

Exploring Energy-based Language Models with Different Architectures and Training Methods for Speech Recognition

Hong Liu^{1,†}, Zhaobiao Lv^{2,†}, Zhijian Ou^{*,1}, Wenbo Zhao², Qing Xiao²

¹Speech Processing and Machine Intelligence (SPMI) Lab, Tsinghua University, Beijing, China ²China Unicom (Guangdong) Industrial Internet Co., Ltd.

> Motivation

> Models & Methods

> Experiments

Conclusion

Energy-based model (EBM)/random fields/undirected graphical models

https://simons.berkeley.edu/talks/ilya-sutskever-openai-2023-08-14 (Workshop on Large Language Models and Transformers)

Processing

ICASSP2022 Tutorial

14:00-17:30 (UTC+8), 22 May, 2022

http://oa.ee.tsinghua.edu.cn/~ouzhijian/ICASSP2022/ind ex.html (ICASSP 2022 Tutorial)

$$p_{\theta}(x) = \frac{1}{Z(\theta)} \exp(-E_{\theta}(x))$$

Autoregressive LM (ALM) vs Energy based LM (ELM)

- What's the advantage of Energy based language model (ELM)?
 - > We can define very flexible energy functions by utilizing neural networks of various architectures
 - ELMs (globally normalized) overcome the exposure bias [1] and label bias [2] suffered by locallynormalized models

[1] S. Wiseman and A. M. Rush, "Sequence-to-sequence learning as beam-search optimization," *EMNLP*, 2016.
[2] J. Lafferty, A. McCallum, and F. C. Pereira, "Conditional random fields: Probabilistic models for segmenting and labeling sequence data," *International conference on Machine learning (ICML)*, 2001.

• Applications of ELMs

- Computation of sentence likelihoods (up to a constant) [4, 5, 10, 11, 12, 13], text generation [14], language model pretraining [15], calibrated natural language understanding [16], and so on.
- For rescoring in ASR, previous ELMs [3, 4] outperform ALMs with similar model sizes, but they use old-fashioned CNN or LSTM
 - Recent progress in Transformer and large pretrained models such as BERT and GPT opens new possibility to further advancing ELMs
 - > Explore different architectures of energy functions and different training methods

[3] B. Wang and Z. Ou, "Language modeling with neural transdimensional random fields," in *IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)*, 2017.

[4] B. Wang and Z. Ou, "Learning neural trans-dimensional random field language models with noise-contrastive estimation," *ICASSP*, 2018.

 [5] B. Wang, Z. Ou, and Z. Tan, "Learning trans-dimensional random fields with applications to language modeling," *IEEE transactions on pattern analysis and machine intelligence (PAMI)*, 2018.

- Motivation
- > Models & Methods
- > Experiments
- Conclusion

• Two different forms of ELMs:

✓ (Generally) Globally normalized ELM (GN-ELM) $p_{\theta}(x) = \frac{\exp(-E_{\theta}(x))}{\sum_{x'} \exp(-E_{\theta}(x'))} = \frac{\exp(-E_{\theta}(x))}{Z(\theta)}$ *x*: sentence (i.e. a token sequence) *b*: model parameters *B*: model parameters *B*: *C B*: *C C*</p

Trans-dimensional random field language model [5] (TRF-LM)

$$p_{\theta}(x) = \pi_{|x|} \frac{\exp(-E_{\theta}(x))}{\sum_{|x'|=|x|} \exp(-E_{\theta}(x'))} = \pi_{|x|} \frac{\exp(-E_{\theta}(x))}{Z_{|x|}(\theta)} \qquad |x|: \text{token length of } x$$

$$\pi_{|x|}: \text{ prior probability of length } |x|$$

$$Z_{|x|}(\theta): \text{ normalizing constant at length } |x|$$

[5] B. Wang, Z. Ou, and Z. Tan, "Trans-dimensional random fields for language modeling," ACL (Long Papers), 2015.

No matter for TRF-LMs or GN-ELMs, one is generally free to choose the energy function in ELMs, as long as it assigns a scalar energy to every sentence.

Architectures of Energy Functions

- SumTargetLogit
- Hidden2Scalar
- SumMaskedLogit
- SumTokenLogit

Architectures of Energy Functions

• SumTargetLogit [6]: adapted from autoregressive language model (GPT-2), this energy function sums the logits corresponding to the target token (next token) at each position

• Hidden2Scalar [7]: adapted from bi-directional text encoder (BERT), the hidden states of the sentence is projected to scalar space

[6] B. Wang and Z. Ou, "Improved training of neural trans dimensional random field language models with dynamic noise contrastive estimation," in *2018 IEEE SLT*.
[7] Y. Deng, A. Bakhtin, M. Ott, A. Szlam, and M. Ranzato, "Residual energy-based models for text generation," arXiv preprint arXiv:2004.11714, 2020.

Architectures of Energy Functions

• SumMaskedLogit [8]: Based on masked language model (MLM), this energy function sums the output logit of masked tokens

It requires |x| forward pass, very timeconsuming!! $E_{\theta}(x) = -\sum_{i=1}^{|x|} g_{\theta}(MASK(x,i))[i][x_i]$ $g_{\theta}(MASK(x, i))$: the output logits obtained by masking the *i*-th token and sending the masked sequence into the MLM.

• SumTokenLogit: An improvement of SumMaskedLogit. We omit the masking step and feeding *x* directly to the MLM, so that the logits at all positions can be calculated in parallel.

[8] A. Wang and K. Cho, "BERT has a mouth, and it must speak: BERT as a Markov random field language model," *Workshop on Methods for Optimizing and Evaluating Neural Language Generation*, 2019.

Training methods for ELMs

- The normalizing constant $Z(\theta)$ is **intractable** !!
- There are two main classes of training methods for ELMs
- Maximum likelihood estimate (MLE)
 - Metropolis Independence Sampling (MIS)
 - Importance Sampling (IS)
- Noise contrastive estimate (NCE)
 - Standard NCE
 - Dynamic NCE

Training Method: Noise Contrastive Estimate (NCE)

• NCE [9] optimizes the ELM by learning from discrimination between data samples and noise samples.

$$\mathcal{J}_{\text{NCE}}(\theta) = \mathop{\mathbb{E}}_{x \sim p_{\text{data}}} \log \frac{\hat{p}_{\theta}(x)}{\hat{p}_{\theta}(x) + \nu q_{\phi}(x)} + \nu \mathop{\mathbb{E}}_{x \sim q_{\phi}} \log \frac{\nu q_{\phi}(x)}{\hat{p}_{\theta}(x) + \nu q_{\phi}(x)}$$

$$q_{\phi}: \text{ the noise model which is able to generate noisy sentences}$$

$$\hat{p}_{\theta}(x): \text{ the unnormalized probability $\exp(-E_{\theta}(x))$

$$\nu: \text{ the ratio between the noise prior and the data prior}$$$$

• The implementation of the noise model q_{ϕ} : a fine-tuned GPT-2

[9] M. Gutmann and A. Hyvarinen, "Noise-contrastive estimation: A new estimation principle for unnormalized statistical models," *Conference on artificial intelligence and statistics (AISTAT)*, 2010.

Training Method: Dynamic Noise Contrastive Estimate (NCE)

• The noise distribution $q_{\phi}(\mathbf{x})$ should not be <u>too far</u> or <u>too close</u> to the data distribution. Too easy to distinguish
Too hard to distinguish

- DNCE [10] optimizes the noise model together with the energy model (teacher-forcing the noise model over the training data)
 - The binary classification task in NCE will gradually become difficult.

$$\mathcal{J}_{\text{DNCE}}(\theta, \phi) = \mathcal{J}_{\text{NCE}}(\theta) + \mathbb{E}_{x \sim p_{\text{data}}} \log q_{\phi}(x)$$

[10] B. Wang and Z. Ou, "Improved training of neural transdimensional random field language models with dynamic noise contrastive estimation," *IEEE Spoken Language Technology Workshop (SLT)*, 2018.

Training Method: Maximum Likelihood Estimate (MLE)

- MLE maximizes the likelihood $p_{\theta}(x)$ over training data
- The gradient of log-likelihood requires Monte Carlo sampling from the energy-based model $p_{\theta}(x)$

$$\frac{\partial \mathcal{J}_{\text{MLE}}(\theta)}{\partial \theta} = -\mathbb{E}_{x \sim p_{\text{data}}} \left[\frac{\partial E_{\theta}(x)}{\partial \theta} \right] + \mathbb{E}_{x \sim p_{\theta}} \left[\frac{\partial E_{\theta}(x)}{\partial \theta} \right]$$

• To sample from a un-normalized distribution $p_{\theta}(x)$

MCMC methods such as Metropolis-Hasting [11]

Importance sampling [11]

Both require a proposal distribution $q_{\phi}(\mathbf{x})$. We implement it by a fine-tuned GPT2, the same as the noise model in NCE.

Training Method: MLE with two different sampling methods

- Metropolis Independence Sampling (MIS): a special case of Metropolis-Hasting
- Obtain a Markov chain of $p_{\theta}(x)$ through multi-step of accepting/rejecting proposed samples.

Algorithm 1 Metropolis Independence Sampling in ELM. Input: A target distribution p_{θ} , a proposal distribution q_{ϕ} , iteration number T. Randomly initialize $x^{(0)}$; for t = 1 to T do Generate x' from the proposal q_{ϕ} ; Accept $x^{(t)} = x'$ with probability $\min\{1, \frac{p_{\theta}(x')q_{\phi}(x^{(t-1)})}{p_{\theta}(x^{(t-1)})q_{\phi}(x')}\}$, otherwise set $x^{(t)} = x^{(t-1)}$; end for Return: $\{x^{(1)}, ..., x^{(T)}\}$

- Importance sampling (IS): calculates the weighted sum of energy gradients of the proposed samples
- The second term in MLE gradient:

$$\mathbb{E}_{x \sim p_{\theta}} \left[\frac{\partial E_{\theta}(x)}{\partial \theta} \right] \approx \frac{\sum_{i=1}^{N} w(x_i') \frac{\partial E_{\theta}(x_i')}{\partial \theta}}{\sum_{i=1}^{N} w(x_i')}$$

• The weight
$$w(x'_i) = \frac{p_{\theta}(x'_i)}{q_{\phi}(x'_i)}$$

> Motivation

> Models & Methods

> Experiments

Conclusion

• Datasets

Dataset	Language	Size
AISHELL-1 [12]	mandarin	178 hours
WenetSpeech [13]	mandarin	1000+ hours

- The ASR n-best lists are obtained from a RNN-T [14] model, where the encoder is a Conformer [15] of 92M parameters
- The backbone of energy model is either BERT or GPT-2
- The noise/proposal model is fine-tuned from GPT-2

[12] H. Bu, et al, "Aishell-1: An open source mandarin speech corpus and a speech recognition base line," O-COCOSDA, 2017.
[13] B. Zhang, et al, "Wenetspeech: A 10000+ hours multi-domain mandarin corpus for speech recognition," ICASSP, 2022.
[14] A. Graves, "Sequence transduction with recurrent neural networks," arXiv preprint arXiv:1211.3711, 2012.
[15] A. Gulati, et al., "Conformer: Convolution augmented transformer for speech recognition," arXiv 2020.

- GN-ELM with Hidden2Scalar + DNCE achieves results competitive with the finetuned GPT2
- DNCE outperforms NCE
- GN-ELM and TRF-LM perform closely to each other
- MLE underperforms NCE/DNCE

Table 1: Rescoring results on AISHELL-1. CER₁ and CER₂ denote the Character Error Rate (CER) in in-domain test and cross-domain test respectively.

	Method	Architecture	CER ₁	CER_2
	No LM		4.76	5.14
	5-gram LM		4.67	4.40
	Pretrained GPT2		3.22	3.66
	Pretrained BERT (PLL)		3.29	3.66
	Finetuned GPT2		3.11	3.33
	Finetuned BERT (PLL)		3.12	3.47
		SumTargetLogit	3.32	3.39
	NCE (CN ELM)	Hidden2Scalar	3.20	3.36
	INCE (UIN-ELINI)	SumTokenLogit	3.27	3.43
		SumTargetLogit	3.25	3.40
	DNCE (CN ELM)	Hidden2Scalar	3.11	3.34
	DINCE (OIN-ELIVI)	SumTokenLogit	3.15	3.43
		SumTargetLogit	3.11	3.44
	DNCE (TREIM)	Hidden2Scalar	3.13	3.39
	DIVCE (TRI-LIVI)	SumTokenLogit	3.21	3.47
-[SumTargetLogit	3.42	3.61
	MLE-IS (GN-ELM)	Hidden2Scalar	3.36	3.48
		SumTokenLogit	3.26	3.41
		SumTargetLogit	3.35	3.59
	MLE MIS (CN ELM)	Hidden2Scalar	3.26	3.39
-[MLE-MIS (ON-ELM)	SumTokenLogit	3.25	3.49

Results on WenetSpeech

- GN-ELM with SumTokenLogit + DNCE outperforms the finetuned GPT-2 and finetuned BERT!
- Is the improvement significant?

	p-value (CER1)	p-value (CER2)
SumTokenLogit +DNCE (GN-ELM) vs Finetuned GPT2	0.577	0.015
SumTokenLogit +DNCE (GN-ELM) vs Finetuned BERT	1e-7	0.008

• The advantage of ELMs are more obvious in large dataset!

Table 2: Rescoring results on WenetSpeech. CER_1 and CER_2 denote the CER in two test sets, TEST-NET and TEST-MEETING, respectively.

Method	Architecture	CER ₁	CER_2
No LM		9.69	17.91
Pretrained GPT2		9.10	15.75
Pretrained BERT (PLL)		9.07	15.69
Finetuned GPT2		8.82	15.52
Finetuned BERT (PLL)		8.96	15.55
	SumTargetLogit	9.03	16.02
DNCE (GN-ELM)	Hidden2Scalar	8.98	15.69
	SumTokenLogit	8.81	15.47
	SumTargetLogit	8.97	15.77
DNCE (TRF-LM)	Hidden2Scalar	8.95	15.67
	SumTokenLogit	9.00	15.65

p-value<0.05, significantly improved!

Confidence Estimate Performance

- Large neural networks are often miscalibrated (over-confident)
- EBMs are trained with better calibration [33] - its confidence is a good estimate of the actual probability the prediction is correct
- We change the confidence threshold and calculate the precision and recall in test set
- GN-ELM on WenetSpeech achieves a higher AUC, illustrating a better confidence estimate performance than the finetuned GPT2.

Figure 1: *The confidence estimate performace of the finetuned GPT2 and the best ELM on the TEST-NET of WenetSpeech.*

[33] W. Grathwohl, et al, "Your classifier is secretly an energy based model and you should treat it like one," ICLR 2020.

- > Motivation
- > Models & Methods
- > Experiments
- Conclusion

- An exploration of energy-based language models (ELMs) with different architectures and training methods for rescoring in ASR
- Promising results of ELMs in outperforming locally normalized LM in applications of rescoring and confidence estimate.

Thanks!

Code released at <u>https://github.com/thu-</u> <u>spmi/CAT/blob/master/docs/energy-</u> <u>based_LM_training.md</u>