Upgrading CRFs to JRFs and Its Benefits to Sequence Modeling and Labeling

Yunfu Song¹, Zhijian Ou¹, Zitao Liu², Songfan Yang²

¹Speech Processing and Machine Intelligence (SPMI) Lab, Tsinghua University
²TAL AI Lab, Beijing, China

http://oa.ee.tsinghua.edu.cn/ouzhijian/

Presented at International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2020
Content

1. Introduction
2. JRF
3. Experiments
4. Conclusions
Introduction

• **Sequence modeling**
 - For sequence of length l, $x^l \triangleq x_1, x_2, \ldots, x_l$, calculate $p(l, x^l)$
 - e.g. language modeling

• **Sequence labeling**
 - Given observation sequence x^l, predict the label sequence $y^l \triangleq y_1, y_2, \ldots, y_l$
 - e.g. part of speech (POS) tagging, named entity recognition (NER), and chunking.
Motivation

• **Sequence modeling**
 - Can be improved with additional relevant labels, e.g. incorporating POS tags for language modeling.
 - Labels usually not available in testing, use hypothesized labels in testing. 😞

• **Sequence labeling**
 - Mainly learn from **limited** labeled data. 😞

Probabilistic generative modeling

• Avoid need of labels in testing. 😃
• Leverage both labeled data and unlabeled, task-dependent semi-supervised learning. 😃
Conditional random field (CRF)

(Linear-chain) CRFs define a conditional distribution y^l given x^l of length l:

$$p_\theta(y^l|x^l) = \frac{1}{Z_\theta(x^l)} \exp(u_\theta(x^l, y^l))$$

$$Z_\theta(x^l) = \sum_{y^l} \exp(u_\theta(x^l, y^l))$$

Potential function:

$$u_\theta(x^l, y^l) = \sum_{i=1}^{l} \phi_i(y_i, x^l) + \sum_{i=1}^{l-1} \psi_i(y_{i-1}, y_i, x^l)$$

• Upgrade CRFs, a joint generative model of x^l and y^l, $p(l, x^l, y^l)$
• Use $u(x^l, y^l)$ in the original CRF

Content

1. Introduction
2. JRF
3. Experiments
4. Conclusions
Joint random field (JRF)

Define a joint distribution:

\[p_\theta(l, x^l, y^l) = \pi_l p_\theta(x^l, y^l; l) = \frac{\pi_l}{Z_\theta(l)} \exp\left(u_\theta(x^l, y^l) \right) \]

\[Z_\theta(l) = \sum_{x^l, y^l} \exp\left(u_\theta(x^l, y^l) \right) \]

From JRF we have:

\[p_\theta(y^l|x^l) = \frac{1}{\sum_{y^l} \exp(u_\theta(x^l, y^l))} \exp\left(u_\theta(x^l, y^l) \right) \]

Which is a CRF

From JRF we have:

\[p_\theta(l, x^l) = \frac{\pi_l}{Z_\theta(l)} \sum_{y^l} \exp\left(u_\theta(x^l, y^l) \right) \]

\[= \frac{\pi_l}{Z_\theta(l)} \exp\left(u_\theta(x^l) \right) \]

Where \(u_\theta(x^l) = \log \sum_{y^l} \exp\left(u_\theta(x^l, y^l) \right) \)

Which is a trans-dimensional random field (TRF)

[Bin Wang and Zhijian Ou, “Improved training of neural trans-dimensional random field language models with dynamic constraint”, in SLT 2018.]
JRF

CRF
\[p_{\theta}(y^l|x^l) \]

Supervised Learning

Labeled Data

Unsupervised Learning

Unlabeled Data

TRF
\[p_{\theta}(l, x^l) \]

Node Potentials

Edge Potentials

JRF
\[p_{\theta}(l, x^l, y^l) \]

Bi-LSTM

\[x_1 \rightarrow h_1 \rightarrow o_1 \]
\[x_2 \rightarrow h_2 \rightarrow o_2 \]
\[x_3 \rightarrow h_3 \rightarrow o_3 \]
JRF

Supervised learning of JRFs:
- Similar to training of CRFs
- Empirical distribution $p_L(x^l, y^l)$

$$\max_\theta L_S(\theta) = E_{(x^l, y^l) \sim p_L(x^l, y^l)} \left[\log p_\theta(y^l|x^l) \right]$$

Unsupervised learning of JRFs:
- Similar to training of TRFs
- Use dynamic noise-contrastive estimation (DNCE)
- Introduce a noise distribution $p_\phi(l, x^l)$ (generally a LSTM language model)
- Empirical distribution $p_U(l, x^l)$

Semi-supervised learning of JRFs:
- Combine supervised and unsupervised training

$$\begin{cases}
\max_\theta L(\theta) = L_S(\theta) + \alpha L_U(\theta) \\
\min_\phi KL(p_U(l, x^l) || p_\phi(l, x^l))
\end{cases}$$

$$\max_\theta \mathbb{E}_{(l, x^l) \sim p_U(l, x^l) + p_\phi(l, x^l)} \left[\log \frac{p_\theta(l, x^l)}{p_\theta(l, x^l) + p_\phi(l, x^l)} \right] +$$

$$\mathbb{E}_{(l, x^l) \sim p_\phi(l, x^l)} \left[\log \frac{p_\phi(l, x^l)}{p_\theta(l, x^l) + p_\phi(l, x^l)} \right] \equiv L_u(\theta)$$

$$\min_\phi KL(p_U(l, x^l) || p_\phi(l, x^l))$$
Content

1. Introduction
2. JRF
3. Experiments
4. Conclusions
Experiments (Sequence modeling)

- Dataset: WSJ portion PTB
- Rescore the 1000-best list from WSJ’92 test set
- Evaluate the word error rate (WER).

- KN5 (n-gram), LSTM, TRF language models are trained without POS tags
- JRF is trained with POS tags, and avoids the need of POS tags during testing

<table>
<thead>
<tr>
<th>Method</th>
<th>KN5</th>
<th>LSTM</th>
<th>TRF</th>
<th>JRF</th>
</tr>
</thead>
<tbody>
<tr>
<td>WER (%)</td>
<td>8.78</td>
<td>7.36</td>
<td>6.99</td>
<td>6.77</td>
</tr>
</tbody>
</table>

8% ↓

3% ↓
Experiments (Sequence labeling)

- POS tagging (PTB), NER (CoNLL-2003) and chunking (CoNLL-2000)
- **Accuracy** for POS tagging, **F1 score** for NER and chunking (BIOES)

<table>
<thead>
<tr>
<th>Method</th>
<th>POS (10%)</th>
<th>POS (100%)</th>
<th>NER (10%)</th>
<th>NER (100%)</th>
<th>Chunking (10%)</th>
<th>Chunking (100%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRF</td>
<td>96.83</td>
<td>97.45</td>
<td>86.85</td>
<td>90.87</td>
<td>89.98</td>
<td>94.76</td>
</tr>
<tr>
<td>Self-training</td>
<td>96.91</td>
<td>97.46</td>
<td>86.92</td>
<td>90.88</td>
<td>90.64</td>
<td>94.84</td>
</tr>
<tr>
<td>JRF</td>
<td>96.96</td>
<td>97.47</td>
<td>86.99</td>
<td>90.90</td>
<td>91.12</td>
<td>95.10</td>
</tr>
</tbody>
</table>

- CRF performs purely supervised learning
- Self-training and JRF perform semi-supervised learning

Note: The table shows accuracy percentages.
Content

1. Introduction
2. JRF
3. Experiments
4. Conclusions
Conclusions

- We propose to upgrade CRFs to JRFs, obtained as a joint generative model of observation and label sequences.

- This development from CRFs to JRFs enables semi-supervised learning and benefits both sequence modeling and labeling tasks.
 - In language modeling rescoring task, the JRF model outperforms traditional language models and avoids the need of POS tags during testing.
 - For sequence labeling, JRFs achieve consistent improvements over the CRF baseline and self-training on POS tagging, NER and chunking tasks.

- Going to release the codes for reproducing this work.
Thanks for your attention!

Yunfu Song1, Zhijian Ou1, Zitao Liu2, Songfan Yang2

1Speech Processing and Machine Intelligence (SPMI) Lab, Tsinghua University

2TAL AI Lab, Beijing, China

http://oa.ee.tsinghua.edu.cn/ouzhijian/