LEARNING SPARSE STRUCTURED ENSEMBLES WITH STOCASTIC GTADIENT MCMC SAMPLING AND NETWORK PRUNING

Yichi Zhang Zhijian Ou

Speech Processing and Machine Intelligence (SPMI) Lab Department of Electronic Engineering Tsinghua University, Beijing, China

September 19, 2018

- Motivation & Problem
- Related Work
- Our solution: Mix of multiple ingredients
 - Learning ensembles via SG-MCMC sampling
 - Cost reduction via structured model compression
 - Experimental results
- Conclusion & Future Work

Ensemble of Neural Networks

 Ensemble models are a group of models that work collectively to get the averaged prediction.

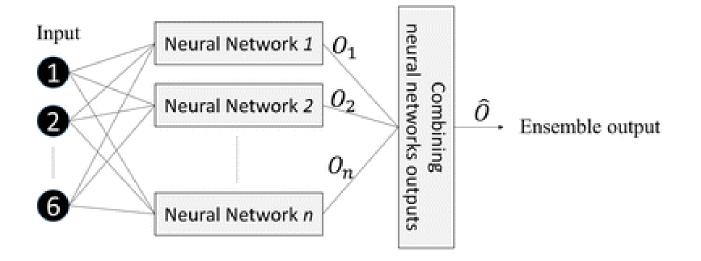


Figure from Effat Dehghanian et al. 2015

Ensemble of Neural Networks

Ensemble gives a great boost in accuracy because it does not rely on a single model for prediction.

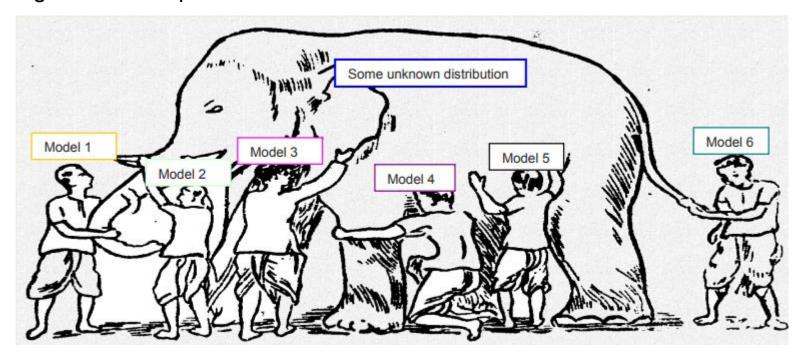
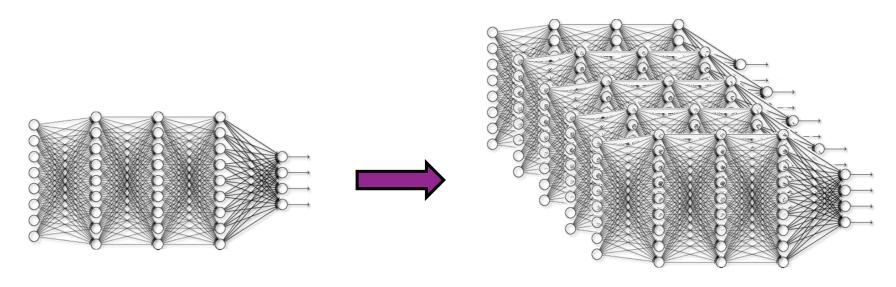


Figure from Alejandro Correa et al. 2013

Ordered by classification error		WER test-	Paper		Published	Notes							
Team name	Entry descrip	ntry description		clean				Tublished					
WMW	Ensemble C			emble C [No bounding box results]		semble C [No bounding box results]		Deep Speech 2: End-to-End 9	· · · · · · · · · · · · · · · · · · ·	December	,	Humans	
WMW	Ensemble E	[No bounding box results]		Recognition in English and M	landarin	2015							
WMW	Ensemble A	semble A [No bounding box results]					TDNN + TDNN-	LSTM + C	NN-bLSTM +				
WMW	Ensemble D [No bounding box results]		3.199	The CAPIO 2017 Conversatio Speech Recognition System	nal	April 2018	Dense TDNN-LS	TM acros	s two kinds of				
WMW	Ensemble B	emble B [No bounding box results]		Speech Recognition System				trees					
Trimps-Soushen	Result-1			Improved training of end-to-	end								
Trimps-Soushen	Result-2			and the second state of the second state		Interspeech,	encoder-attentio		er end-to-end				
Trimps-Soushen	Result-3	Method		test BLEU score (ntst14)		Sept 2018		model					
Trimps-Soushen	Result-4	Bahdanau et al. [2]		28.45		Model		EM	F1				
Trimps-Soushen	Result-5	Baseline System [29]		33.30	Huma	an Performance	8	2.304	91.221				
NUS-	DO_DPNs [E2] CLS:: D Cingle reversed LCTM beam size 12		e 12	26.17		ford University							
Qihoo_DPNs (CLS-LOC)			e 12	30.59	(Rajp	urkar et al. '16)							
(023-200)		Ensemble of 5 reversed LSTMs, bear	m size 1	33.00	ма	R§ (ensemble)	8	3.982	89,796				
		Ensemble of 2 reversed LSTMs, bean	n size 12	33.27	ANFU			0.702	07.770				
CLASSIFIER		Ensemble of 5 reversed LSTMs, bear	m size 2	34.50		\bigcap							
large conv. net	t, unsup featu	Ensemble of 5 reversed LSTMs, bean	n size 12	34.81		le Brain & CMU	8	3.877	89.737				
large conv. net	t, unsup pretra	aining [no distortions]	(0.60									
large conv. net	t, unsup pretra	aining [elastic distortions]	(2.20		A Reades (ensen		2.482	89.281				
large conv. net	t, unsup pretra	aining [no distortions]	(0.53									
large/deep cor distortions]	nv. net, 1-20-4	40-60-80-100-120-120-10 [elastic	(0.35		S (single model) DAO research N	-	3.122	89.224				
committee of distortions]	7 conv. net, 1-	20-P-40-P-150-10 [elastic	0.27 +-(0.02		ANet (single) le Brain & CMU	8	2.471	89.306				
committee of a distortions]	35 conv. net, 1	L-20-P-40-P-150-10 [elastic	(0.23	-	Net (ensemble) le Brain & CMU	8	2.744	89.045				

Problems



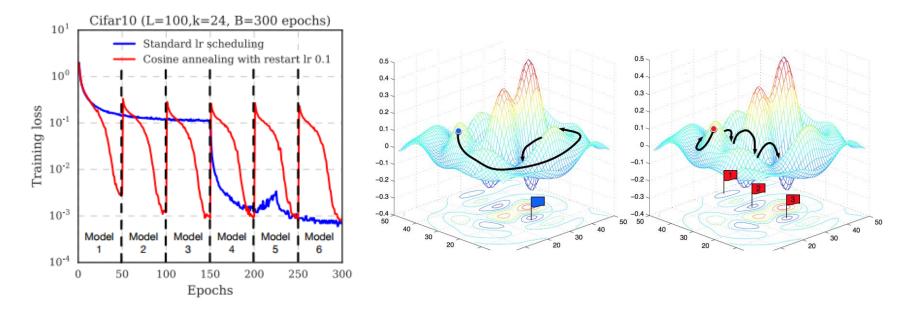
N networks

- **Training problem:** *N* times training time
- **Testing problem:** *N* times memory/testing time cost

Related Work

Snapshot ensembles: Train 1, get m for free (Gao Huang et al. 2017)

- Obtain multiple snapshot models within a single training process.
- Empirical cyclic learning rate settings.

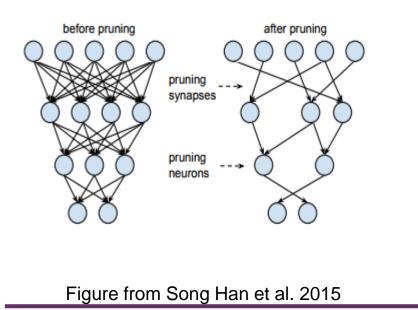


- The recent progress in Bayesian posterior sampling:
 Stochastic Gradient Markov Chain Monte Carlo sampling algorithms (Max Welling et al. 2011, Tianqi Chen et al. 2014, Zhe Gan et al. 2016)
- SG-MCMC works by adding a scaled gradient noise to Stochastic optimization method which is proved to have the following benefits :
 (i) Theoretically interpretable
 (ii) Efficient exploration of the model parameter space
 - (iii) Scalable and simple

Related Work

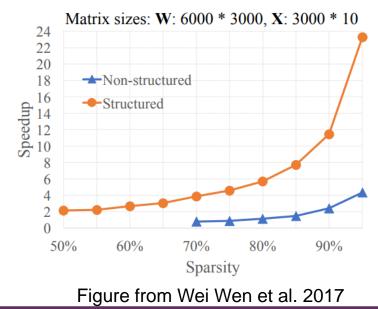
• Testing problem: *N* times memory/testing time cost

Model compression via Network pruning and retraining (Song Han et al. 2015, 2017).



Sparse structure learning via

Group Lasso penalty (Ming Yuan et al. 2006) on deep models (Wei Wen et al. 2016, 2017).



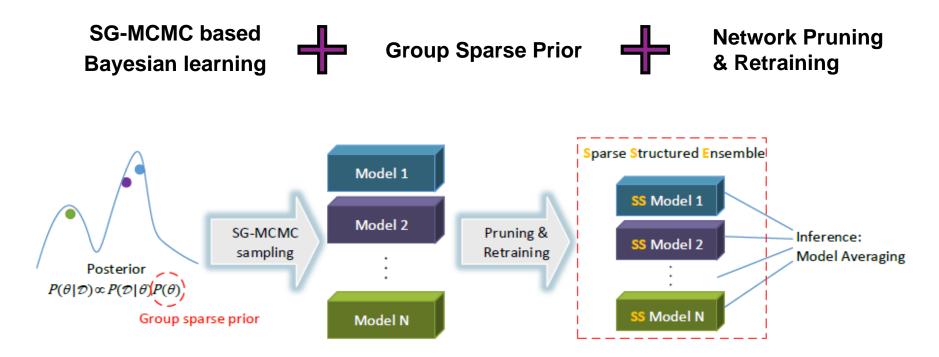


Figure 1: Overview of our two-stage method for learning SSEs.

Bayesian Neural Network Framework

- Denote θ as all the trainable parameters in a neural network.
- Given data $D = \{(x_i, y_i)\}_{i=1}^N$, where input $x_i \in \mathbb{R}^D$ and label $y_i \in \mathcal{Y}$
- The goal of training is to evaluate the posterior distribution:

$$p(\theta|D) \propto p(\theta) \prod_{i=1}^{N} p(y_i|x_i, \theta)$$
(1)

• Given a testing input \tilde{x} , the Bayesian predictive distribution

$$p(\tilde{y}|\tilde{x},D) = \mathbb{E}_{p(\theta|D)}[p(\tilde{y}|\tilde{x},\theta)] = \int_{\theta} p(\tilde{y}|\tilde{x},\theta)p(\theta|D)d\theta \quad (2)$$

$$p(\tilde{y}|\tilde{x}, D) \approx \frac{1}{M} \sum_{m=1}^{M} p(\tilde{y}|\tilde{x}, \theta_m) \quad , \theta_m \sim p(\theta|D)$$
(3)

can be considered as the average of NN softmax outputs.

Training: SG-MCMC Sampling

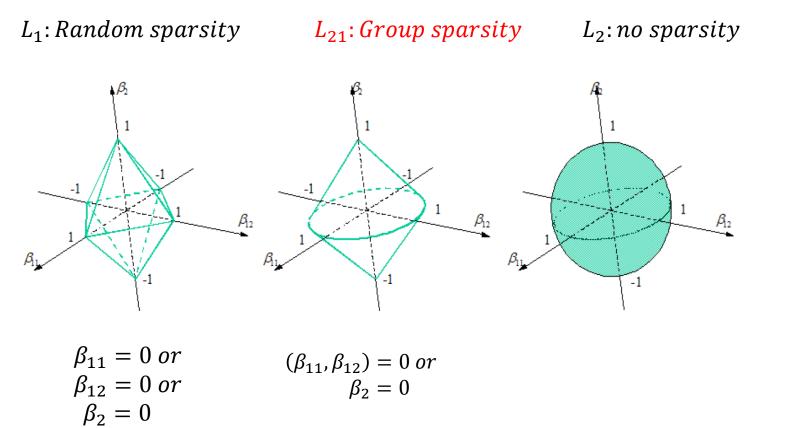
- Goal: sample $\theta \sim p(\theta|D)$, obtain $\{\theta_m\}_{m=1}^M$
- Method: Stochastic Gradient Markov Chain Monte Carlo (SG-MCMC)

Stochastic Gradient Descent:

$$\begin{split} \tilde{g}_t &= \frac{N}{n} \sum_{i=1}^n \nabla \log p\left(y_t^{(i)} \middle| x_t^{(i)}, \theta_t \right), \\ \Delta \theta_t &= \epsilon_t \tilde{g}_t \end{split}$$

Stochastic Gradient Langevin Dynamic (Max Welling and Yee W Teh, 2011):

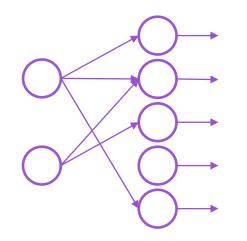
$$\tilde{g}_{t} = \nabla \log p(\theta_{t}) + \frac{N}{n} \sum_{i=1}^{n} \nabla \log p\left(y_{t}^{(i)} \middle| x_{t}^{(i)}, \theta_{t}\right),$$
$$\Delta \theta_{t} = \epsilon_{t} \tilde{g}_{t} + \eta_{t}, \qquad \eta_{t} \sim \mathcal{N}(0, 2\epsilon_{t})$$

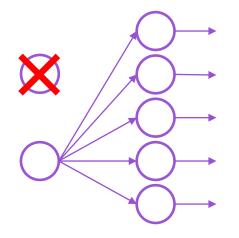


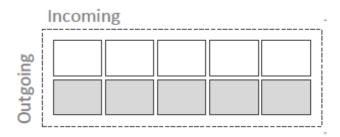
group sparse prior

Sparse Structured FNN

Pruning of Fully-connected Neural Networks







Pruning of LSTMs

$$f_t = \sigma([\boldsymbol{x}_t, \boldsymbol{h}_{t-1}]W_f + \boldsymbol{b}_f)$$

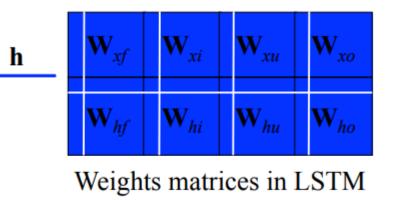
$$u_t = \tanh([\boldsymbol{x}_t, \boldsymbol{h}_{t-1}]W_u + \boldsymbol{b}_c$$

$$c_t = f_t \odot c_{t-1} + \boldsymbol{i}_t \odot u_t$$

$$i_t = \sigma([\boldsymbol{x}_t, \boldsymbol{h}_{t-1}]W_i + \boldsymbol{b}_i)$$

$$o_t = \sigma([\boldsymbol{x}_t, \boldsymbol{h}_{t-1}]W_o + \boldsymbol{b}_o)$$

$$h_t = o_t \odot \tanh(\boldsymbol{c}_t)$$



Х

Weights in next layer(s)

Figure from Wei Wen et al. 2017

Sparse Structured LSTM

	1010020100-0	- 10. 11 1. 14 19 6	1 14 22 3, 11 1	10508-11	8.8566 (17.8596 b.1.4	· · · · · · · · · · ·	111002-1111	19121100000
		- 161 - 16322	ira sus i	1.0000010	inge of sea .		1.160115.1	1444.11122
					bellove teorie and te ∎eligi († 1944) at	11111 - F. M. 11 - T. J. J.		
-								
Ľ.			a dage eigen a					11.11111111111111111111111111111111111
ý			10112111	- 26 (24- 1) 102 (25-1)				
<u>a</u>	116.011	ter en it ins	1:198 0111 F	i siswi p	n nels piet service en	dr tegn	peneto de la	- 153 () (36 1 6 8)
Σ						- 16 - 16 - <u>1</u> -		1976 - 19 1 8
F		14 - 1 ener'						
Ŋ								
_					1979 1979 - 1979 1979 - 1979	1 t		
				11. P.				
				T'N				

	1.10.2.3.4				
er 2		120 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -		<u>ę 1945 p</u>	ri distriction in the state
1 laye		160461888			
LSTM				100 - 100 - 100 - 2014 100 - 100 - 2014 - 2014 101 - 2014 - 2014 - 2014 101 - 2014 - 2014 - 2014	
	2	100 (S. 19) 84 (S. 19) 100 (S. 19)	IS PRE A LUB RESIDENCE AND A RESIDENCE	asiyan i bariya ku ka abir Atirista a	og og i konne skriver en de som og e

	Structure	Params	FLOPs
Original model	1500-1500-1500	51M	100%
Pruned model	533-425-533	9M(18%)	18%

Toy Experiment on MNIST

- Model: 784-300-100 fully-connected NN
- FLOPs for a matrix W is calculated as the size of the smallest sub-matrix formed by such rows and columns that contain all non-zero elements in W.
- GSP: group sparse prior
- PR: pruning and retraining

Method	Model	Params	FLOPs	Test Error (%)
SGD (baseline)	1 model	1*	1*	1.66
SGD	18 models	$18 \times$	$18 \times$	1.49
SGLD+GSP+PR	18 models [†]	$1.8 \times$	2.5×	1.26
SGLD+GSP+PR	18 models [‡]	$0.7 \times$	$2.2 \times$	1.29

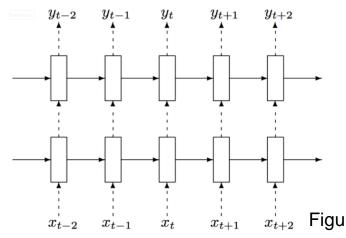
* The baseline model has 266K parameters and 532K FLOPs.

[†] indicates 90% sparsity and [‡] indicates 96% sparsity for each model.

Language Modeling Experiment

Language Modeling

2-layers LSTM model



Penn Tree Bank dataset Vocabulary size: 10K Dataset size: 929K/73K/10K words in training, development and test sets respectively.

Perplexity

A measurement of how well the language model predicts the word sequence.

$$PPL = e^{-\frac{1}{N}\sum \log P(w_i)}$$

 x_{t+2} Figure from Zaremba et al. 2014

Method	Model	Params	FLOPs	Dev.	Test
SGD [10]	1 large	1*	1*	82.2	78.4
SGD [10]	38 large	$38 \times$	$38 \times$	71.9	68.7
VD [24]	10 large	$10 \times$	-	-	68.7
VD+SEAL [11]	individual	51M	-	71.1	68.5
SGLD+GSP+PR	20 large	$2.0 \times$	4.5×	68.6	66.4
SGLD+GSP+PR	4 large	$0.4 \times$	$0.5 \times$	72.2	69.7
SGLD+GSP+PR+SE	4 large	0.3×	0.7 ×	64.4	62.1

* The baseline LSTM model has 66M parameters and 102M FLOPs.

Method	Model	Params	FLOPs	Dev.	Test
SGD [10]	1 large	1*	1*	82.2	78.4
SGD [10]	38 large	$38 \times$	$38 \times$	71.9	68.7
VD [24]	10 large	$10 \times$	-	-	68.7
VD+SEAL [11]	individual	51M	7 1	71.1	68.5
SGLD+GSP+PR	20 large	$2.0 \times$	$4.5 \times$	68.6	66.4
SGLD+GSP+PR	4 large	$0.4 \times$	$0.5 \times$	72.2	69.7
SGLD+GSP+PR+SE	4 large	0.3×	0.7 ×	64.4	62.1

* The baseline LSTM model has 66M parameters and 102M FLOPs.

Method	Model	Params	FLOPs	Dev.	Test
SGD [10]	1 large	1*	1*	82.2	78.4
SGD [10]	38 large	$38 \times$	$38 \times$	71.9	68.7
VD [24]	10 large	$10 \times$	-	-	68.7
VD+SEAL [11]	individual	51M	a 1	71.1	68.5
SGLD+GSP+PR	20 large	$2.0 \times$	$4.5 \times$	68.6	66.4
SGLD+GSP+PR	4 large	$0.4 \times$	$0.5 \times$	72.2	69.7
SGLD+GSP+PR+SE	4 large	0.3×	0.7 ×	64.4	62.1

* The baseline LSTM model has 66M parameters and 102M FLOPs.

Method	Model	Params	FLOPs	Dev.	Test
SGD [10]	1 large	1*	1*	82.2	78.4
SGD [10]	38 large	$38 \times$	$38 \times$	71.9	68.7
VD [24]	10 large	$10 \times$	-	-	68.7
VD+SEAL [11]	individual	51M	6 1	71.1	68.5
SGLD+GSP+PR	20 large	$2.0 \times$	4.5×	68.6	66.4
SGLD+GSP+PR	4 large	$0.4 \times$	$0.5 \times$	72.2	69.7
SGLD+GSP+PR+SE	4 large	0.3×	0.7 ×	64.4	62.1

* The baseline LSTM model has 66M parameters and 102M FLOPs.

Conclusion:

- Propose a novel approach for learning ensembles of neural networks.
- Combination of SG-MCMC sampling, group sparse prior and network pruning.
- Experimental verifications for sparse structure learning for LSTM models.

Future work:

- Interleaving model sampling and model pruning.
- Expand to more tasks.

Thank you!

Speaker: Yichi Zhang E-mail: zhangyic17@mails.tsinghua.edu.cn