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Low-Complexity SSOR-Based Precoding for Massive MIMO Systems
Tian Xie, Linglong Dai, Xinyu Gao, Xiaoming Dai, and Youping Zhao

Abstract—With the increase of the number of base station
(BS) antennas in massive multiple-input multiple-output (MIMO)
systems, linear precoding schemes are able to achieve the near-
optimal performance, and thus are more attractive than nonlinear
precoding techniques. However, conventional linear precoding
schemes such as zero-forcing (ZF) precoding involve the matrix
inversion of large size with high computational complexity, espe-
cially in massive MIMO systems. To reduce the complexity, in this
letter, we propose a low-complexity linear precoding scheme based
on the symmetric successive over relaxation (SSOR) method.
Moreover, we propose a simple way to approximate the optimal
relaxation parameter of the SSOR-based precoding by exploit-
ing the channel property of asymptotical orthogonality in massive
MIMO systems. We show that the proposed SSOR-based pre-
coding can reduce the complexity of the classical ZF precoding
by about one order of magnitude without performance loss, and
it also outperforms the recently proposed linear approximate
precoding schemes in typical fading channels.

Index  Terms—Massive  multiple-input
(MIMO), linear precoding, SSOR method.

multiple-output

I. INTRODUCTION

NLIKE conventional  small-scale  multiple-input
multiple-output (MIMO), massive MIMO employs
a large number of antennas (e.g., in the order of hundreds) at
the base station (BS) to simultaneously serve a set of users
(e.g., in the order of tens). Massive MIMO features great
improvement in spectral and energy efficiency [1], and it is
widely recognized as a very promising technology for the 5th
generation (5G) wireless communication systems [2].
However, there are several challenges to be solved for
practical massive MIMO systems, one of which is the low-
complexity precoding scheme with near-optimal performance.
In massive MIMO systems, linear precoding techniques with
reduced complexity can also achieve the capacity-approaching
performance due to the channel property of asymptotical
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orthogonality [2], which makes them more attractive for mas-
sive MIMO systems. Unfortunately, most linear precoding
schemes such as zero-forcing (ZF) precoding require the matrix
inversion of large size, which still results in high complex-
ity when the dimension of MIMO channels grows large in
massive MIMO systems. Recently, some efforts have been
endeavored to further reduce the complexity of linear precod-
ing schemes [3], [4]. Among them, a truncated polynomial
expansion (TPE) precoding scheme is proposed in [4] to avoid
the matrix inversion. However, TPE precoding has to deal
with complicated parameter optimization problems. Another
low-complexity linear precoding scheme without complicated
parameters is Neumann-based precoding, which avoids matrix
inversion by Neumann series [3]. Neumann-based precoding
enjoys reduced complexity when the number of iterations is
small, but it exhibits the same order of complexity as the classi-
cal ZF precoding when a large number of iterations is required
to achieve the near-optimal performance.

In this letter, we propose a low-complexity linear precod-
ing scheme based on the symmetric successive over relax-
ation (SSOR) method to substantially reduce the complexity
of the classical ZF precoding for massive MIMO systems.
Specifically, the proposed SSOR-based precoding exploits the
channel property of asymptotical orthogonality in massive
MIMO systems to reduce the complexity of linear precoding,
which is realized by computing the expected precoded signal
with the classical successive over relaxation (SOR) method
in both the forward and reverse order. To ensure the perfor-
mance of SSOR-based precoding, we also propose a simple
way to determine the optimal relaxation parameter by utilizing
the channel property of asymptotical orthogonality in massive
MIMO systems, which only depends on the dimension of mas-
sive MIMO systems. The analysis shows that the proposed
SSOR-based precoding can reduce the complexity by about one
order of magnitude. In addition, simulation results show that the
proposed SSOR-based precoding outperforms Neumann-based
precoding and TPE-based precoding, and it can also achieve the
near-optimal performance with a small number of iterations.

Notations: Lower-case and upper-case boldface letters
denote vectors and matrices. ()7, ¥, and (-)’1 present
the Hermitian conjugation, pseudo-inverse, and inversion of
a matrix, respectively. Finally, CN(a, 0'21) denotes the circu-
larly symmetric complex Gaussian distribution with mean a and
covariance matrix o 21, where I is the identity matrix.

II. SYSTEM MODEL

We consider the typical massive MIMO system, where
the BS employs N antennas to simultaneously serve K
single-antenna users, and we usually have N much larger than
K,i.e., N > K [2]. Denoting the transmitted signal vector after
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precoding by x € CV*! in the downlink, we can express the

received signal vector y € CX*! for K users as

y=.psHx+n, (D

where p is the downlink transmit power, H € CX*V denotes
the flat Rayleigh fading channel matrix whose entries follow
the distribution CN(0, 1), and n € CX*! denotes the additive
white Gaussian noise vector, which follows the distribution

EN(0, oT). When the linear precoding scheme such as ZF
precoding is used, we can express X as

x = Gs, 2

where G € CV*X denotes the linear precoding matrix, and s €
CK*1 is the source signal vector for K different users.

III. PROPOSED SSOR-BASED PRECODING
A. Conventional ZF Precoding

We first briefly review the classical ZF precoding. According
to [2], the conventional ZF precoding matrix Gzr can be
expressed as

Gzr = BzeH' = peHY HA?) ™! = peHA P!, (3)

where fzr denotes the power normalization factor that can be

/% [1], and P = HH” . Based on (1),

(2), and (3), the equivalent channel matrix can be presented as

selected as Bzp =

W = HGyr = BzsHH P~ 4)

As shown in (3), ZF precoding requires the matrix inversion
of large size, so its complexity O(K3)! rises rapidly as the
dimension of massive MIMO expands.

B. Proposed SSOR-Based Precoding

Considering (2) and (3), we can rewrite the transmitted signal
vector X as

x = pzeH"P~'s = pzpHt, &)
where t = P~!s. Equivalently, we have
Pt=s. (6)

The SSOR method can achieve the expected precoded vector t
in (6) in an iterative way without the complicated matrix inver-
sion P~! of large size. The premise of utilizing SSOR method is
that the matrix P should be Hermitian positive definite. Firstly,
due to the fact that P = (HHH ) according to the definition, the
matrix P is clear to be Hermitian. Secondly, by denoting an
arbitrary nonzero vector as u, we have

uGu” =u (HHH ) w? = uHH"u" = uHH)? . (7)

INote that there are recursive matrix inversion algorithms of which the com-
plexity is less than O(K 3) (e.g., the Strassen algorithm [5]). However, these
algorithms are hard to be implemented in practice due to the complicated recur-
sive structure. The practical matrix inversion algorithms such as Gauss-Jordan
elimination method have the complexity of O(K 3.

In Rayleigh fading channels, where the channel matrix H is a
full-rank matrix, uH equals to a zero vector only when u is a
zero vector. So we have uH (uH)? > 0 for all nonzero vectors,
which indicates that P is positive definite. Thus, we propose the
SSOR-based precoding by utilizing SSOR method to solve (6)
in the following three steps:

1) Decompose P as

P=D+L+L", (8)

where D, L, and L denote the diagonal component, the strictly
lower triangular component, and the strictly upper triangular
component of P, respectively. Here, we write the strictly upper
triangular matrix as L¥ since P is Hermitian positive definite
as discussed above.

2) Take successive over relaxation (SOR) method in the
forward order to compute the first half iteration by

D + o)ttt = (1 — w)DtD — wL7tD + ws,  (9)

where the superscript i denotes the number of iterations, and
is the relaxation parameter, which will be discussed in details
later.

3) Take SOR method in the reverse order to compute the
second half iteration of by

(D + L")t D = (1 — )DL H1/2 — Lt /2 4 s,
(10)

After several times of iterations based on (9) and (10), the
obtained vector t can be multiplied by the matrix ,BZFHH to
achieve the signal vector x for transmission after precoding as
shown in (5). Note that t needs to be recomputed for each source
signal vector s. Thus, the proposed SSOR-based precoding is
more suitable for the fast time-varying massive MIMO systems
(e.g., the communications between BS and users in fast moving
trains or vehicles), where the coherence interval is small due to
the high speed of users.

We can find that the proposed SSOR-based precoding solves
the complicated matrix inversion required by ZF precoding
through an iterative approach, which has much lower complex-
ity as will be quantified in Section III-D. We have found other
papers that used the similar iterative methods to reduce the com-
plexity of signal precessing in massive MIMO systems [6], [7].
In [6], the authors proposed a low-complexity signal detection
algorithm using Richardson method, and a SOR-based signal
detection algorithm was proposed in [7]. However, our pro-
posed SSOR-based precoding is different from these existing
works. Compared with the Richardson-based signal detection
[6], the proposed SSOR-based precoding exploits the diag-
onally dominant structure of the Gram matrix P in massive
MIMO systems, so that we can only focus on the dominant
diagonal elements of P while neglecting the unimportant non-
diagonal elements of P. Compared with the SOR-based signal
detection algorithm [7], the proposed SSOR-based precoding is
less sensitive to the relaxation parameter due to the fact that this
algorithm makes the iteration matrix symmetric [9], which indi-
cates that the proposed SSOR-based precoding is more robust
in practical systems. In addition, a low-complexity precoding
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scheme based on GS method was proposed in [8]. However,
the proposed SSOR-based precoding can be considered as a
generalization of the existing GS-based precoding, since when
the relaxation parameter of SSOR-based precoding equals to
1, the SSOR-based precoding becomes GS-based precoding.
Moreover, by introducing the relaxation parameter in SSOR-
based precoding, the proposed scheme provides more flexibility
for practical system design.

An important issue of SSOR-based precoding is the choice
of the relaxation parameter w, which influences the conver-
gence rate of SSOR-based precoding as indicated by (9) and
(10). In the next subsection, we will propose a simple approach
to determine the optimal relaxation parameter for the proposed
SSOR-based precoding.

C. Relaxation Parameter

According to [9], the optimal relaxation parameter w,,; for
SSOR method is

2
ot = Can
V20— D L 1 L))

where p [-] denotes the spectral radius of a matrix. However,
the computation of p [-] is complicated. Moreover, if the matrix
P = HH” changes rapidly in fast time-varying channels, we
need to recompute the optimal relaxation parameter w,;. Thus,
directly using (11) to determine the optimal relaxation param-
eter is not preferred in practical massive MIMO systems.
Compared with the classical SOR method, the convergence of
SSOR method is less sensitive to the relaxation parameter due
to the fact that SOR method is used twice, i.e., in the forward
and reverse order, respectively [9]. This implies that we can use
an approximation method to determine @ in a much simpler
way for practical massive MIMO systems, which is provided in
the following Lemma 1.

Lemma 1: In massive MIMO systems, the optimal relaxation
parameter of SSOR-based precoding can be approximated by

Dopt = \/2(17 where a = (1 + \/;)2 — 1 only depends
on the dunenswn (N, K) of massive MIMO systems.
Proof: From (8), we have

pDHL + L) = p[D™ (P - D)]
=pD'P -1
=p[D7'P] - 1. (12)

For the typical flat Rayleigh fading channel matrix H, the diag-
onal elements p,,, (m = 1,2, - .-, K) of P = HH" follow the
2N-degree of freedom chi-square distribution [9]. By using the
Chebyshev’s inequality [9], we have

- N
Pr(‘pmm— <8>

N
=Pr[(1 —e)N < ppum < (1 +&)N]>1—

vezr 13

which indicates that when N grows large, the probability that
(1 —e)N < pum < (1 +¢)N is valid will tend to 1. As a
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result, we can use N to reliably approximate p,,, in mas-
sive MIMO systems with a large number of BS antennas N.
Accordingly, D™! can be also approximated by %I, then (12)
becomes
-1 H -1 1

P (L+L")]=pD Pl -1= Np[P] -1 4
Based on the random matrix theory, the spectral radius of P can
be well approximated by [10]

2
[PI=N[1+ K (15)
p[P] = V-
Substituting (15) into (14), we have
> 2 (16)
Dopt = —————,
P L /20 —a)
wherea:(l—i—\/%)z—l. [ ]

Lemma 1 indicates that the deterministic relaxation param-
eter @,p; of the proposed SSOR-based precoding only depends
on the number of BS antennas N and the number of users
K, which are constant after the MIMO configuration has been
fixed. Thus, we do not need to recompute @,,; when the chan-
nel H varies. Note that in realistic massive MIMO systems with
limited N and K, there is a small gap between the exact optimal
wop: and its approximation @,,,. However, the approximated
@op can still guarantee satisfying performance because SSOR-
based precoding is not sensitive to the relaxation parameter,
which will be verified by simulation results in Section IV.

D. Complexity Analysis

In this subsection, we provide the computational complexity
analysis of the proposed SSOR-based precoding in terms of the
required number of complex multiplications. For SSOR-based
precoding, we can rewrite (9) as

k—1
1/ _ 0, @ 1) ®
I =t Si = D Pkj Zl’f :
123 .
j=1

a7

where the subscript k& denotes the kth element in a vector. For
the fair comparison of complexity, the channel coherence inter-
val T, should be taken into account. As there are K elements in
the vector t (where K is usually large in massive MIMO sys-
tems, e.g., K = 32 users can be simultaneously supported by a
real demo of massive MIMO [11]), the complexity of ZF pre-
coding within T, is O(K?) + T.N K, while the complexity of
the proposed SSOR-based precoding is 7,O(K? + NK). As we
have mentioned in Section III-B, the channel coherence inter-
val T, could be very small in fast time-varying channels [12].
For example, by considering the typical system parameters in
current LTE-Advanced standard [13] and the user velocity of
100 km/h, the channel coherence time 7. is 7 OFDM sym-
bols, which is smaller than K. Thus, the overall complexity
of SSOR-based precoding is lower than that of ZF precoding.
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TABLE I
COMPUTATIONAL COMPLEXITY COMPARISON

Iterative number ~ Neumann-based precoding [5]

TPE-based precoding [6]

Proposed SSOR-based precoding

i=2 3K2 - K+ T.NK
i= K3+ K24+T.NK
i= 2K3 4+ T.NK

i=5 3K3 - K24+ T.NK

(4+T.)NK T.(6K? + 3K + NK)
(12+T:)NK T.(8K? 4+ 3K + NK)
(16 + T )NK T.(10K2 4+ 3K + NK)
(20 +T.)NK T.(12K? 4+ 3K + NK)

iy
iy
A
iy

BER

—<—— Conjugate Beamforming [1]
-3 TPE precoding [6], i=4

— © — Neumann-based precoding [5], i=3
— 8 — Neumann-based precoding [5], i=4
— A — Neumann-based precoding [5], i=5
10™*}H —o— SSOR precoding, i=2

—&— SSOR precoding, i=3

—4A— SSOR precoding, i=4

— — — ZF precoding [1]
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SNR (dB)
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Fig. 1. BER performance comparison for the 128 x 16 massive MIMO system
in Rayleigh fading channels.

In Table I, we compare the complexity of the proposed SSOR-
based precoding with that of Neumann-based precoding [3] and
TPE-based precoding [4] by taking the channel coherence inter-
val T, into account. Since the number of users K is large in
massive MIMO systems, while 7, is small in fast time-varying
channels, and the number of BS antennas N is usually much
larger than the number of users K in massive MIMO systems,
the proposed SSOR-based precoding enjoys a lower complexity
than Neumann-based precoding and TPE-based precoding.

IV. SIMULATION RESULTS

In this section, we evaluate the bit error rate (BER) perfor-
mance of the proposed SSOR-based precoding compared with
the recently proposed Neumann-based precoding. The BER
performance of the classical ZF precoding with exact matrix
inversion is also included as the benchmark for comparison.
The configuration of massive MIMO systemsissetto N x K =
128 x 16, and the modulation scheme is 64 QAM.

Fig. 1 shows the BER performance comparison in Rayleigh
fading channels, where i denotes the number of iterations. From
Fig. 1, we can first find that although conjugate beamforming
[2] is considered to be near-optimal when the number of BS
antennas goes to infinity in massive MIMO systems, the BER
performance of conjugate beamforming suffers from severe
performance loss due to the limited number of BS antennas in
practical systems. Then, it is clear that the BER performance
of SSOR-based precoding with i = 2 is even better than that
of Neumann-based precoding [3] with i =4 and TPE-based
precoding [4] with i = 4. In addition, as the number of itera-
tions increases, the performance of the proposed SSOR-based
precoding improves fast. For example, the performance gap
between ZF precoding and SSOR-based precoding is negligible

when i =4, which indicates that the proposed SSOR-based
precoding can achieve the near-optimal performance within a
small number of iterations.

V. CONCLUSIONS

In this letter, we propose a low-complexity SSOR-based pre-
coding scheme to achieve the near-optimal performance of the
classical ZF precoding with substantially reduced complexity.
This is achieved by using SSOR method to iteratively approach
the exact matrix inversion of large size in ZF precoding.
Moreover, by exploiting the channel property of asymptotical
orthogonality in massive MIMO systems, we propose a sim-
ple way to approximate the optimal relaxation parameter of
the SSOR-based precoding, which only depends on the dimen-
sion of massive MIMO systems. Simulation results show that
the proposed SSOR-based precoding outperforms the recently
proposed precoding schemes, and approaches the near-optimal
performance of ZF precoding in Rayleigh fading channels.
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