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ABSTRACT

Continual learning is crucial for dialog state tracking (DST) in
dialog systems, since requirements from users for new func-
tionalities are often encountered. However, most of existing
continual learning methods for DST require task identities
during testing, which is a severe limit in real-world applica-
tions. In this paper, we aim to address continual learning of
DST in the class-incremental scenario (namely the task iden-
tity is unknown in testing). Inspired by the recently emerging
prompt tuning method that performs well on dialog systems,
we propose to use the prompt pool method, where we main-
tain a pool of key-value paired prompts and select prompts
from the pool according to the distance between the dialog
history and the prompt keys. The proposed method can auto-
matically identify tasks and select appropriate prompts during
testing. We conduct experiments on Schema-Guided Dialog
dataset (SGD) and another dataset collected from a real-world
dialog application. Experiment results show that the prompt
pool method achieves much higher joint goal accuracy than
the baseline. After combining with a rehearsal buffer, the
model performance can be further improved.

Index Terms— Dialog state tracking, continual learning,
prompt pool

1. INTRODUCTION

Task-oriented dialog (TOD) systems are designed to help
users accomplish specific goals such as booking flights and
finding restaurants. Dialog state tracking (DST) is an im-
portant component in TOD systems, which tracks user goals
by inferring structured dialog states expressed in terms of
slots and values, as shown in Figure 1 [1]. The meth-
ods for building DST have been gradually advancing from
classification-based [2, 3] to sequence-to-sequence genera-
tion based [4, 5, 6, 7, 8]. Current DST models are mostly
trained in an offline manner, assuming that the domains and
required functionalities are fixed through time and that all

† Equal contribution.
∗ Corresponding author (ozj@tsinghua.edu.cn).

Fig. 1. An overview of prompt pool based continual training
for DST. Prompt vectors that are close to the context vector
will be selected from the pool and concatenated with the di-
alog history embeddings. The T5 model then takes all the
embeddings as input and outputs the dialog state.

training data can be accessed beforehand. However, a prac-
tical DST model often has to face new tasks. A common
requirement is to add new domains for dialogs. It is costly
if the DST model is re-trained when each new task is added.
Therefore, continual learning (CL), which refers to expanding
a model to new tasks efficiently without forgetting old tasks,
i.e., catastrophic forgetting [9], is crucial for TOD systems.

To overcome catastrophic forgetting, three main classes
of continual learning algorithms have been developed: re-
hearsal, which uses an replay buffer to recall previous learned
task [10, 11, 12], regularization, which adds regularization
term to the loss to avoid forgetting [13, 14], and architec-
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tural, which trains task-specific component for each task [15,
16, 17, 18, 19]. However, rehearsal-based methods tend to ex-
hibit decreased performance when the buffer size is reduced,
and they are unsuitable for scenarios where the data privacy
is a concern. Regularization-based methods partially mitigate
catastrophic forgetting without the need to store past exam-
ples, but they fail to achieve desirable performance in de-
manding scenarios or intricate datasets [11]. Architecture-
based methods aim to have dedicated components for each
task and are more flexible and efficient than the above two
classes of methods. Those task-specific components can be
achieved by various approaches such as training a separate
adapter [17] or applying network pruning [16] for each task.
However, most architecture-based methods require that the
task identity is known during testing. This presents a severe
limitation for their application in class-incremental contin-
ual learning, for which task identification is necessary at test
time. We leave a short introduction to the three basic scenar-
ios of continual learning [20], i.e., task-incremental, domain-
incremental and class-incremental, to the section of related
work.

In this paper, we are interested in continual learning of
DST in the class-incremental learning scenario (namely the
task identity is unknown in testing), which is mostly under-
explored. The training data for different domains arrives in
a sequence, thus constituting a sequence of tasks. The DST
model needs to be incrementally trained and finally perform
well under all tasks. A recent work in [18] applied contin-
ual prompt tuning (CPT) to DST, where it fixes the pretrained
language model, trains task-specific prompt vectors for each
task, and concatenates those prompts with the context em-
beddings as the final input embeddings. CPT achieved im-
pressive performance in continual learning of DST. However,
CPT cannot work in the class-incremental scenario, because it
needs to know the corresponding prompts and slot definitions
for the current task before generating dialog states.

Inspired by the learning to prompt (L2P) method for im-
age classification [19], we propose a prompt pool based con-
tinual learning of DST, which can fully support the class-
incremental scenario. Specifically, we maintain a prompt pool
which contains a set of prompt vectors. In addition, each
prompt is associated with a key vector for selecting prompts.
For a dialog turn from an arbitrary task, we select prompts
from the key-value paired prompt pool according to the dis-
tance between the context vector and key vectors. The con-
catenation of the dialog history embeddings and the selected
prompts will be sent into a pretrained model with encoder-
decoder structure such as T5 [21] to predict the dialog state.
The parameters of all the prompts and keys will be updated
during training, while the context encoder and the pretrained
encoder-decoder model are frozen. The overview of our con-
tinual learning framework can be seen in Figure 1.

We conduct experiments of DST on the widely-used
Schema-Guided Dialog dataset (SGD) [22] and another

Chinese dataset collected from a real-world dialog appli-
cation. We model DST as a sequence-to-sequence generation
problem and adjust the sequence format to fit in the class-
incremental scenario. The results show that the prompt pool
method achieves much higher joint goal accuracy than base-
line AdapterCL [17] in class-incremental setting. Moreover,
we combine prompt pool with a rehearsal buffer and modify
the selection objective for keys, which further improved the
model performance. 1

2. RELATED WORK
2.1. Continual Learning
According to training methods, three main classes of con-
tinual learning algorithms have been developed: rehearsal-
based, regularization-based and architecture-based. Rehearsal-
based methods employ a data buffer to store samples from
previous tasks, which are then used for training along with the
data from the current task [10, 11, 12]. Regularization-based
methods restrict the plasticity of the model by constrain-
ing the learning rate at important parameters for previous
tasks [13, 14]. Architecture-based methods aim to train
dedicated components for each task. These task-specific
components can be achieved by dynamic expanding net-
work structure [15], iteratively applying network pruning and
modification[16], training a separate adapter [17] or training
task-specific prompts [18, 19] for each task.

According to test scenarios, continual learning can be di-
vided into task-incremental, domain-incremental, and class-
incremental [20]. Task-incremental learning is the simplest
scenario, where the model is aware of the task identity of
the current data during testing. Domain-incremental learning
is more challenging than task-incremental learning, since the
model lacks information about the task identity during testing,
but the data labels remain consistent across all tasks, e.g., all
tasks are binary classification task. Class-incremental learn-
ing is the most complex category among these three, but it is
also the closest to real-world scenarios. In class-incremental
learning, the model is unaware of the task identity and the
labels differ across different tasks.

2.2. Prompt-based Natural Language Processing

Recent studies have found that using a textual prompt can bet-
ter align pretrained language models to downstream tasks [23,
24]. Prompt engineering either manually designs prompts
[25] or generates prompts automatically [26, 27]. Different
from prompt engineering, prompt-tuning adds new tunable
prompt tokens to the input, while keep the pretrained model
frozen. The added prompts serve as context and affect all fol-
lowing transformer layers, and their embeddings are learned
through back-propagation. It is shown that prompt-tuning is
parameter-efficient and becomes more competitive with fine-
tuning as the model size grows [28]. Prompt-tuning is com-
petitive for continual learning, as only the soft prompts are

1The code is released at https://github.com/thu-spmi/PPT2DST



tuned, instead of the whole pretrained language model. Our
work proposes to use the prompt pool to leverage the ad-
vantage of prompt-tuning, while letting the model to iden-
tify tasks and selecting the most appropriate prompts auto-
matically to deal with the class-incremental continual learn-
ing problem.

2.3. Continual Learning in TOD Systems
Continual learning has been studied in building TOD sys-
tems. In [29], a regularization-based method, adaptive elastic
weight consolidation (AEWC), is utilized to complete contin-
ual learning in DST and dialog management. In [17], sep-
arate adapters are trained during continual learning and ap-
plied to natural language understanding (NLU), DST and nat-
ural language generation (NLG). In [30], rehearsal-based and
regularization-based methods are combined for NLG in TOD
systems. In [16], continual learning of NLG is performed by
iterative pruning, expanding and masking the network. A re-
cent work in [18] achieve continual learning of DST by ap-
plying prompt-tuning [31], where the pre-trained language
model is fixed and the added prompts tokens are tuned to
adapt the language model to a sequence of tasks. However,
most of previous studies concentrate on the task-incremental
or domain-incremental scenarios, which limites those meth-
ods in practical applications. In this work, we aim to address
the most challenging class-incremental learning of DST.

A relevant prior study to our work is AdapterCL [17],
which assumes the task identity is unknown during testing
and select the adapter according to the perplexity. However,
in [18], AdapterCL is found to be not parameter-efficient
enough, where AdapterCL needs 20 times parameters to
catch up with the performance of continual prompt tuning.
Though the prompt tuning method has shown its effective-
ness in continual learning of DST [18], it is not suitable for
the class-incremental scenario of TOD system. Our work
is inspired by [19], which propose the L2P (also known as
prompt pool) method for image classification. The method
maintains a prompt pool for continual learning and selects the
prompts using key matching. In this work, we further extend
the prompt pool method to the class-incremental learning of
DST.

3. METHOD

3.1. Continual Learning

In the class-incremental scenario, there are a sequence of
tasks T = {T1, ..., TT }. The training data for different tasks
arrives in a sequence. The model needs to be incrementally
trained and finally perform well under all tasks. Denote the
corresponding data by D = {D1, ...,DT }, where Dt denotes
the data for the task Tt. Dt contains multiple data samples
(xi

t, y
i
t) where xi

t ∈ Xt and yit ∈ Yt denote the i-th input sam-
ple and label. We will omit the index t and i in xi

t later for
simplicity, and add a subscript to denote a particular sample
such as in Eq. (1) and (2) for a particular dialog turn k.

3.2. Dialog State Tracking

For dialog state tracking (DST), we need to use the dialog his-
tory to predict the dialog state for each turn. The dialog state
is a set of slot value pairs: {(s1, v1), ..., (snt

, vnt
)}, where s

and v denote slot and value respectively, and nt is the number
of slots used in the task Tt. Usually, all the slots are predefined
and DST is to predict the values. Task-oriented dialogs often
consist of dialogs from different domains, such as restaurant
service or hotel service. For continual learning of DST, the
domain identity is treated as task identity, which is unknown
in testing in the class-incremental setting.

Generally, we formulate DST as text-to-text generation.
The DST model accepts an input token sequence and out-
puts the dialog state, which is also represented by a token
sequence. For the input sequence, [18] concatenates slot de-
scriptions and sentinel tokens after dialog history to better
predict the value of each slot. However, the task identity is
unknown during testing in class-incremental setting, which
means that the model does not know which slots are involved
in current turn. Therefore, we only take the dialog history as
the input sequence, that is

xk = u1 ⊕ r1 ⊕ ....⊕ uk−1 ⊕ rk−1 ⊕ uk (1)

where uk, rk denote the user utterance and system response
in the k-th dialog turn, and ⊕ denote the concatenation opera-
tion. For the output sequence, not only the slot values but also
the task identity need to be predicted. To simplify the output
format, we preset the order of slots in output sequence, so that
we only need to predict the values in a specific order during
testing. We use special tokens [s0], ..., [snt

] to separate val-
ues. The empty values are set to be ’none’ in the sequence.
The output sequence can be formulated as:

yk = [s0] idt [s1] v
k
1 , ..., [snt ] v

k
nt

(2)

where idt is the identity (i.e., task name) of task Tt. For sim-
plicity, we omit the turn index k in subsequent formulas.

3.3. Prompt Pool

3.3.1. Prompt Tuning

Prompt tuning [31] simply conditions frozen T5-like lan-
guage models [18] to perform down-stream NLP tasks by
learning prompt parameters that are concatenated to the input
tokens to instruct the model prediction. However, ordinary
prompt tuning is not applicable to class-incremental learning
where the task identity is unknown in testing. [19] proposed
to learn a prompt pool memory space which is served as
parameterized instructions for the pretrained model to learn
tasks sequentially. The prompt pool is defined as:

P = {P1, P2, ..., PJ} (3)

where Pj ∈ RLp×D is a single prompt with token length Lp

and embedding size D, and J is the number of prompts in
the pool. For each task, N prompts, Pi1 , Pi2 , ..., PiN , will



be selected from the prompt pool and concatenated after the
embeddings of the dialog history. Let E(x) ∈ R|x|×D denote
the embeddings of the input sequence x with token length |x|.
Then the vector sequence Ep(x) fed into the pretrained model
like T5, denoted by fθ(·), can be formulated as:

Ep(x) = E(x)⊕ Pi1 ⊕ ...⊕ PiN (4)

3.3.2. Prompt Selection

To select prompts from the prompt pool, [19] model each
prompt as a key-value pair: {(k1, P1), ..., (kJ , PJ)}. ki ∈
RDK is the key for the i-th prompt and we denote the set
of all keys by K. Intuitively, we can select prompts accord-
ing to the distance between x and ki. Specifically, the input
sequence will be sent into a pretrained encoder model qϕ to
obtain the context vector cx ∈ RDK , for example, the output
vector of BERT model corresponding to the ’[CLS]’ token.
Then the distances between cx and all the keys will be calcu-
lated and N keys with the smallest distances will be selected.
The dialog history embeddings and the prompts correspond-
ing to the selected N keys will be concatenated as in Eq. (4).
During training, to ensure that each key in the pool can be se-
lected, we follows [19] to directly select kNt:N(t+1)−1 for the
task Tt, which is motivated by diversifying prompt selection
in [19].

3.3.3. Optimization of Prompt Pool
The optimization of the prompt pool can be divided into two
parts. The first part is the cross entropy loss between the
model output and the label. The second part is the loss be-
tween the context vector and the selected prompt keys.

L = CE(fθ(Ep(x)), y) + λ
∑

ki∈Kx

γ(cx, ki) (5)

where CE denotes the cross entropy loss which is averaged
over all tokens in the output sequence, γ is a function that
calculates Euclid distance and feeds it into a sigmoid function,
λ is the weight of the second part loss, and Kx is the set of
keys selected from the pool for the input sequence x. The
whole training algorithm can be seen in Algorithm 1.

3.3.4. Rehearsal Buffer

Utilizing rehearsal buffer can improve model performance ef-
fectively when past data are accessible. For the task Tt, the
rehearsal buffer is composed of a fixed number of dialogs se-
lected from previous t − 1 tasks, which we denote as M<t.
The new dataset for the task Tt is Dt ∪M<t. It is worth not-
ing that the second term in Eq. (5) is not applicable to the
rehearsal-based method, because it will shorten the distance
between the context vectors from M<t and keys from Tt. To
address this issue, we change the second term in Eq. (5) to a
binary cross entropy loss. The loss function of the task Tt can
be written as

L = CE(fθ(Ep(x)), y)+λ
∑

ki∈Kx

BCE(γ(cx, ki), I(x ∈ Dt))

(6)

Algorithm 1 Prompt Pool Training (PPT) for DST
Require: Frozen pretrained model fθ, frozen encoder qϕ,

task number T , a sequence of data D, prompt pool P,
prompt keys K, prompt number N for each task, batch size
B, epochs E;
Randomly initialize P,K;
for t =1 to T do

Select N keys and prompts Kx =
{KNt, ...,KN(t+1)−1},Px = {PNt, ..., PN(t+1)−1};
for e = 1 to E do

Obtain a mini-batch of data {(xb, yb)}Br=b;
Calculate the context vector cxb

= qϕ(xb) for all input
samples;
Concatenate the embedding of the input sequence
with the selected prompts and obtain an embedding
batch {(Ep(xb), yb)}Br=b;
Calculate the loss L =
1
B

∑B
b=1[CE(fθ(Ep(xb)), yb) + λ

∑
ki∈Kx

γ(cxb
, ki)];

end for
Update the selected keys Kx and prompts Px using the
loss L;

end for

where I(x ∈ Dt) is an indicator function and BCE is the
binary cross entropy loss function, where BCE(x, y) =
−y log x− (1− y) log(1− x). The algorithm with rehearsal
buffer is shown in Algorithm 2 in Appendix.

4. EXPERIMENTS
4.1. Dataset
We conduct our experiments on Schema-Guided Dialog
dataset (SGD) [22] that has 44 services over 19 domains.
Like [18], we treat each service as a task and only consider
dialogs involving a single service. We randomly select 15
tasks and split the dialogs of one service into train/val/test
sets with the ratio of 7:1:2. More details about data statis-
tics can be found in Table 6 in Appendix. To examine the
performance of the method in real-world applications, we
conduct experiments on the China Mobile Pickup dataset
(CM-Pickup), collected from a real-world dialog application.
The purpose is to automatically pickup the incoming call
when the phone owner is not available, via dialog state track-
ing and dialog management. CM-Pickup has 39 domains and
we retain 16 domains that have more than 100 dialog sessions
and discard other domains.

4.2. Metrics
Generally, we evaluate the DST performance using Joint Goal
Accuracy (JGA), which calculates the proportion of dialog
turns that all the slot values are correctly predicted. Denote
aj,i as the JGA on the test set of the i-th task right after train-
ing on the j-th task. A normal measure of the performance of



continual learning is the average JGA on all tasks after train-
ing on the final task, that is:

JGAavg =
1

T

T∑
t=1

aT,t (7)

Besides, we use ft,i to represent the forgetting index of the
i-th task after training on the task Tt.

ft,i = max
j∈[i,t]

aj,i − at,i (8)

We also calculate the accuracy of key selection during testing,
which is denoted as Acckey . Note that one task corresponds
to multiple keys, so counting as correct means that all the keys
are selected correctly.

4.3. Baseline
We abbreviate the prompt pool training method as PPT
and compare it with another class-incremental baseline
AdapterCL [17], which trains a residual adapter for each
task and select the adapter with lowest perplexity during test-
ing. For the sake of fairness, we adjust the parameter size of
AdapterCL to be close to that of prompt pool. To improve
the performance, we equip PPT with a rehearsal buffer (PPT-
R), where we randomly select 50 samples from each task as
memory.

We train models using multitask prompt tuning (MPT)
method and oracle continual prompt tuning (OCPT) method
as the upper-bound. The first method trains N prompts using
all tasks’ data simultaneously. The second method trains N
prompts for each task sequentially but the task identity is pro-
vided during testing (hence called oracle). Both are trained
using only the first part loss in Eq. (5).

5. RESULTS
5.1. Main Results
Table 1 shows the average JGA of the model on 15 tasks
after continual learning over SGD. The main findings are as
follows: 1) PPT achieves higher JGAavg than AdapterCL;
2) The JGAavg of PPT and PPT-R are still lower than OCPT,
which provides task identities in testing. This illustrates the
challenge of class-incremental learning; 3) Both PPT and
PPT-R have a high accuracy of key selection during testing,
indicating that the prompt pool method can be well applied to
class-incremental learning scenarios in DST; 4) The rehearsal
buffer can improve JGAavg and Acckey effectively.

To better demonstrate how the model performance varies
during continual learning, we calculate the forgetting index
during training. We only show the first 6 tasks in Table 2 due
to space limitations. Interestingly, the forgetting index often
increases after training on similar tasks. For example, the for-
getting index of the second task, flights 1 increases to 0.176
after training on flights 3. We speculate that this is because
the model cannot distinguish between two similar tasks well
(The data distributions of them is close to each other), leading
to errors in predicting the task identity of previous tasks.

Method JGAavg Acckey
OCPT 0.481 -
MPT 0.614 -
AdapterCL 0.306 -
PPT 0.346 0.783
PPT-R 0.363 0.811

Table 1. Average joint goal accuracy on 15 tasks over SGD.
The first block contains the two methods that represent the
upper bound and the second shows class-incremental results
of different methods. We also show the key selection accuracy
for the PPT methods.

Task name Forgetting index
services 4 [0.000, 0.000, 0.000, 0.000, 0.000, 0.000]
flights 1 [0.000, 0.000, 0.000, 0.000, 0.000, 0.000]
services 3 [0.115, 0.000, 0.000, 0.000, 0.000, 0.000]
flights 3 [0.115, 0.176, 0.000, 0.000, 0.000, 0.000]
trains 1 [0.115, 0.176, 0.000, 0.000, 0.000, 0.000]
homes 2 [0.115, 0.176, 0.000, 0.000, 0.000, 0.000]

Table 2. The forgetting indices of the first 6 tasks over SGD.
Each row contains 6 indices, corresponding to the forgetting
index of the current task for the first 6 tasks.

Table 3 show JGA and Acckey of PPT and PPT-R on dif-
ferent tasks after continual learning. It can be found that JGA
and Acckey of most tasks improved after adding a rehearsal
buffer. Nonetheless, JGA and Acckey of a few tasks such
as rentalcars 3 have significantly decreased with a rehearsal
buffer. After analysis, we found that after adding a rehearsal
buffer, the model has a probability of over 70% misjudging
rentalcars 3 as rentalcars 1. This phenomenon is consistent
with the speculation above. In fact, these similar tasks should
be merged into one in a more ideal continuous learning sce-
nario.

For another dataset CM-Pickup, we compare PPT-R with
OCPT. The JGA of each task is shown in Figure 2. The
overall results are similar to Table 1, where PPT-R achieves
slightly lower JGA than the upper-bound OOCPT.

5.2. Ablation Study
To understand the similarities between different tasks in SGD,
we utilize the t-SNE algorithm [32] to perform dimension re-
duction on all the encoded context vectors. The results are
shown in Figure 3. It can be seen that the number of clus-
ters in the figure is less than the number of tasks, 15. For
instance, in the middle of the figure, the points of flights 1
and flights 3 are closely intertwined. This indicates that some
tasks are similar to each other, which increases the difficulty
for the model to distinguish between different tasks.

To reveal the role of the modified loss function, we con-
duct two ablation experiments on the basis of PPT-R, and
the results are shown in Table 4. The first experiment (PPT-
Rprompt only) directly removes the second term in Eq. (6),
that is, the pool of keys, K, is not updated during training.



Task name PPT PPT-R
JGA Acckey JGA Acckey

services 4 0.510 0.793 0.538 0.981
flights 1 0.537 0.741 0.563 0.802
services 3 0.534 1.000 0.555 0.990
flights 3 0.422 0.922 0.353 0.836
trains 1 0.368 0.983 0.419 1.000
homes 2 0.144 0.311 0.230 0.547
rentalcars 2 0.086 0.459 0.416 0.989
restaurants 1 0.497 1.000 0.473 1.000
music 1 0.324 1.000 0.211 0.951
hotels 4 0.014 0.014 0.255 0.355
media 2 0.254 1.000 0.338 0.972
hotels 3 0.264 0.808 0.228 0.829
rentalcars 3 0.263 0.828 0.020 0.263
hotels 1 0.352 0.880 0.256 0.720
homes 1 0.628 1.000 0.589 0.930
avg 0.346 0.783 0.363 0.811

Table 3. The JGA and Acckey of PPT and PPT-R on 15 tasks
after continual learning over SGD.

Fig. 2. The joint goal accuracy of PPT-R and OCPT (upper-
bound) on each task of CM-Pickup.

The second (PPT-Rordinary) calculates the loss according to
Eq. (5) instead of Eq. (6) when utilizing rehearsal buffer. Both
PPT-Rprompt only and PPT-Rordinary achieve lower JGAavg

and Acckey than PPT-R, and the results of PPT-Rordinary is
even lower than those of PPT-Rprompt only. This indicates
that the key selection loss in the ordinary loss function in
Eq. (5) is unfavorable for prompt pool training with a re-
hearsal buffer, and the modified loss in Eq. (6) can improve
the model performance effectively.

To demonstrate that our methods can scale well with the
parameters of the backbone, we conduct experiments with
different backbones and report the results in Table 5. The
results clearly show that our PPT methods scale well with the
backbone size. Using a larger model like T5-base and T5-
large continually improve the performance of the JGAavg

and Acckey metrics. This finding shows that our PPT methods
can potentially work well with large language models, which
has become prevalent for NLP tasks recently.

6. CONCLUSION

We propose to address the class-incremental learning prob-
lem of DST using the prompt pool method. We maintain a

Fig. 3. The distribution of context vectors from different tasks
in SGD after t-SNE dimension reduction.

Method JGAavg Acckey
PPT-R 0.363 0.811
PPT-Rprompt only 0.336 0.766
PPT-Rordinary 0.334 0.732

Table 4. Ablation study of the modified key selection loss
over SGD.

Model JGAavg Acckey
T5-small (60M) 0.346 0.783
T5-base (200M) 0.420 0.800
T5-large (750M) 0.464 0.822

Table 5. Ablation study of the scaling effect of the backbone
used for prompt tuning over SGD. PPT is used for all different
backbones.

prompt pool and select the prompts that are close to the in-
put sequence vector during continual learning. The embed-
dings of the input sequence and the selected prompts will be
concatenated together and sent to a pretrained model to pre-
dict the dialog state. We conduct experiments on SGD and
CM-Pickup and the results show that the prompt pool method
outperforms the baseline. We also combine prompt pool with
a rehearsal buffer, which further improves the joint goal ac-
curacy. We hope that this work is helpful for building more
flexible generative dialog systems for real-world applications.
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Algorithm 2 Prompt Pool Training with Rehearsal Buffer
(PPT-R) for DST
Require: Frozen pretrained model fθ, frozen encoder qϕ,

task number T , a sequence of data D = {D1, ...,DT },
prompt pool P, prompt keys K, prompt number N for each
task, batch size B, epochs E, a rehearsal buffer M ;
Randomly initialize P,K;
for t =1 to T do

Obtain new dataset D′
t = Dt ∪M ;

Select N keys and prompts Kx =
{KNt, ...,KN(t+1)−1},Px = {PNt, ..., PN(t+1)−1};
for e = 1 to E do

Obtain a mini-batch of data {(xb, yb, I(xb ∈ Dt))}Br=b

from D′
t;

Calculate the context vector cxb
= qϕ(xb) for all input

samples;
Concatenate the embedding of the input sequence
with the selected prompts and obtain an embedding
batch {(Ep(xb), yb, I(xb ∈ Dt))}Br=b;
Calculate the loss L =
1
B

∑B
b=1[CE(fθ(Ep(xb)), yb) +

λ
∑

ki∈Kx

BCE(γ(cxb
, ki), I(xb ∈ Dt))];

end for
Update the selected keys Kx and prompts Px using the
loss L;
Update the rehearsal buffer M = M ∪ St, where St

denotes 50 dialogs randomly selected from Dt;
end for

A. TABLES AND ALGORITHMS

We present the detailed algorithm of prompt pool training
with rehearsal buffer, which is shown in Algorithm 2.

The statistics of the SGD [22] dataset is shown in Table 6.

B. IMPLEMENTATION DETAILS

The pretrained encoder-decoder model fθ is a T5-small
model [21], which has 60M parameters. Besides, we choose
Sentence-BERT [33] as our sentence encoder model qϕ,
which has been found to outperform the T5 encoder in our
experiments. For every task, the epoch number is set to 20,
learning rate is set to 0.25 with linear decay to 0, and the
weight of the key selection loss λ is set to 0.03. As for
the prompt pool, the pool size J = 150 and the number of
prompt for each task N = 10. Each prompt has a token
length Lp = 10. The dimension of keys, DK , is the same as
the hidden size of Sentence-BERT, 384, and the dimension of
prompts, D, is the same as the embedding size of T5-small,
512.

For experiments on Chinese dataset, we choose MT5-

Task name train val test
services 4 680 97 208
flights 1 4680 667 1379
services 3 959 143 290
flights 3 420 75 116
trains 1 415 67 117
homes 2 424 56 139
rentalcars 2 631 91 185
restaurants 1 2098 297 581
music 1 468 73 142
hotels 4 559 99 141
media 2 215 29 71
hotels 3 737 100 193
rentalcars 3 332 55 99
hotels 1 868 105 250
homes 1 1829 282 540

Table 6. The number of samples in the 15 selected tasks.

small [34] as the frozen pretrained model and SBERT-
Chinese [35] as the encoder model.
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