

Upgrading CRFs to JRFs and Its Benefits to Sequence Modeling and Labeling

Yunfu Song¹, Zhijian Ou¹, Zitao Liu², Songfan Yang²

¹Speech Processing and Machine Intelligence (SPMI) Lab, Tsinghua University ²TAL AI Lab, Beijing, China

http://oa.ee.tsinghua.edu.cn/ouzhijian/

Presented at International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2020

- 1. Introduction
- 2. JRF
- 3. Experiments
- 4. Conclusions

Introduction

Sequence modeling

- For sequence of length $l, x^l \triangleq x_1, x_2, \ldots, x_l$, calculate $p(l, x^l)$
- e.g. language modeling

Sequence labeling

- Given observation sequence x^l , predict the label sequence $y^l ext{ \end{a}} y_1, y_2, \dots, y_l$
- e.g. part of speech (POS) tagging, named entity recognition (NER), and chunking.

Motivation

- Sequence modeling
 - Can be improved with additional relevant labels, e.g. incorporating POS tags for language modeling.
 - Labels usually not available in testing, use hypothesized labels in testing. ⊗
- Sequence labeling
 - Mainly learn from limited labeled data.

Probabilistic generative modeling

- Avoid need of labels in testing.
- Leverage both labeled data and unlabeled, task-dependent semi-supervised learning.

Conditional random field (CRF)

(Linear-chain) CRFs define a conditional distribution y^l given x^l of length I:

$$p_{\theta}(y^{l}|x^{l}) = \frac{1}{Z_{\theta}(x^{l})} \exp(u_{\theta}(x^{l}, y^{l}))$$
 $Z_{\theta}(x^{l}) = \sum_{y^{l}} \exp(u_{\theta}(x^{l}, y^{l}))$

Potential function:

Node potential

Edge potential

$$u_{\theta}(x^{l}, y^{l}) = \sum_{i=1}^{l} \phi_{i}(y_{i}, x^{l}) + \sum_{i=1}^{l} \psi_{i}(y_{i-1}, y_{i}, x^{l})$$

- Upgrade CRFs, a joint generative model of x^l and y^l , $p(l, x^l, y^l)$
 - Use $u(x^l, y^l)$ in the original CRF

Lafferty, John, Andrew McCallum, and Fernando CN Pereira. "Conditional random fields: Probabilistic models for segmenting and labeling sequence data." (2001).

TSING TO THE TOTAL TO THE TOTAL

- 1. Introduction
- 2. JRF
- 3. Experiments
- 4. Conclusions

Joint random field (JRF)

JRF

Define a joint distribution:

$$p_{\theta}(l, x^l, y^l) = \pi_l p_{\theta}(x^l, y^l; l) = \frac{\pi_l}{Z_{\theta}(l)} \exp\left(u_{\theta}(x^l, y^l)\right) \qquad Z_{\theta}(l) = \sum_{x^l, y^l} \exp\left(u_{\theta}(x^l, y^l)\right)$$

From JRF we have:

$$p_{\theta}(y^{l}|x^{l}) = \frac{1}{\sum_{y^{l}} \exp(u_{\theta}(x^{l}, y^{l}))} \exp\left(u_{\theta}(x^{l}, y^{l})\right) \qquad p_{\theta}(l, x^{l}) = \frac{\pi_{l}}{Z_{\theta}(l)} \sum_{y^{l}} \exp\left(u_{\theta}(x^{l}, y^{l})\right)$$

Which is a CRF

From JRF we have:

$$p_{\theta}(l, x^{l}) = \frac{\pi_{l}}{Z_{\theta}(l)} \sum_{y^{l}} \exp\left(u_{\theta}(x^{l}, y^{l})\right)$$
$$= \frac{\pi_{l}}{Z_{\theta}(l)} \exp\left(u_{\theta}(x^{l})\right)$$

Where
$$u_{\theta}(x^{l}) = \log \sum_{y^{l}} \exp \left(u_{\theta}(x^{l}, y^{l})\right)$$

Which is a trans-dimensional random field (TRF)

Bin Wang and Zhijian Ou, "Improved training of neural

trans-dimensional random field language models with dynamic

JRF

JRF

Supervised learning of JRFs:

- Similar to training of CRFs
- Empirical distribution $p_L(x^l, y^l)$

$$\max_{\theta} L_s(\theta) = E_{(x^l, y^l) \sim p_L(x^l, y^l)} [\log p_{\theta}(y^l | x^l)]$$

Semi-supervised learning of JRFs:

Combine supervised and unsupervised training

$$\begin{cases} \max_{\theta} L(\theta) = L_s(\theta) + \alpha L_u(\theta) \\ \min_{\phi} KL\left(p_U(l, x^l) || p_{\phi}(l, x^l)\right) \end{cases}$$

Unsupervised learning of JRFs:

- Similar to training of TRFs
- Use dynamic noise-contrastive estimation (DNCE)
- Introduce a noise distribution $p_{\phi}(l,x^l)$ (generally a LSTM language model)
- Empirical distribution $p_U(l, x^l)$

$$\begin{cases}
\max_{\theta} E_{(l,x^{l}) \sim \frac{p_{U}(l,x^{l}) + p_{\phi}(l,x^{l})}{2}} \left[\log \frac{p_{\theta}(l,x^{l})}{p_{\theta}(l,x^{l}) + p_{\phi}(l,x^{l})} \right] + \\
E_{(l,x^{l}) \sim p_{\phi}(l,x^{l})} \left[\log \frac{p_{\phi}(l,x^{l})}{p_{\theta}(l,x^{l}) + p_{\phi}(l,x^{l})} \right] \triangleq L_{u}(\theta) \\
\min_{\phi} KL(p_{U}(l,x^{l}) || p_{\phi}(l,x^{l}))
\end{cases}$$

TSING ILLUSTRATION OF THE PROPERTY OF THE PROP

- 1. Introduction
- 2. JRF
- 3. Experiments
- 4. Conclusions

Experiments (Sequence modeling)

- Dataset: WSJ portion PTB
- Rescore the 1000-best list from WSJ'92 test set
- Evaluate the word error rate (WER).
- KN5 (n-gram), LSTM, TRF language models are trained without POS tags
- JRF is trained with POS tags, and avoids the need of POS tags during testing

Experiments (Sequence labeling)

- POS tagging (PTB), NER (CoNLL-2003) and chunking (CoNLL-2000)
- Accuracy for POS tagging, F1 score for NER and chunking (BIOES)

- CRF performs purely supervised learning
- Self-training and JRF perform semi-supervised learning

Method	POS (10%)	POS (100%)	NER (10%)	NER (100%)	Chunking (10%)	Chunking (100%)
CRF	96.83	97.45	86.85	90.87	89.98	94.76
Self-training	96.91	97.46	86.92	90.88	90.64 11%	94.84
JRF	96.96	97.47	86.99	90.90	91.12	$\boldsymbol{95.10}$

TSING TO THE TOTAL TO THE TOTAL

- 1. Introduction
- 2. JRF
- 3. Experiments
- 4. Conclusions

Conclusions

- We propose to upgrade CRFs to JRFs, obtained as a joint generative model of observation and label sequences.
- This development from CRFs to JRFs enables semi-supervised learning and benefits both sequence modeling and labeling tasks.
 - In language modeling rescoring task, the JRF model outperforms traditional language models and avoids the need of POS tags during testing.
 - For sequence labeling, JRFs achieve consistent improvements over the CRF baseline and self-training on POS tagging, NER and chunking tasks.
- Going to release the codes for reproducing this work.

Thanks for your attention!

Yunfu Song¹, Zhijian Ou¹, Zitao Liu², Songfan Yang²

¹Speech Processing and Machine Intelligence (SPMI) Lab, Tsinghua University ²TAL AI Lab, Beijing, China

http://oa.ee.tsinghua.edu.cn/ouzhijian/