BLOCK-WISE MAP INFERENCE FOR DETERMINANTAL POINT PROCESSES
WITH APPLICATION TO CHANGE-POINT DETECTION

Martin J. Zhang

Dept. of EE, Stanford University,
CA, USA, jinye@stanford.edu

ABSTRACT

Most studies of change-point detection (CPD) focus on developing
similarity metrics that quantify how likely a time-point is to be a
change point. After that, the process of selecting true change points
among those high-score candidates is less well-studied. This pa-
per proposes a new CPD method that uses determinantal point pro-
cesses to model the process of change-point selection. Specifically,
this work explores the particular kernel structure arose in such mod-
elling, the almost block diagonal. It shows that the maximum a poste-
riori task, requiring at least O(N?) in general, can be achieved us-
ing O(N) under such structure. The resulting algorithms, BwDPP-
MAP and BwDppCpd, are empirically validated through simulation
and five real-world data experiments.

Index Terms— Change-point detection, determinantal point
processes, MAP inference

1. INTRODUCTION

The determinantal point processes (DPPs) are elegant probabilistic
models for subset selection problems where both quality and diver-
sity are considered. Formally, a DPP, specified by an L-ensemble
(positive semi-definite) kernel L € R™*™, defines a probability
measure P over all subsets of a point set Y = {1,---, N}, where
the probability mass function is Pr(Y") oc det(Ly ), VY C Y. The
DPP kernels are usually built through quality-diversity decomposi-
tion, i.e.

L = diag(q)S diag(q), )

where diag(q) is a diagonal matrix formed by the quality vector
g, assigning a quality score to each item in ), and S is called the
similarity matrix, quantifying the similarity between every pair of
items. DPPs constructed in such way assign a higher probability to
subsets whose elements are of higher quality and lower similarity
[2]. In other words, they favour both quality and diversity.

The DPP maximum a posteriori (MAP) problem, i.e. finding the
subset with the highest probability, is NP-hard [3]. A few approxi-
mate inference methods are proposed, including greedy methods for
optimizing the submodular function log det(Ly) [4], optimization
via continuous relaxation [5], and minimum Bayes risk decoding
[2]. The first has a computational complexity O(N**), the second
O(N?), and the third O(RT?N log N/¢)', all super linear w.r.t. N.

In the first part of the paper, we show that for DPPs with an
almost block diagonal kernel, which we call BWDPPs (block-wise

This work is supported by NSFC grant 61473168 and partly from M.J.
Zhang’s undergraduate thesis in Tsinghua University [1], advised by Z. Ou.

IR ~ 1000 is the number of Monte Carlo simulations; the rest is the best

complexity for DPP sampling, achieved by [6], where T" is the size of result
generated by the DPP sampling algorithm, and e is the approximation error.

Zhijian Ou

Dept. of EE, Tsinghua University,
Beijing, China, ozj@tsinghua.edu.cn

‘ Change-PointCandidates‘

0.5
o ’-—a-m»*———‘h-—
-0.5
-1
6 8 10 12 14
time /s 20 40 60 80 100

(a) (b)

Fig. 1. (a) A 10-sec part from a 2-min speech. Vertical lines show
change-point candidates and colors indicate different states (speaker
or noise change). (b) The corresponding BWDPP kernel for the entire
2-min speech. The white denotes non-zero entries while the black
indicates zero.

DPPs), it is possible to achieve linear computational complexity
w.r.t. N for MAP inference. The algorithm that achieves this, named
BwDPP-MAP, calls existing DPP-MAP algorithms on carefully
tailored sub-blocks of the full kernel to solve the global optimiza-
tion problem approximately, with a minor sacrifice of the inference
accuracy. The sub-inference scale does not grow with N and the
number of sub-inferences grows proportional to NV, giving the lin-
ear dependence on N. In the second part of the paper, we apply
BwDPP-MAP in the change-point detection problem (CPD), which
aims at detecting abrupt changes in time-series data.

In CPD, the methods are roughly classified as Bayesian or
frequentist. Bayesian approaches [7, 8, 9] focus on estimating the
posterior distribution of change-point locations given the time-series
data, where the computational cost is challenging, especially for
real-world tasks. Frequentist approaches usually consist of two
steps. First, calculate a metric score for each time point, quantifying
if a change happens there based on its past and future segments; sec-
ond, select change points based on the metric scores. The first step is
well-studied, e.g. the generalized likelihood ratio [10], the Bayesian
information criterion (BIC) [11], the Kullback Leibler divergence
[12]. One can also refer to [13, 14, 15, 16, 17, 18] for more results.
However, the second step, change-point selection, is relative lack of
study. Some immature methods include selecting local peaks above
a threshold [15], discarding the lower one if two peaks are close
[19], or requiring the metric differences between change-points and
their neighbouring valleys above a threshold [12].

Based on BWDPP-MAP, we developed a new two-step CPD
method, BwDppCpd. In the first step, it takes advantage of exist-
ing well-studied metrics to select a preliminary set of change-point
candidates. In the second step, the change-point selection process
is achieved by constructing a DPP kernel by the quality-diversity
decomposition and performing MAP inference by BwDPP-MAP.
Specifically, each change-point candidate has its quality of being a



change-point, and locations of true change-points should be diverse
since states do not change rapidly. These are addressed by the qual-
ity vector and similarity matrix respectively. Moreover, only nearby
time points are similar to each other, making the DPP kernel almost
block diagonal, i.e. BWDPP. Such behaviour is illustrated in Fig. 1.
In the rest of the paper, we first introduce BWDPP-MAP and
BwDppCpd in Section 2 and then present evaluation experiments on
five real-world datasets in Section 3. Proofs are appended in the end.

2. METHODOLOGY

In this paper, we focus on almost block diagonal DPP kernels. For-
mally, a y-almost block diagonal matrix has the form

]'_J1 A1 0
AT L, A,
L= . . : ., @
Al 5 Lpo1 Apo
0 ot AL,l Lm

where diagonal components L; € R'*' are dense matrices, and
off-diagonal components A; € R'#*'i+1 have non-zero entries only
at bottom left, whose size does not exceed v x . A DPP kernel will
have such structure when items are only similar to their neighbours,
as mentioned above.

As a side note, almost block diagonal matrices have two prop-
erties: 1. block-tridiagonal, 2. sparse off-diagonal blocks. As shown
below, the first gives linear computational complexity in the deter-
minant calculation, similar as in previous works for general block
tridiagonal matrices [20, 21]. The second helps to reduce the infer-
ence error but has nothing to do with the determinant calculation.

For the matrix L, let ) be its index set and let ); be the set of
indices corresponding to L;, for¢ = 1,...,m. Forany C;,C; C ),
by L¢;,c; we mean the sub-matrix with rows and columns speci-
fied by C; and C respectively, and L¢,,c, is abbreviated as Lc;.
Finally, we note that L > 0 means that L is positive semi-definite.

2.1. BwWwDPP-MAP: Fast MAP Inference for BwDPPs

Let L be any almost block diagonal kernel defined in (2). Let C C Y
be the hypothesized subset to be selected from L and let C; C ); be
that from L;, Vi € {1,--- ,m}. We note that C; = C'N)Y;. Assume

Lc, is invertible, Vi € {1,--- ,m}. By defining L, recursively as
Lc, 2
Le, i=1,

L, 7L5171701L5:,1LC'11—1,C7‘, i=2,---,m
one could rewrite the MAP objective function: det(L¢)

= det(Lcl) Clet(Lu;rézc2 — Lgl,UllgciLgﬁchlvU;lzci)

deg [Lcy,cy 0] )
[Leses 0] Lum e,

where O is the zero matrix of appropriate size. The second equation
holds because L¢,,c; = O for 7 > 3, noting that L is almost diago-
nal. Continuing the recursion to m, we have

det(Lo) = -+~ =[[}Z, det(Lc,),

7

’

= det(icl) det( [

which converts the MAP inference problem to

argmaxdet(L¢) = argmax [T, det(Lc,).
cey

C1E€YV1, . Cm€YVm

Table 1. BwDPP-MAP Algorithm

Input: L as defined in (2); Any DPP-MAP algorithm.
Output: Subset of items C.
For:i=1,--- 'm
Compute ]:yi via (2.1);
Perform sub-inference over C; using DPP-MAP via
Ci :Aargmaxcigyi;cj =Gy, j=1,,i—1 det((Ly,)c,);
Return: C' = J*, Ci.

Instead of maximizing det(L¢), we maximize det(Lc,) sep-
arately for each 4, and report the merged answer. By doing so we
implicitly assume that

argmax [[7, det(L¢,) ~ U, argmaxdet(Lc,).  (3)
Ci€Vs Ci€dsi

This is reasonable because the almost block diagonal structure en-
sures that L, has a weak correlation with the subsets other than C},
which further indicates the approximation error is small, validating
such method. The resulting sub-inference method, BwDPP-MAP,

is described in Table 1. For notation, aArgMaX o, o=, j=1,- i—1

denotes optimizing over C; with the value of C; fixed as C; for
j=1,---,%¢—1, and the sub-kernel Ly, is given similarly as L¢,,
namely Ly, =

L; i=1,
T T —1 ;
L; —Lci,l,yiLci,chiﬂ,% 1=2,---,m

One may notice that (Ly, )¢, is equivalent to L, .

Remark 1 Any DPP-MAP algorithm can be plugged in for the
BwDPP sub-inference, because DPP-MAP algorithms take positive
semi-definite matrices as input, and it can be shown that Ly, > 0,
fori = 1,---  m (the proof is postponed to the end of the paper).
Hence, BWDPP-MAP is a universal booster for any DPP-MAP al-
gorithm. If some more advanced DPP-MAP algorithm comes out,
BwDPP-MAP can directly use them for a performance boost.

Remark 2 Fixing the DPP-MAP algorithm, compared to directly
applying it on the entire kernel, the computational cost saving by
BwDPP-MAP can be significant. Let the kernel size N grows and
the sub-kernel size roughly remains some constant ¢, which is the
case for CPD, where the sub-block sizes are only decided by how
a time-point related to its neighbours. Suppose the DPP-MAP has
an O(N®) computational complexity. For BvDPP-MAP, each sub-
inference takes O(c®) time, and there are N /c sub-inferences, yield-
ing a O(Nc*™ ) = O(N) complexity. In this example, BwDPP-
MAP boosts the speed from O(N<) to O(N), where o > 2.4.

Remark 3 In practice, first we need to specify v and then partition
the kernel accordingly *. The different choice of y represents a speed-
error tradeoff: on one hand, as vy increases, the sub-kernel size will
decrease, reducing the computational complexity of sub-inference,
and further the overall complexity. On the other hand, increasing
will make neighbouring sub-kernels more connected to each other,
which deteriorates the assumption (3) and introduces more error.
We provide an empirical example in Fig. 2, where (1) 1000 in-
dependent simulations of kernels of size 500; (2) sub-kernel size:

2Concretely, the partition method in this paper is to (1) identify as many
as possible non-overlapping dense diagonal sub-matrices; (2) merge adjacent
sub-matrices if their off-diagonal non-zero area size exceeds v X ~.
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Fig. 2. (a) The top-left 100 x 100 entries of a 500 x 500 synthetic
kernel. (b) The log-probability ratio log(p/prer) and runtime ratio
t/trer, with 1000 repetition and 99.7% error bar, of running BwDPP-
MAP with different y-partition. The reference performance, is pro-
duced by running greedy-MAP on the entire kernel.

Table 2. Greedy-MAP Algorithm
Input: L; QOutput: C.
Initialization: SetC <+ 0, U + J;
While U is not empty;
" < argmax, ¢y Lii; C+Cu{i'}h
-1
Compute L™ = ([(L +15)7"] :) -1

16}
L+ L U<« {ii¢CLy>1}
Return: C.

10 — 30, non-zero off-diagonal areas: {0,2,4,6}, randomly cho-
sen; (3) values of non-zero entries are given as the Gram product of
random Gaussian vectors; (4) greedy-MAP (Table 2) [5] is used for
BwDPP-MAP sub-inference; Fig. 2 (a) shows an example of such
synthetic kernels. The BWDPP-MAP aims to approximate the infer-
ence result produced by the reference, with much faster speed. Fig.
2 (b) validates such thought. As ~y increases, the runtime drops fast
while the inference accuracy degrades very slow.

2.2. BwDppCpd: BwDPP-based Change-Point Detection

Let x1,--- ,xr € R be the time-series observations, and let x.;
denote the observation segment from 7 to t. We use X, X to de-
note different segments for simplicity. A dissimilarity metric is de-
noted by d : (Xi,X2) +— R, which measures the dissimilarity
between segments®. Our CPD method, BwDppCpd, is a two-step
method described as below.

Step 1: locating change-point candidates. Given a dissimi-
larity metric d, a pair of adjacent length-w windows slides along
the timeline to calculate the dissimilarity score of each time point,
i.e. d(X¢t—w+1:t, Xe4+1:¢4+w)- Then, locations of local peaks above
score mean, t1,---,tn, are selected as change-point candidates
y={1,--,N}

Step 2: change-point selection via BwWDPP. Construct the ker-
nel L as L = diag(q) * S * diag(q), where q is the quality vector
with element g; = d(X¢;_,:t;, Xt;:t;,, ), and S is the similarity ma-
trix with S;; £ exp(—(t; — t;)?/o?), where o is a parameter rep-
resenting the position diversity level. Then, partition the kernel into
a y-almost block diagonal matrix and use BwWDPP-MAP to generate
the result.

3There are rich studies of metrics for CPD problem. The choice of the dis-
similarity metric d(X1, X2) is flexible and could be well tailored according
to the characteristics of the data. In our experiments, we use the symmetric
KL-divergence and the generalized likelihood ratio (GLR) [10, 11, 12].
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Fig. 3. BwDppCpd results for Well-Log (a), Coal Mine Disaster (b),
and DJIA (c). Green lines are detected changes.

Remark 4 The kernel construction in Step 2 follows the quality-
diversity decomposition Eq. (1), where the set of candidates with
high quality (high d(X¢—w+1:t, Xt+1:t4+w)), and low similarity (dis-
tant away from each other), has higher chances to be selected.

3. EXPERIMENTS

In this section, five experiments on real-world time-series data are
presented. The first three experiments in Subsection 3.1 examine the
algorithm performance on classic CPD testing datasets. We set v =
0 because the datasets are small. In the last two experiments, human
activity detection and speech segmentation, the DPP kernel sizes
are around thousands, making no algorithms capable of performing
MAP inference within a reasonable time cost except BWDPP-MAP.
We set v = 3 for human activity detection and v = 0, 2 for speech
segmentation. As for the dissimilarity metric d, we use Poisson pro-
cesses and GLR in Coal Mine Disaster, and use Gaussian models
and SymKL in other experiments [10, 11, 12].

3.1. Small-scale Datasets

Well-Log Data contains 4050 measurements of nuclear magnetic
response taken during the drilling of a well. It is an example of vary-
ing Gaussian mean, and the changes reflect the stratification of the
earth’s crust [9]. Outliers are removed before the experiment. As
shown in Fig. 3 (a), all changes are detected by BwDppCpd.

Coal Mine Disaster Data [22], a standard dataset for testing CPD
method, consists of 191 accidents from 1851 to 1962. The occurring
rates of accidents are believed to have changed a few times, and the
task is to detect them. The BwDppCpd detection result, as shown in
Fig. 3 (b), agrees with that in [7].

1972-75 Dow Jones Industrial Average Return (DJIA) contains
daily return rates of Dow Jones Industrial Average from 1972 to
1975. It is an example of varying Gaussian variance, where the
changes are caused by events that have potential macroeconomic
effects. Four changes in the data are detected by BwDppCpd, and
are matched well with significant events (Fig. 3 (c)). Compared to
[9], one more change is detected (the rightmost), which corresponds
to the date that 73-74 stock market crash ended*. The result shows

“http://en.wikipedia.org/wiki/1973-74 stock_market_crash



PRC% | RCL% | Iy
BwDppCpd | 93.05 | 87.88 | 0.9039
RuLSIF | 8636 | 83.84 | 0.8508

Table 3. CPD result on human activity detection data HASC.
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Fig. 4. The ROC curve of BwDppCpd and RuLISEF.

that the BwDppCpd discovers more information from the data.

3.2. Human Activity Detection

HASC? contains human activity data collected by portable three-axis
accelerometers and the task is to locate human behaviour changes.
We ran the best algorithm for the dataset, RuLSIF, for comparison.
For change-point selection in RuLSIF, the dissimilarity scores are
first low-pass filtered so that only points with scores significantly
larger than their neighbours may result in peaks. Next, these peaks
are identified by thresholding to give the final change points [19].

For evaluation, we first calculated the best precision (PRC), re-
call (RCL), and F} score (Table 3), defined as,

PRC = CFC/DET, RCL = CFC/GT,
F, = 2 PRC RCL/(PRC + RCL),

where CFC is the number of correctly found changes, DET is the
number of detected changes, and GT is the number of ground-truth
changes. Fi generally reflects PRL and RCL. The result shows
BwDppCpd performs generally better.

We also calculated the receiver operating characteristic (ROC)
curve (Fig. 4), where true positive rate (TPR) and false positive rate
(FPR) are given by TPR = RCL and FPR = 1—-PRC. For BwDp-
pCpd, different points are obtained by tuning the position diversity
parameter and for RuLSIF by fixing the low-pass filter and tuning
parameters for threshold testing. The results show that BwDppCpd
outperforms RuLISF when the FPR is low, which should be the area
of practical interest in ROC curve.

3.3. Speech Segmentation

Speech segmentation is to segment the audio data into acoustically
homogeneous segments, e.g. utterances from a single speaker or
non-speech portions. We tested two datasets for speech segmenta-
tion. The first dataset, Hub4m97, is a subset (around 5 hrs) from
1997 Mandarin Broadcast News Speech (HUB4-NE) released by
LDC®. The second dataset, TelRecord, consists of 216 telephone
conversations, each around 2-min long, collected from call centres.
The two datasets contain utterances with hesitations and a variety of
changing background noises, presenting a great challenge for CPD.

We use 12-order MFCCs (Mel-frequency cepstral coefficients)
as the time-series data. BwDppCpd with different - for kernel parti-
tion (denoted as Bw-v in Table 4) is tested. A classic segmentation
method DistBIC [12], a strong baseline for speech segmentation ac-
cording to our empirical experiments, is used for comparison. In Dis-
tBIC, BIC (Bayesian information criterion) dissimilarity scores [11]

Shttp://hasc.jp/hc2011/
Shttp://catalog.ldc.upenn.edu/LDC98S73
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Fig. 5. Significant peaks identified by DistBIC. [12]

| DistBIC [ Bw-0 [ Bw-2
Hub4m97

PRC% 64.29 65.29 65.12

RCL% 74.98 78.49 78.39

I3 0.6922 | 0.7128 | 0.7114
TelRecord

PRC% 61.39 66.54 66.47

RCL% 81.72 85.47 84.83

Fi 0.7011 0.7483 | 0.7454

Table 4. Segmentation results on Hub4m97 and TelRecord.

are first calculated by repeatedly testing single change points along a
moving window. Then, the change-point selection is taken by iden-
tifying score peaks significantly larger than its neighbouring valleys
(Fig. 5), and followed by a BIC-based segment merging procedure.
We also use the same merging procedure for BwDppCpd.

The experiment results in Table 4 shows that BwDppCpd outper-
forms DISTBIC in both datasets. Also, comparing the results with
v = 0and v = 2, using 7 = 2 is faster but gives slightly worse per-
formance. This agrees with our analysis of BwDPP-MAP for using
different ~y-partition to trade off speed and accuracy.

4. CONCLUSION

In this paper, we introduced BwDPPs, a class of DPPs with almost
block diagonal kernels and thus can allow efficient block-wise MAP
inference. We use BwDPPs to make change-point selections for
CPD problem. The corresponding method, BwDppCpd, showed
promising performance in several real-world data experiments.

Proof of the Argument in Remark 1: Define

L i1=0
St — Lyi+1 T [Lyi+1yyi+2 0] i=1,-,m—2
[Lyi+1»yi+2 0] LU_;”:i+2y.7‘
Lyi+1 i=m-—1
Fori = 1,--- ,m — 1, St is the Schur complement of ici in
sl the sub-matrix of S*~!. We next prove the lemma

CiUUT, L, V5)
using the first principle of mathematical induction. State the predi-
cate as: P(i): S*~! and Ly, are positive semi-definite (PSD).

P(1) trivially holds as Ly, = L; and S° = L are PSD.

Assuming P(q) holds. S¢; | jm ) is PSD because S'*
g j=i4+1%3

is PSD. Assume Eci > 0, which means DPP-MAP does not
produce trivial solution. S’ is the Schur complement of Lc, in
SZC:&J(LJ;”:iHyj)' So 8 is PSD. Being sub-matrix of S°, Ly, is
also PSD. Hence, P(i + 1) holds.

Therefore, fori = 1,--- ,m, Ly, is PSD.
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