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Dual-Band Circular-Polarized Microstrip Antenna
for Ultrawideband Positioning in Smartphones
With Flexible Liquid Crystal Polymer Process
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Abstract— This article proposes a dual-band circular-polarized
(DBCP) microstrip antenna using flexible liquid crystal polymer
(LCP) manufacturing process for ON-smartphone ultrawideband
(UWB) positioning application. To achieve dual-band circular
polarization in a low profile, the proposed antenna is designed
with a cross-slot-loaded patch with four L-shaped feeding probes
and a sequential phase feeding network. A circle of capacitive via
fence is loaded surrounding the patch for area miniaturization,
which is adaptive for the limited space of flexible printed
circuit (FPC) in smartphones. Based on the UWB positioning
protocol, a three-element antenna array is constructed in a low
profile of 0.015λ0 with required isolation of 17 dB. Experimental
results show the overlapped bandwidth of the efficiency and the
axial ratio (AR) covering the demand bands of 6.30–6.80 and
7.75–8.10 GHz. With the properties of dual wideband operation,
circular polarization, and ultralow profile, the proposed antenna
exhibits feasible solutions for the UWB positioning application
in space-limited smartphones.

Index Terms— Antenna array, antenna feeding, circular
polarization, microstrip antennas, multiple-band antennas.

I. INTRODUCTION

WITH the rapid development of mobile communication,
the ultrawideband (UWB) positioning technology has

drawn considerable attention in smartphone applications due
to its merits, such as wide bandwidth, strong penetration
capability, and high transmission rate [1], [2], [3], [4], [5].
Various antennas have been presented and adopted in UWB
positioning systems [6], [7], [8], [9], [10]. Among them,
dual-band circular-polarized (DBCP) antennas are preferred
[11], [12], [13], [14], [15]. On the one hand, circular-polarized
antennas hold emphatic features to avert polarization mismatch
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Fig. 1. Application scenarios of the proposed antenna based on FPC
technology.

in the signal propagation process [16], [17], [18]. On the
other hand, the antennas with dual-band performance have the
ability to prevent interferences with designated or undesirable
bands [19], [20], [21]. However, the space allocated to the
antenna inside the smartphone is limited [22], [23], [24], [25].
As a feasible solution to realize a DBCP antenna in space-
limited smartphone systems, the antenna can be located on
the flexible printed circuit (FPC) clamped between the glass
back cover and battery, as shown in Fig. 1. Due to the FPC
requirements, the antenna is expected with the characteristics
of ultralow profile, compact size, and integration capability
with the metal ground.

Recently, numerous DBCP antennas have been investi-
gated with various methods [26], [27], [28], [29], [30],
[31], [32], [33], [34], [35], [36]. The first one is to combine
a wideband circular-polarized antenna with bandstop filters.
With this method, a wideband microstrip antenna obtains
dual-band property by etching two slots serving as bandstop
structure and circular polarization by etching two gaps
surrounding these two slots [26]. As another general method
for more compact volume, two individual circular-polarized
antenna elements operating at different bands are collocated
together for DBCP radiation. A DBCP antenna is proposed by
using two stacked patches with an etched slot [27]. Double-
layer DBCP antenna is proposed with a lower slot-carved patch
and an upper chamfered patch [28]. For the purpose of further
integration, the third method is exciting two modes under
different frequencies in a single antenna. A cavity-backed
slot antenna with DBCP properties and a profile of 0.06λ0 is
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TABLE I
DETAILED DIMENSIONS (UNIT:mm)

proposed in [29] by employing two annular exponential slots.
The DBCP antenna design in [30] presents an Archimedean
spiral patch within a profile of 0.07λ0. Hassan et al. [31]
propose an antenna by adopting a patch and two collocated
circles to realize DBCP property within a profile of 0.04λ0.
All of the DBCP antennas mentioned above are relatively
large or difficult to integrate with the complete metal ground.
Therefore, it is a challenge to realize a DBCP antenna in a
compact size and integrate it with complete metal ground.

In this article, a DBCP microstrip antenna with broadside
radiation is proposed for the UWB positioning applications in
smartphone systems. The proposed antenna is composed of a
cross-slot-loaded patch, a circle of capacitive via fences, and
four L-shaped probes with a sequential phase feeding network
fabricated on a complete metal ground. The dual-band property
is realized by exciting the patch at TM10 mode and antiphase
TM20 mode with broadside radiation. The capacitive via fences
are located surrounding the radiation patch for miniaturization.
To realize circular polarization, four L-shaped feeding probes
connected with the sequential phase feeding network are
arranged symmetrically under the radiation patch. Based on
the UWB positioning protocol for beam angle evaluation in
both elevated and horizontal planes, a three-element antenna
array is fabricated by a multilayer flexible liquid crystal
polymer (LCP) manufacturing process with the dimensions
of 35 × 35 × 0.7 mm3 with a 0.8-mm-thickness glass
cover. The experimental results show that the antenna provides
an overlapped bandwidth that satisfies the requirements of
efficiency and axial ratio (AR) covering the dual widebands of
6.28–6.80 and 7.86–8.20 GHz. The proposed DBCP antenna
presents the merits of ultralow profile, compact size, and wide
operating bandwidth.

II. ANTENNA CONFIGURATION

Fig. 2 illustrates the proposed multilayer DBCP antenna.
The proposed antenna is held by six dielectric layers, named
glass cover layer and Layers 1–5, respectively. The glass cover
layer is constructed by WL TP-1/2 with εr = 7.0, tanδ =

0.001, and thickness hr = 0.8 mm. The Layers 1–5 with
different values of thickness listed in Table I are all the LCP
dielectric substrates with εr = 2.9 and tanδ = 0.002.

As depicted in Fig. 2, the proposed DBCP microstrip
antenna consists of a cross-slot-loaded patch, a circle of
capacitive via fence, and four L-shaped probes with a
sequential phase feeding network fabricated on a complete
metal ground. The radiation patch etched by a cross slot is
fabricated on the upper side of Layer 1. By using the L-shaped
feeding probe, the patch can be excited at TM10 mode and
antiphase TM20 mode, which are both with broadside radiation
properties. The capacitive via fences are constructed on the
upper side of Layer 2 and through Layers 2 and 3. By adjusting

Fig. 2. Exploded view of the proposed antenna configuration.

the distance between the radiation patch and via fences, i.e.,
the thickness of Layer 1 h1, the whole antenna footprint can
be miniaturized for space-limited smartphone systems. The
four L-shaped probes are composed of four narrow strips
fabricated on the upper side of Layer 3 and four yellow blind
vias connected with the sequential phase feeding network
fabricated on the upper side of Layer 5. These feeding
structures cooperate together to achieve circular polarization
with wide AR bandwidth and wide AR beamwidth. The whole
antenna with a profile of 0.8 + 0.7 = 1.5 mm is integrated
with a complete metal ground fabricated on the lower side
of Layer 5. Detailed dimensions of each layer are illustrated
in Fig. 3.

III. ANTENNA EVOLUTION

The design flow of the proposed DBCP antenna is shown
in Fig. 4. First, a square patch (orange part) is etched by a
cross slot. This patch is fed by an L-shaped probe that consists
of a narrow strip (blue part) and blind via (yellow part).
Then, a dual-band linear-polarized property can be realized
by Antenna 1 with TM10 and antiphase TM20 modes. Second,
Antenna 2 adopts a circle of via fence serving as capacitive
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Fig. 3. Top view of the proposed antenna on (a) Layer 1, (b) Layer 2,
(c) Layer 3, (d) Layer 4, (e) Layer 5, and (f) Ground.

loading at a proper distance below the radiation patch for
footprint miniaturization. Third, for circular polarization, the
single L-shaped probe is replaced by dual offset-arranged
L-shaped feeding probes for low cross-polarization level in
the linear-polarized Antenna 3. Finally, four L-shaped probes
with a sequential phase feeding network are used instead in
Antenna 4. By optimizing the detailed parameters of these
structures, the proposed antenna provides circular polarization
in dual widebands. It should be noted that Antennas 1–4 are
all analyzed under the glass cover layer, which is omitted for
brevity in Fig. 4.

A. Step 1: Dual-Band Design

Fig. 5 illustrates the configuration of dual-band Antenna 1.
As shown in Fig. 5(a), the cross-slot-loaded patch is fed by a
single L-shaped feeding probe. By adjusting this feeding probe
and optimizing the impedance matching, the linear-polarized
Antenna 1 operates in dual bands near 6.5 and 8.0 GHz, with
the simulated reflection coefficient result depicted in Fig. 5(b).
The electric fields at these two frequencies are shown in
Fig. 5(b) (inset). As seen, the electric field under the patch is
half-wavelength distributed along the direction of the L-shaped
probe, indicating that Antenna 1 operates at a regular TM10
mode at 6.5 GHz. At the high frequency, due to the loading

Fig. 4. Design flow of the proposed DBCP antenna.

Fig. 5. Dual-band antenna design. (a) Configurations of Antenna 1 for dual
bands. (b) Reflection coefficient of Antenna 1.

of the L-shaped feeding probe, a reversal of the electric field
will be generated at the position of the feeding probe, hence
providing an electric field distribution with one-wavelength
distribution but reversed in the middle line [37]. Fig. 5(b)
shows that Antenna 1 operates at antiphase TM20 mode at
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Fig. 6. Miniaturized antenna design. (a) Configurations of Antenna 2.
(b) Smith chart and (c) reflection coefficient curves with different values
of h1.

8.0 GHz. Therefore, Antenna 1 provides dual-band operation
by a cross-slot-loaded patch fed by an L-shaped feeding probe.

B. Step 2: Miniaturized Design

The design strategy of miniaturized Antenna 2 is clarified
in Fig. 6. On the basis of Antenna 1, Antenna 2 shown in
Fig. 6(a) uses a circle of via fence arranged surrounding the
cross-slot-loaded patch and at a certain distance h1 below the
patch. To more clearly explain the reason for miniaturization,
the critical parameters of the via fence are investigated. As an
example, the Smith chart and reflection coefficient curves with
different values of distance between the radiation patch and
via fence h1 are plotted in Fig. 6(b) and (c). As seen, a larger
parallel capacitance [shown as the purple and orange arrows
in Fig. 6(b)] is obtained by decreasing the value of h1 from
0.20 to 0.10 mm, and the center frequency point of TM10
mode or antiphase TM20 mode is switched to be a lower
frequency. Therefore, Antenna 2 can realize different levels of
miniaturization by regulating the parameters of the capacitive
via fence.

C. Step 3: Offset Design

To achieve circular polarization, an offset is introduced in
Antenna 3 on the basis of Antenna 2, as shown in Fig. 7.
When the single L-shaped probe in Antenna 2 deviates from
the central axis gradually, it is seen that inclined current

Fig. 7. Offset antenna design. (a) Configurations of Antenna 3. (b) Surface
current distribution with different feeding states.

distribution occurs along the patch surface, as depicted in
Fig. 7(b). This physical phenomenon indicates that a cross-
polarized component is introduced in the unilateral offset-
fed antenna scheme, which is not suitable for the next step
of circular polarization. To avoid this, a bilateral offset-fed
scheme is used. As shown in Fig. 7(a), dual centrosymmetric
L-shaped probes are located below the radiation patch. It can
be observed that the total current is vertically distributed
along the patch surface without the horizontal component,
providing a pure linear polarization with broadside radiation.
Besides, it is worth pointing out that the resonant frequency
points of dual operating modes also deviate from the desired
UWB frequency band in the unilateral offset-fed scheme. This
frequency deviation can also be corrected by adjusting the
positions and sizes of the dual L-shaped feeding probes, which
provides a possibility for the next circular-polarized design
step.

D. Step 4: Circular-Polarized Design

On the basis of offset-fed Antenna 3, the circular
polarization is realized in Antenna 4 shown as Fig. 8(a).
A group of rotationally symmetric L-shaped probes is adopted
and arranged below the radiation patch. A four-way sequential
phase feeding network (green part) with one input port (named
as Port 1) and four output ports (named as Ports 2–5) is
located below the probes, where these four output ports are
connected with the blind vias of four probes. To meet the FPC
requirement with whole metal ground, the feeding network
is based on stripline structure. To begin with, the simulated
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Fig. 8. Circular-polarized antenna design. (a) Configurations of Antenna 4.
(b) S parameters of the proposed sequential phase feeding network.

Fig. 9. Current distributions of Antenna 4 at (a) 6.5 GHz and (b) 8.0 GHz.

S parameters of an individual sequential phase feeding network
are analyzed and plotted in Fig. 8(b). As seen, the power
levels of the received signal on four output ports are all in
the range of −6.4 ± 0.6 dB, which indicates that the radio
frequency energy input from Port 1 is equally divided into four
output ports. Besides, a 90◦ phase step is further achieved on
Ports 2–5, providing a proper phase distribution for the antenna
feeding structure.

Moreover, to get a straightforward view of circular-polarized
radiation, the time-variant simulation of the surface current
density distribution over the radiation patch is shown in
Fig. 9. The current distribution is shown at the center
frequency points of dual operating modes for time variation (t)
of 0, T/4, T/2, and 3T/4. As t increases from 0 to 3T/4, the
direction of the surface current vector rotates anticlockwise
at 6.5 GHz, which indicates that the polarization sense

Fig. 10. Photograph of the fabricated antenna.

Fig. 11. Reflection coefficient of the proposed DBCP antenna.

Fig. 12. AR value of the proposed DBCP antenna element.

of Antenna 4 is right-handed circular-polarized in the
+z-direction. Similarly, the direction of the surface current
vector also rotates anticlockwise at 8.0 GHz. Hence, by using
four L-shaped probes and the sequential phase feeding
network, a right-handed circular-polarized radiation property
is realized in Antenna 4, which is adopted as the final design,
i.e., the proposed antenna element in this article. The size of
the metal ground scarcely affects the radiation performance,
indicating that the proposed DBCP antenna is compatible with
the metal ground of different sizes.

IV. EXPERIMENTAL RESULTS

On the basis of the proposed antenna element above,
a prototype of a three-element antenna array is built and tested
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Fig. 13. Total efficiency and peak realized gain of the proposed antenna.

Fig. 14. AR patterns of the proposed antenna. (a) 6.3, (b) 6.5, (c) 6.7, (d) 7.9,
(e) 8.0, and (f) 8.1 GHz.

to verify the design method for UWB positioning systems.
As shown in Fig. 10, the proposed antenna array is composed
of three identical DBCP antenna elements, which are located
at three corners of a square dielectric substrate (εr = 2.9 and
tanδ = 0.002) fabricated by the flexible LCP manufacturing
process. The antenna array is clamped tightly between the WL

Fig. 15. Radiation patterns of the proposed antenna. (a) 6.3, (b) 6.5, (c) 6.7,
(d) 7.9, (e) 8.0, and (f) 8.1 GHz.

TP-1/2 glass cover (εr = 7.0, tanδ = 0.001, and thickness
hr = 0.8 mm) and a large rectangular metal ground with the
dimensions of 140 × 70 mm2. Each antenna element is fed
by a corresponding 50 � semi-grid cable.

The reflection coefficient results of a single antenna element
in simulation and measurement are plotted in Fig. 11. Due
to the dual operating modes, the proposed antenna realizes
the measured −6 dB impedance bandwidth of 6.46–6.64 and
7.89–7.98 GHz, which is a little wider than the simulated
one of 6.46–6.58 and 7.91–8.0 GHz. The difference between
the simulation and measurement mainly contributes to the
handmade fabrication errors and the dielectric loss. The
AR values of the proposed DBCP antenna element are
depicted in Fig. 12. Owing to the sequential phase feeding
network, an acceptable circular-polarized behavior is obtained
within the ultralow profile. As seen, the proposed antenna
achieves the measured 3 dB AR bandwidth of 6.30–6.90 and
7.70–8.30 GHz. Besides, the total efficiency and peak realized
gain of the proposed antenna in simulated and measured results
are depicted in Fig. 13. The −6 dB efficiency bandwidths
are 6.30–6.80 and 7.75–8.10 GHz. The overlapped bandwidth
satisfying the requirements of efficiency and AR covers the
bands of 6.30–6.80 and 7.75–8.10 GHz, which covers the
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TABLE II
COMPARISONS OF THE PROPOSED ANTENNA WITH OTHER DBCP PROTOTYPES IN THE LITERATURE

Fig. 16. Port isolations of the proposed antenna array.

desired bands in Channels 5 and 9 introduced in the UWB
standards of IEEE 802.15.1-2015 and 802.15.4z. Besides,
the peak realized gains are given in Fig. 13. Similarly,
the proposed antenna element provides a peak gain higher
than 1.2 dBic in the low band and 0.8 dBic in the high
band.

The AR and radiation patterns of the proposed antenna at
dual bands are illustrated in Figs. 14 and 15, respectively.
In the low-frequency band of 6.30–6.80 GHz, the antenna
achieves a 3 dB beamwidth of 76◦ and a 3 dB AR
beamwidth wider than 100◦. In the high-frequency band of
7.75–8.10 GHz, a 3 dB beamwidth of 78◦ and a 3 dB
AR beamwidth wider than 60◦ are realized in the proposed
antenna. Hence, it can be observed that the proposed DBCP
antenna element provides circular polarization with broadside
radiation.

The port isolation value is measured and shown in Fig. 16.
In the desired operating bands, the isolation between any two
ports is higher than 17 dB. The reason behind this phenomenon
is that the electric field concentrates mainly on the gap between
the radiation patch and the capacitive via fence, which reduces
the coupling between two adjacent antenna elements.

The key performances of the proposed antenna are listed in
Table II and compared with other DBCP antenna designs in
the reported literatures. The antennas in [11], [12], and [26]
realize wider 3 dB AR bandwidth at the cost of occupying
a larger footprint or higher profile. Besides, the designs
in [12] and [26] cannot be integrated with a complete metal
ground. Several more compact antennas proposed in [27], [28],
and [32] achieve circular-polarized radiation with only a
narrow AR bandwidth. Hence, compared with the other DBCP
antenna designs, the proposed microstrip antenna provides
better circular-polarized radiation in dual bands with the merits
of both compact volume and integration capability with the
complete metal ground.

V. CONCLUSION

In this article, a DBCP microstrip antenna is proposed with
an ultralow profile of 0.015λ0 and a compact footprint area of
0.76λ0 × 0.76λ0 at the frequency of 6.5 GHz. By exploiting
the cross-slot-loaded patch and a circle of capacitive via fence,
the antenna is miniaturized in dual desired UWB bands. Four
L-shaped probes with a sequential phase feeding network are
properly arranged in a rotationally symmetrical distribution,
realizing circular polarization with broadside radiation. The
simulated and measured results show that the proposed antenna
obtains realized gain higher than 1.2 and 0.8 dBic in dual
overlapped operating bands of 6.30–6.80 and 7.75–8.10 GHz,
respectively. The proposed DBCP antenna is with the merits of
compact footprint, ultralow profile, and integration capability
with the complete metal ground, exhibiting promising potential
for space-limited smartphone UWB positioning systems.
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