BLOCK-WISE MAP INFERENCE FOR DETERMINANTAL POINT PROCESSES WITH APPLICATION TO CHANGE-POINT DETECTION

Martin J. Zhang
Dept. of EE, Stanford University, CA, USA, jinye@stanford.edu

Zhijian Ou
Dept. of EE, Tsinghua University, Beijing, China, ozj@tsinghua.edu.cn

ABSTRACT

Most studies of change-point detection (CPD) focus on developing similarity metrics that quantify how likely a time-point is to be a change point. After that, the process of selecting true change points among those high-score candidates is less well-studied. This paper proposes a new CPD method that uses determinantal point processes to model the process of change-point selection. Specifically, this work explores the particular kernel structure arose in such modeling, the almost block diagonal. It shows that the maximum a posteriori task, requiring at least $O(N^{2.4})$ in general, can be achieved using $O(N)$ under such structure. The resulting algorithms, BwDPP-MAP and BwDppCpd, are empirically validated through simulation and five real-world data experiments.

Index Terms— Change-point detection, determinantal point processes, MAP inference

1. INTRODUCTION

The determinantal point processes (DPPs) are elegant probabilistic models for subset selection problems where both quality and diversity are considered. Formally, a DPP, specified by an L-ensemble (positive semi-definite) kernel $L \in \mathbb{R}^{N \times N}$, defines a probability measure P over all subsets of a point set $\mathcal{Y} = \{1, \cdots, N\}$, where the probability mass function is $P_{L}(Y) \propto \det(L_{Y}), \forall Y \subset \mathcal{Y}.$ The DPP kernels are usually built through quality-diversity decomposition, i.e.

$$L = \text{diag}(\mathbf{q})S \text{diag}(\mathbf{q}),$$

where $\text{diag}(\mathbf{q})$ is a diagonal matrix formed by the quality vector \mathbf{q}, assigning a quality score to each item in \mathcal{Y}, and S is called the similarity matrix, quantifying the similarity between every pair of items. DPPs constructed in such way assign a higher probability to subsets whose elements are of higher quality and lower similarity [2]. In other words, they favour both quality and diversity.

The DPP maximum a posteriori (MAP) problem, i.e. finding the subset with the highest probability, is NP-hard [3]. A few approximate inference methods are proposed, including greedy methods for optimizing the submodular function $\log \det(L_{Y})$ [4], optimization via continuous relaxation [5], and minimum Bayes risk decoding [2]. The first has a computational complexity $O(N^{2.4})$, the second $O(N^{3})$, and the third $O(\min\{RT^{2}N \log N/\epsilon\})$, all super linear w.r.t. N.

In the first part of the paper, we show that for DPPs with an almost block diagonal kernel, which we call BwDPPs (block-wise DPPs), it is possible to achieve linear computational complexity w.r.t. N for MAP inference. The algorithm that achieves this, named BwDPP-MAP, calls existing DPP-MAP algorithms on carefully tailored sub-blocks of the full kernel to solve the global optimization problem approximately, with a minor sacrifice of the inference accuracy. The sub-inference scale does not grow with N and the number of sub-inferences grows proportional to N, giving the linear dependence on N. In the second part of the paper, we apply BwDPP-MAP in the change-point detection problem (CPD), which aims at detecting abrupt changes in time-series data.

In CPD, the methods are roughly classified as Bayesian or frequentist. Bayesian approaches [7, 8, 9] focus on estimating the posterior distribution of change-point locations given the time-series data, where the computational cost is challenging, especially for real-world tasks. Frequentist approaches usually consist of two steps. First, calculate a metric score for each time point, quantifying if a change happens there based on its past and future segments; second, select change points based on the metric scores. The first step is well-studied, e.g. the generalized likelihood ratio [10], the Bayesian information criterion (BIC) [11], the Kullback Leibler divergence [12]. One can also refer to [13, 14, 15, 16, 17, 18] for more results. However, the second step, change-point selection, is relative lack of study. Some immature methods include selecting local peaks above a threshold [15], discarding the lower one if two peaks are close [19], or requiring the metric differences between change-points and their neighbouring valleys above a threshold [12].

Based on BwDPP-MAP, we developed a new two-step CPD method, BwDppCpd. In the first step, it takes advantage of existing well-studied metrics to select a preliminary set of change-point candidates. In the second step, the change-point selection process is achieved by constructing a DPP kernel by the quality-diversity decomposition and performing MAP inference by BwDPP-MAP. Specifically, each change-point candidate has its quality of being a...
change-point, and locations of true change-points should be diverse since states do not change randomly. These are addressed by the quality vector and similarity matrix respectively. Moreover, only nearby time points are similar to each other, making the DPP kernel almost block diagonal, i.e. BwDPP. Such behaviour is illustrated in Fig. 1.

In the rest of the paper, we first introduce BwDPP-MAP and BwDppCpd in Section 2 and then present evaluation experiments on five real-world datasets in Section 3. Proofs are appended in the end.

2. METHODOLOGY

In this paper, we focus on almost block diagonal DPP kernels. Formally, a γ-almost block diagonal matrix has the form

$$L \triangleq \begin{bmatrix}
L_1 & A_1 & \cdots & 0 \\
A_1^T & L_2 & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & A_{m-2}^T & L_{m-1} & A_{m-1} \\
0 & \cdots & 0 & \cdots & L_m
\end{bmatrix},$$

(2)

where diagonal components $L_i \in \mathbb{R}^{k_i \times k_i}$ are dense matrices, and off-diagonal components $A_i \in \mathbb{R}^{k_i \times k_{i+1}}$ have non-zero entries only at bottom left, whose size does not exceed $\gamma \times \gamma$. A DPP kernel will have such structure when items are only similar to their neighbours, as mentioned above.

As a side note, almost block diagonal matrices have two properties: 1. block-tridiagonal, 2. sparse off-diagonal blocks. As shown below, the first gives linear computational complexity in the determinant calculation, similar as in previous works for general block tridiagonal matrices [20, 21]. The second helps to reduce the inference error but has nothing to do with the determinant calculation.

For the matrix L, let γ be its index set and let γ_i be the set of indices corresponding to L_i, for $i = 1, \ldots, m$. For any $C_1, C_2 \subseteq \gamma$, by L_{C_1, C_2} we mean the sub-matrix with rows and columns specified by C_1 and C_2 respectively, and L_{C_i, C_i} is abbreviated as L_{C_i}. Finally, we note that $L \preceq 0$ means that L is positive semi-definite.

2.1. BwDPP-MAP: Fast MAP Inference for BwDPPs

Let L be any almost block diagonal kernel defined in (2). Let $C \subseteq \gamma$ be the hypothesized subset to be selected from L and let $C_i \subseteq \gamma_i$ be that from $L_i, \forall i \in \{1, \ldots, m\}$. We note that $L_{C_i} = C_i \cap \gamma_i$. Assume L_{C_i} is invertible, $\forall i \in \{1, \ldots, m\}$. By defining L_{C_i}, recursively as $L_{C_i} \triangleq \{L_{C_{i+1}, C_{i+1}}, \ldots, L_{C_{m}, C_{m}}, L_{C_{m}, C_{1}, C_{2}}, \ldots, L_{C_{1}, C_{1}}\}$, we can rewrite the MAP objective function to:

$$\text{det}(L_{C_i})$$

one could rewrite the MAP objective function to:

$$\text{det}(L_{C_i}) \text{det}(L_{C_{i+1}, C_{i+1}}) = \cdots = \prod_{i=1}^m \text{det}(L_{C_i}),$$

which converts the MAP inference problem to

$$\arg\max_{C \subseteq \gamma} \text{det}(L_{C}) = \arg\max_{C_1 \subseteq \gamma_1, \ldots, C_m \subseteq \gamma_m} \prod_{i=1}^m \text{det}(L_{C_i}).$$

Table 1. BwDPP-MAP Algorithm

<table>
<thead>
<tr>
<th>Input</th>
<th>L as defined in (2); Any DPP-MAP algorithm.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>Subset of items \hat{C}.</td>
</tr>
<tr>
<td>For:</td>
<td>$i = 1, \ldots, m$</td>
</tr>
<tr>
<td>Compute L_{γ_i} via (2);</td>
<td></td>
</tr>
<tr>
<td>Perform sub-inference over C_i using DPP-MAP via</td>
<td></td>
</tr>
<tr>
<td>$C_i = \arg\max_{C \subseteq \gamma_i} \epsilon_{i, j=1, \ldots, j=1} \text{det}(L_{\gamma_i} C_i)$;</td>
<td></td>
</tr>
<tr>
<td>Return: $\hat{C} = \bigcup_{i=1}^m \hat{C}_i$.</td>
<td></td>
</tr>
</tbody>
</table>

Instead of maximizing $\text{det}(L_{C_i})$, we maximize $\text{det}(L_{\gamma_i})$ separately for each i, and report the merged answer. By doing so we implicitly assume

$$\arg\max_{C \subseteq \gamma} \prod_{i=1}^m \text{det}(L_{\gamma_i}) \approx \prod_{i=1}^m \arg\max_{C_i \subseteq \gamma_i} \text{det}(L_{C_i}).$$

This is reasonable because the almost block diagonal structure ensures that L_{C_i} has a weak correlation with the subsets other than C_i, which further indicates the approximation error is small, validating such method. The resulting sub-inference method, BwDPP-MAP, is described in Table 1. For notation, $\arg\max_{C_i \subseteq \gamma_i} \epsilon_{i, j=1, \ldots, j=1}$ denotes optimizing over C_i with the value of C_j fixed as \hat{C}_j for $j = 1, \ldots, i-1$, and the sub-kernel L_{γ_i} is given similarly as L_{C_i}, namely $L_{\gamma_i} \triangleq \{L_i - L_{C_{i+1}, \gamma_i}, \ldots, L_{C_{m}, \gamma_i}, \ldots, L_{C_{1}, \gamma_i}\}$.

One may notice that $(L_{C_i})_{C_i}$ is equivalent to L_{C_i}. ||

Remark 1 Any DPP-MAP algorithm can be plugged in for the BwDPP sub-inference, because DPP-MAP algorithms take positive semi-definite matrices as input, and it can be shown that $L_{\gamma_i} \succeq 0$, for $i = 1, \ldots, m$ (the proof is postponed to the end of the paper). Hence, BwDPP-MAP is a universal booster for any DPP-MAP algorithm. If some more advanced DPP-MAP algorithm comes out, BwDPP-MAP can directly use them for a performance boost.

Remark 2 Fixing the DPP-MAP algorithm, compared to directly applying it on the entire kernel, the computational cost saving by BwDPP-MAP can be significant. Let the kernel size N grows and the sub-kernel size roughly remains some constant c, which is the case for CPD, where the sub-block sizes are only decided by how a time-point related to its neighbours. Suppose the DPP-MAP has an $O(N^3)$ computational complexity. For BwDPP-MAP, each sub-inference takes $O(c^n)$ time, and there are N/c sub-inferences, yielding an $O(N/c^{n-1}) = O(N)$ complexity. In this example, BwDPP-MAP boosts the speed from $O(N^3)$ to $O(N)$, where $\alpha \geq 2.4$.

Remark 3 In practice, first we need to specify γ and then partition the kernel accordingly. The different choice of γ represents a speed-error tradeoff: on one hand, as γ increases, the sub-kernel size will decrease, reducing the computational complexity of sub-inference, and further the overall complexity. On the other hand, increasing γ will make neighbouring sub-kernels more connected to each other, which deteriorates the assumption (3) and introduces more error.

We provide an empirical example in Fig. 2, where (1) 1000 independent simulations of kernels of size 500; (2) sub-kernel size: γ.

2Concretely, the partition method in this paper is to (1) identify as many as possible non-overlapping dense diagonal sub-matrices; (2) merge adjacent sub-matrices if their off-diagonal non-zero area size exceeds $\gamma \times \gamma$.

2.2. BwDppCpd: BwDPP-based Change-Point Detection

Let $x_1, \ldots, x_T \in \mathbb{R}^D$ be the time-series observations, and let x_{t+w} denote the observation segment from t to $t+w$. We use X_1, X_2 to denote different segments for simplicity. A dissimilarity metric is denoted by $d : (X_1, X_2) \rightarrow \mathbb{R}$, which measures the dissimilarity between segments. Our CPD method, BwDppCpd, is a two-step method described as below.

Step 1: locating change-point candidates. Given a dissimilarity metric d, a pair of adjacent length-w windows slides along the timeline to calculate the dissimilarity score of each time point, i.e., $d(x_{t-w+1:t}, x_{t+1:t+w})$. Then, locations of local peaks above score mean, t_1, \ldots, t_N, are selected as change-point candidates $\mathcal{Y} = \{1, \ldots, N\}$.

Step 2: change-point selection via BwDPP. Construct the kernel L as $L = \text{diag}(q)^* S + \text{diag}(q)$, where q is the quality vector with element $q_t = d(x_{t-1:t}, x_{t:t+1})$, and S is the similarity matrix with $S_{ij} = \exp(-\gamma (t_i - t_j)^2 / \sigma^2)$, where γ is a parameter representing the position diversity level. Then, partition the kernel into a γ-almost block diagonal matrix and use BwDPP-MAP to generate the result.

There are rich studies of metrics for CPD problem. The choice of the dissimilarity metric $d(X_1, X_2)$ is flexible and could be well tailored according to the characteristics of the data. In our experiments, we use the symmetric KL-divergence and the generalized likelihood ratio (GLR) [10, 11, 12].

Table 2. Greedy-MAP Algorithm

<table>
<thead>
<tr>
<th>Input: L</th>
<th>Output: \hat{C}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialization: $C \leftarrow \emptyset$, $U \leftarrow \mathcal{Y}$; While U is not empty; $i^* \leftarrow \arg\max_{i \in \mathcal{Y}} J_{ii}$; $\hat{C} \leftarrow \hat{C} \cup {i^}$; Compute $L^ = \left[\left((L + I)^{-1} \right)^{-1} \right]_{ii} - I$; $L \leftarrow L^*$; $U \leftarrow {i</td>
<td>i \notin \hat{C}, L_{ii} > 1}$; Return: \hat{C}.</td>
</tr>
</tbody>
</table>

10 - 30, non-zero off-diagonal areas: [0, 2, 4, 6], randomly chosen; (3) values of non-zero entries are given as the Gram product of random Gaussian vectors; (4) greedy-MAP (Table 2) [5] is used for BwDPP-MAP sub-inference; Fig. 2 (a) shows an example of such synthetic kernels. The BwDPP-MAP aims to approximate the inference result produced by the reference, with much faster speed. Fig. 2 (b) validates such thought. As γ increases, the runtime drops fast while the inference accuracy degrades very slowly.

3. EXPERIMENTS

In this section, five experiments on real-world time-series data are presented. The first three experiments in Subsection 3.1 examine the algorithm performance on classic CPD testing datasets. We set $\gamma = 0$ because the datasets are small. In the last two experiments, human activity detection and speech segmentation, the DPP kernel sizes are around thousands, making no algorithms capable of performing MAP inference within a reasonable time cost except BwDPP-MAP. We set $\gamma = 3$ for human activity detection and $\gamma = 0, 2$ for speech segmentation. As for the dissimilarity metric d, we use Poisson processes and GLR in Coal Mine Disaster, and use Gaussian models and SymKL in other experiments [10, 11, 12].

3.1. Small-scale Datasets

Well-Log Data contains 4050 measurements of nuclear magnetic response taken during the drilling of a well. It is an example of varying Gaussian mean, and the changes reflect the stratification of the earth’s crust [9]. Outliers are removed before the experiment. As shown in Fig. 3 (a), all changes are detected by BwDppCpd.

Coal Mine Disaster Data [22], a standard dataset for testing CPD method, consists of 191 accidents from 1851 to 1962. The occurring rates of accidents are believed to have changed a few times, and the task is to detect them. The BwDppCpd detection result, as shown in Fig. 3 (b), agrees with that in [7].

1972-75 Dow Jones Industrial Average Return (DJIA) contains daily return rates of Dow Jones Industrial Average from 1972 to 1975. It is an example of varying Gaussian variance, where the changes are caused by events that have potential macroeconomic effects. Four changes in the data are detected by BwDppCpd, and are matched well with significant events (Fig. 3 (c)). Compared to [9], one more change is detected (the rightmost), which corresponds to the date that 73-74 stock market crash ended*. The result shows

Table 3. CPD result on human activity detection data HASC.

<table>
<thead>
<tr>
<th></th>
<th>PRC%</th>
<th>RCL%</th>
<th>(F_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BwDppCpd</td>
<td>93.05</td>
<td>87.88</td>
<td>0.9039</td>
</tr>
<tr>
<td>RuLSIF</td>
<td>86.36</td>
<td>83.84</td>
<td>0.8508</td>
</tr>
</tbody>
</table>

that the BwDppCpd discovers more information from the data.

3.2. Human Activity Detection

HASC5 contains human activity data collected by portable three-axis accelerometers and the task is to locate human behaviour changes. We ran the best algorithm for the dataset, RuLSIF, for comparison. For change-point selection in RuLSIF, the dissimilarity scores are first low-pass filtered so that only points with scores significantly larger than their neighbours may result in peaks. Next, these peaks are identified by thresholding to give the final change points [19].

For evaluation, we first calculated the best precision (PRC), recall (RCL), and \(F_1\) score (Table 3), defined as

\[
\text{PRC} = \frac{\text{CFC}}{\text{DET}}, \quad \text{RCL} = \frac{\text{CFC}}{\text{GT}},
\]

\[
F_1 = 2 \frac{\text{PRC} \cdot \text{RCL}}{\text{PRC} + \text{RCL}},
\]

where CFC is the number of correctly found changes, DET is the number of detected changes, and GT is the number of ground-truth changes. \(F_1\) generally reflects PRL and RCL. The result shows BwDppCpd performs generally better.

We also calculated the receiver operating characteristic (ROC) curve (Fig. 4), where true positive rate (TPR) and false positive rate (FPR) are given by TPR = RCL and FPR = 1 – PRC. For BwDppCpd, different points are obtained by tuning the position diversity parameter and for RuLSIF by fixing the low-pass filter and tuning parameters for threshold testing. The results show that BwDppCpd outperforms RuLSIF when the FPR is low, which should be the area of practical interest in ROC curve.

3.3. Speech Segmentation

Speech segmentation is to segment the audio data into acoustically homogeneous segments, e.g. utterances from a single speaker or non-speech portions. We tested two datasets for speech segmentation. The first dataset, Hub4m97, is a subset (around 5 hrs) from 1997 Mandarin Broadcast News Speech (HUB4-NE) released by LDC6. The second dataset, TelRecord, consists of 216 telephone conversations, each around 2-min long, collected from call centres. The two datasets contain utterances with hesitations and a variety of changing background noises, presenting a great challenge for CPD.

We use 12-order MFCCs (Mel-frequency cepstral coefficients) as the time-series data. BwDppCpd with different \(\gamma\) for kernel partition (denoted as Bw-\(\gamma\) in Table 4) is tested. A classic segmentation method DistBIC [12], a strong baseline for speech segmentation according to our empirical experiments, is used for comparison. In DistBIC, BIC (Bayesian information criterion) dissimilarity scores [11]

![Fig. 4. The ROC curve of BwDppCpd and RuLSIF.](image)

![Fig. 5. Significant peaks identified by DistBIC. [12](image)]

are first calculated by repeatedly testing single change points along a moving window. Then, the change-point selection is taken by identifying score peaks significantly larger than its neighbouring valleys (Fig. 5), and followed by a BIC-based segment merging procedure. We also use the same merging procedure for BwDppCpd.

The experiment results in Table 4 shows that BwDppCpd outperforms DISTBIC in both datasets. Also, comparing the results with \(\gamma = 0\) and \(\gamma = 2\), using \(\gamma = 2\) is faster but gives slightly worse performance. This agrees with our analysis of BwDPP-MAP for using different \(\gamma\)-partition to trade off speed and accuracy.

4. CONCLUSION

In this paper, we introduced BwDPPs, a class of DPPs with almost block diagonal kernels and thus can allow efficient block-wise MAP inference. We use BwDPPs to make change-point selections for CPD problem. The corresponding method, BwDppCpd, showed promising performance in several real-world data experiments.

Proof of the Argument in Remark 1: Define

\[S^i = \begin{cases}
\bar{\mathbf{L}}_{y_{i+1}} & \text{if } i = 0 \\
\begin{bmatrix} L_{y_{i+1}, y_{i+2}} & 0 \\
L_{y_{i+1}, y_{i+2}} \end{bmatrix}^T & \text{if } i = 1, \ldots, m - 2 \\
\begin{bmatrix} L_{y_{i+1}} \end{bmatrix} & \text{if } i = m - 1
\end{cases} \]

For \(i = 1, \ldots, m - 1 \), \(S^i \) is the Schur complement of \(\bar{\mathbf{L}}_{C_i} \) in \(S^{i-1}_{C_i \cup \{y_{j+1}, y_{j}\}} \), the sub-matrix of \(S^{i-1} \). We next prove the lemma using the first principle of mathematical induction. State the predicate as: \(P(i) : \) \(S^{i-1} \) and \(\bar{\mathbf{L}}_{Y_i} \) are positive semi-definite (PSD).

\(P(1) \) trivially holds as \(\bar{\mathbf{L}}_{Y_1} = \mathbf{L}_1 \) and \(S^0 = \mathbf{L} = \mathbf{L}_1 \) are PSD.

Assuming \(P(i) \) holds, \(S^{i-1}_{C_i \cup \{y_{j+1}, y_{j}\}} \) is PSD because \(S^{i-1} \) is PSD. Assume \(\mathbf{L}_{C_i} \succ 0 \), which means DPP-MAP does not produce trivial solution. \(S^i \) is the Schur complement of \(\bar{\mathbf{L}}_{C_i} \) in \(S^i_{C_i \cup \{y_{j+1}, y_{j}\}} \). So \(S^i \) is PSD. Being sub-matrix of \(S^i \), \(\bar{\mathbf{L}}_{y_{i+1}} \) is also PSD. Hence, \(P(i + 1) \) holds.

Therefore, for \(i = 1, \ldots, m \), \(\bar{\mathbf{L}}_{Y_i} \) is PSD.

\[\text{http://hasc.jp/hc2011/} \]

\[\text{http://catalog.ldc.upenn.edu/LDC98S73} \]
5. REFERENCES

