-

log precoder and digital precoder matrices, respectively;

s ∈ C
Ns×1 is the transmitted signal; and n ∈ C

K×1 is the

received zero mean additive white Gaussian noise (AWGN).

At the BS, the Ns independent data streams in baseband are

processed by the well-designed low-dimensional digital pre-

coder D. Then, the RF chains convert the digital signals into

analog signals. Finally, the high-dimensional analog precoder

A shapes the transmitted beam to users by a PS network,

which has low hardware cost and energy consumption [4],

so each element of A should satisfy |Ai,j |2 = 1/Nt. For the

convenience of our discussion, we suppose K = Ns = NRF
t ,

which means that each data stream serves one user.

It is well known that mmWave channel is sparse due

to the limited number of scatters in mmWave propagation

environment [19]. So, in this paper, we adopt the geometric

Saleh-Valenzuela channel model [20] to describe the mmWave

channel, which is represented as

hk =

√
Nt

L

L∑

l=1

αlft(φ
k
l ), (2)

where L is the number of the effective signal propagation

paths, and we usually have L ≤ Nt; αl is the complex gain

of the lth path; φk
l is the angles of departure (AoDs) of the

lth path and kth user; and ft(φ
k
l ) is the antenna array steering

vector, which depends on the BS array geometry. When we

consider the widely used uniform linear arrays (ULAs), we

have

ft(φ
k
l ) =

1√
Nt

[1, ej
2π
λ

dsin(φk
l ), · · ·, ej(Nt−1) 2π

λ
dsin(φk

l )]T , (3)

where λ is the wavelength of the transmitted signal, and d is

the antenna spacing.

Then, the received signal-to-interference-plus-noise ratio

(SINR) at the kth user can be denoted by

ρk =
ρ|hT

kAdk|2
σ2 + ρ

∑K

j 6=k |hT
kAdj |2

, (4)

where σ2 is the variance of the AWGN. In this paper,

we aim to maximize the total achievable rate expressed as

R =
∑K

k=1 Rk, where Rk = log2(1 + ρk) is the data rate of

the kth user. The optimal digital precoder Dopt and analog

precoder Aopt could be found by solving the optimization

problem formulated as

max
Aopt,Dopt

R(H,A,D)

s.t. |Ai,j |2 = 1/Nt (5)

||dk||22 = 1/K, ∀k = 1, 2, · · ·,K.

Unfortunately, it can be seen that (5) is a non-convex opti-

mization problem due to the non-convex objective function

and the constant modulus constraints. The optimal solution

could be found by the exhaustive search method. However,

the extremely high complexity makes exhaustive search im-

possible in the limited channel coherence time. Instead, the

optimization techniques [7]–[10], [12] can be applied to max-

imize the achievable sum-rate, nevertheless, these techniques

still suffer from high complexity.

III. ATTENTION-BASED HYBRID PRECODING

In this section, to reduce the complexity of hybrid precoding

for MIMO, we propose an attention-based hybrid precoding

scheme, which contains the attention layer and CNN layer.

First, inspired by the attention mechanism [18], we design the

attention layer to identify the features of inter-user interfer-

ences. Then, we apply a low-complexity CNN layer to learn

the analog precoder according to the learned features of inter-

user interferences.
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A. Overview of attention mechanism

The attention mechanism could be regarded as a resource

allocation mechanism [21]. Unlike conventional deep learning

techniques, which distribute the same resources for each

component of the signal, the attention mechanism distributes

more resources to more important components. Intuitively, the

attention mechanism can be explained by the human visual

mechanism. Specifically, the human visual systems obtain the

key areas after scanning the visual field, and then the visual

systems pay more attention to the stimuli information from

these more important areas, while restraining the information

from less important areas. By distributing different resources

to different areas, the human visual system is able to greatly

reduce the complexity and improves the accuracy of visual

signal processing [21].

To realize resource allocation based on importance, the at-

tention mechanism introduces the normalized attention matrix

to measure the importance degree between the output and

each part of the input. The important parts are given larger

weights, and then the normalized attention matrix is multiplied

by the input as a mask. Especially, taking advantage of the

attention matrix, we can also measure the importance between

the different components of the input, which is called the self-

attention mechanism. Next, we will introduce the self-attention

mechanism, which is mainly considered in this paper.

For the input X ∈ R
n×m, which has n independent compo-

nents and the embedding dimension of each component is m,

there are several basic matrices that are used to characterize

the self-attention mechanism: the query matrix, the key matrix,

the value matrix, and attention matrix.

(1) Query matrix: Aim to match or query the importance of

other components. Q = WQ(X) ∈ R
n×d, where WQ denotes

the linear transformation of the input X, d denotes the query

dimension of the each component.

(2) Key matrix: Aim to be matched or queried the im-

portance by other components. K = WK(X) ∈ R
n×d, where

WK denotes the linear transformation of the input X, d
denotes the key dimension of the each component.

(3) Value matrix: Aim to extract or keep the feature of the

input. V = WV (X) ∈ R
n×m, where WV denotes the linear

transformation of the input X. In addition, the value matrix

could be obtained without linear transformation, i.e., V = X.

(4) Attention matrix: Aim to measure the importance be-

tween the different components of the input, which could

be denoted by Softmax(QKT

√
d
) ∈ R

n×n, where the Softmax
normalization is adopted to make each row add up to 1. The

element in row i and column j denotes the attention weight

of component i to component j.

Then, we get the weighted output of the attention mecha-

nism, which could be represented as the product of normalized

attention matrix and value matrix as follows:

Attention(Q,K,V) = Softmax(
QKT

√
d

)V, (6)

where the attention matrix is adjusted by
√
d, since the

variance of the product of Q and KT increases as d increases.
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Fig. 2. The structure of the proposed attention-based hybrid precoding
scheme.

It is useful to balance the increased variance by dividing√
d [18].

B. Attention layer

In this subsection, we present the proposed attention-based

scheme for hybrid precoding in mmWave massive MU-MIMO

system, utilizing the attention mechanism to process multi-user

raw channel state information (CSI) and identify the interfer-

ences between users. The CSI could also be obtained by the

DL-based channel estimation method [22]. The structure of

the attention-based neural network model is shown in Fig. 2,

which is comprised of the attention layer and CNN layer.

First of all, the input channel H is processed by the attention

layer. In the attention layer, we firstly transform the complex

value input H ∈ C
K×Nt into real value Hr ∈ R

K×2Nt by

moving the imaginary part to the embedding dimension. Next,

according to the introduction of the attention mechanism in

subsection III-A, there are three independent linear trans-

formations WQ(Hr),WK(Hr), and WV (Hr) to simultane-

ously calculate the corresponding query matrix Q, key matrix

K, and value matrix V, respectively. In general, the linear

transformation could be implemented by a linear FC network

without an activation function. Then, the attention matrix

Softmax(QKT

√
d
) ∈ R

K×K is calculated, which denotes the

level of attention among users. At last, by adding residual

connection and layer normalization, we can get the output of

the attention layer, which could be represented as follows:

Hr
Att = Layernorm(Attention(Q,K,V) +Hr), (7)

where Layernorm(X) =
Xi,j−μi√

σ2
i
+ε

, and μi and σ2
i denote the

expectation and variance of the ith row of X, respectively.

The normalization operation in this layer is used to speed up

the training by normalizing the data into the standard normal

distribution. To avoid the denominator to be zero, a small
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Fig. 3. The structure of the CNN layer.

quantity ε is added in the denominator. Note that we can

cascade multiple attention layers to improve the accuracy of

the self-attention algorithm.

C. CNN layer

Further, we apply the low complexity CNN layer as shown

in Fig. 3 to learn the analog precoder matrix according to

the features of inter-user interferences. In the CNN layer, we

firstly reshape the input of the CNN layer Hr
Att ∈ R

K×2Nt

to R
2×K×Nt , which could be considered to have real and

imaginary two-channels. Next, the channel number of the

reshaped input is extended to F � 2, to extract more features.

Then, we divide the F -channels features into two streams,

and we apply convolution kernels in different sizes to extract

features at different scales for two streams. At last, the features

at different scales are integrated into real and imaginary

two-channels matrix Ã ∈ R
2×K×Nt , which is waiting to be

normalized.

Finally, to satisfy the constant modulus constraint of the

analog precoder, the real and imaginary two-channel Ã should

be normalized in channel dimension as follow:

Aj,i =
1√
Nt

Ã1,i,j + jÃ2,i,j√
Ã2

1,i,j + Ã2
2,i,j

, (8)

where A ∈ C
Nt×K is the complex value analog precoder.

Then, the digital precoder is designed by the classical zero-

forcing (ZF) algorithm [23] according to the effective channel

Heq = HA. That is to say, the digital precoder matrix

D = [d1, · · ·,dK ] could ve computed as:

D̃ = [d̃1, · · ·, d̃K ] = HH
eq(HeqH

H
eq)

−1,

dk =
1√
K

d̃k

||d̃k||2
, k = 1, · · ·,K. (9)

Note that in this paper we distribute the same power to

different users, and the power distribution problem could be

considered in future research.

D. Unsupervised learning

To realize the training weights of the attention layer and

CNN layer, we utilize unsupervised learning to maximize the

achievable sum-rate in (5). Unlike supervised learning which

needs lots of data annotation based on conventional algorithms,

unsupervised learning could automatically learn to minimize

the loss function without guiding by conventional algorithms.

Moreover, the performance of supervised learning method will

be bounded by the performance of conventional algorithms,

so it is difficult to have a performance improvement based on

supervised learning.

We define the negative number of the objective function in

(5) as the loss function, which could be represented as

loss(WQ,WK ,WV ,WCNN ,H) = − 1

B

B∑
i=1

R(H(i),A(i),D(i)),

(10)

where H = {H(1), · · ·,H(B)} is the channel set, and the B
is the batch size (the number of training samples to estimate

the loss function). By using the back propagation (BP) al-

gorithm [24] to train the weights in the attention layer and

CNN layer, the minimum loss function, i.e., the maximum

achievable sum-rate, could be ultimately acquired.

TABLE I
COMPLEXITY COMPARISON WITH OTHER HYBRID PRECODING

ALGORITHMS.

Scheme Complexity

Proposed attention-based O(KNt)

MO-AltMin [7] O(NRF
t

K
2
N

3
t
)

GP-AltMin [10] O(NRF
t

K
2
N

3
t
)

Fast optimization [12] O(NRF
t

(NRF
t

+K)Nt)

CE-based [17] O(IiterK
2
Nt)

Two-stage [25] O(KNt)

Table I shows the computation complexity of the attention-

based hybrid precoding and other conventional algorithms. We

observe that the complexity of the attention-based hybrid pre-

coding increase linearly, while the complexity of conventional

algorithms is proportional to the power of the number of users

and antennas, which shows the complexity advantage of the

proposed attention-based hybrid precoding scheme.

IV. SIMULATION RESULTS

In this section, we provide simulation results to evaluate the

performance of the proposed attention-based hybrid precoding

for mmWave massive MU-MIMO systems. The simulation

parameters are described as follows. We consider the mmWave

massive MU-MIMO system with hybrid precoding, where

Nt = 64, K = NRF
t = Ns = 16, d = λ/2. The channel is

generated according to the channel model [20] described in
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Fig. 5. (a) beam pattern realized by unsupervised learning based algo-
rithm [16]; (b) enlarged version of Fig. 5 (a); (c) beam patterm realized by
attention-based algorithm with one attention layer; (d) enlarged version of
Fig. 5 (c).

Section II, in which the AoDs are assumed to follow the

uniform distribution U [−π/2, π/2]. The number of channel

path L = 3, and the complex path gain αl is assumed to be

Gaussian, i.e., αl ∼ CN (0, 1). The signal-to-noise ratio (SNR)

is defined as SNR = ρ/σ2.

Fig. 4 compares the achievable sum-rate against SNR of

the proposed attention-based hybrid precoding scheme with

that of unsupervised learning based hybrid precoding [16],

conventional two-stage hybrid precoding algorithm [25], MO-

AltMin optimization based hybrid precoding method [7], and

fully digital precoding [23]. We can observe that the proposed

attention-based hybrid precoding scheme outperforms the un-

supervised learning based hybrid precoding, and it has a higher

achievable sum rate with cascading more attention layers.

Meanwhile, Fig. 4 also verifies the attention-based hybrid

precoding scheme could achieve about 20% improvement in

sum-rate compared with the classical two-stage algorithm [25].

To explain the performance improvement of the attention-

based hybrid precoding, we show the beam pattern and

array gain of the proposed attention-based hybrid pre-

coding and unsupervised learning based hybrid precoding

in Fig. 5. In the simulation, we assume K = 4, L = 1,

and α1 = 1 for each user. The AoDs for four users are

φ1
1 = −0.3π, φ2

1 = −0.28π, φ3
1 = 0.1π, and φ4

1 = 0.2π, re-

spectively. After the calculation of attention layer, the nor-

malized attention weights of user 2 to other user are [0.02, 0,

0.87, 0.11]. We observe that the attention weight for user 2 to

user 3 is significantly larger than user 1, which shows that user

2 pays less attention to user 1 and pays more attention to the

user 3. Thereby, the user 2’s interference with user 1 could be

mitigated by shifting the beam to user 3. From Fig. 5 (b), we

can observe that the sidelobe jamming is significant between

user 1 and user 2, which causes the reduced achievable sum-

rate. By contrast, in Fig. 5 (d), user 2’s sidelobe is suppressed,

weakening the interference with user 1 when we use one

attention layer.

V. CONCLUSIONS

In this paper, we have proposed an attention-based hybrid

precoding scheme, to improve the performance of the deep

learning based hybrid precoding scheme for the mmWave

MIMO systems. Specifically, inspired by the attention mech-

anism, we designed the attention layer to identify the inter-

ferences among users, so that the interference features can be

obtained. Then, we designed a CNN layer to learn the analog

precoder according to interference features. Furthermore, we

applied unsupervised learning to train the weights of the

attention layer and the CNN layer to maximize the achievable

sum-rate. It is showed that the proposed attention-based hybrid

precoding scheme could realize the lower complexity com-

pared with conventional algorithms. Simulation results verified

the 20% sum-rate performance improvement of the proposed

attention-based hybrid precoding scheme compared with the

classical algorithm. For future research of hybrid precoding

for mmWave MIMO systems, we will focus on user pairing

and scheduling policies based on deep learning techniques.
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