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s Related Work
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| Ensemble of Neural Networks

= Ensemble models are a group of models that work collectively to get the
averaged prediction.
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Ensemble of Neural Networks

= Ensemble gives a great boost in accuracy because it does not rely on a
single model for prediction.
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| Related Work

Snapshot ensembles: Train 1, get m for free (Gao Huang et al. 2017)
= Obtain multiple snapshot models within a single training process.
= Empirical cyclic learning rate settings.
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| Related Work

= The recent progress in Bayesian posterior sampling:
Stochastic Gradient Markov Chain Monte Carlo sampling algorithms
(Max Welling et al. 2011, Tiangi Chen et al. 2014, Zhe Gan et al. 2016)

= SG-MCMC works by adding a scaled gradient noise to Stochastic
optimization method which is proved to have the following benefits :

(i) Theoretically interpretable
(i1) Efficient exploration of the model parameter space
(i) Scalable and simple




Related Work

= Testing problem: N times memory/testing time cost

Model compression via Sparse structure learning via
Network pruning and retraining Group Lasso penalty (Ming Yuan et al. 2006)
(Song Han et al. 2015, 2017). on deep models (Wei Wen et al. 2016, 2017).

Matrix sizes: W: 6000 * 3000, X: 3000 * 10
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| Our Propose

/

SG-MCMC based . Network Pruning
: : Group Sparse Prior ..
Bayesian learning & Retraining
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| Bayesian Neural Network Framework

= Denote 6 as all the trainable parameters in a neural network.
= Given data D = {(x;,y;)})_,, where input x; € RP and label y; € Y
The goal of training is to evaluate the posterior distribution:

p(81D) o« p(8) [TiL1 p(ilx;, 6) (1)

Given a testing input X, the Bayesian predictive distribution
p(JI%, D) = E,gp)[p (3%, 0)] = [, p(71%, 6)p(ID)dG (2)
p(FIZ,D) ~ — S _ 1 p(F%,0m) O~ p(OID) (3)

can be considered as the average of NN softmax outputs.
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| Training: SG-MCMC Sampling

= Goal: sample 6~p(6|D), obtain {8,,}}_;
= Method: Stochastic Gradient Markov Chain Monte Carlo (SG-MCMC)

Stochastic Gradient Descent:

n
N
~ @], @
gt—;ZVlogp(yt xtl,Ht),
i=1

AB: = €.0;

Stochastic Gradient Langevin Dynamic (Max Welling and Yee W Teh, 2011):
n

N
§t=\710gp(9t)+;z\710gp( 2.6, ),

i=1
AO: = €:Gt + 1t Ne~N(0, 2€;)
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| Group Sparse Prior

Ly: Random sparsity Lo,q1: Group sparsity L,:no sparsity

(B11,B12) = 0or
B, =0
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Figure from Ming Yuan et al. 2006 13



| Sparse Structured FNN

= Pruning of Fully-connected Neural Networks
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| Sparse Structured LSTM

= Pruning of LSTMs

fo=o([@e, he—1]Wys + by)

wy = tanh([x. hy—1 W, + b,)
¢t = fr ©ep—1 + 4 O uy

1 = J([fﬂf*hf—l]n;f +b;)

o =[xy, hi—1|W, + by,)
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Figure from Wei Wen et al. 2017
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| Sparse Structured LSTM

LSTM layer 1

LSTM layer 2
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| Toy Experiment on MNIST

= Model: 784-300-100 fully-connected NN

= FLOPSs for a matrix W is calculated as the size of the smallest sub-matrix formed by
such rows and columns that contain all non-zero elements in W.

= GSP: group sparse prior
= PR: pruning and retraining

Method Model Params FLOPs Test Error (%)
SGD (baseline) 1 model b [/ 1.66
SGD I8 models 18 % 18 % 1.49
SGLD+GSP+PR 18 models’ 1.8x  2.5x 1.26
SGLD+GSP+PR 18 models* 0.7x  2.2x 1.29

" The baseline model has 266K parameters and 532K FLOPs.
T indicates 90% sparsity and * indicates 96% sparsity for each model.
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Language Modeling Experiment

= Language Modeling = Penn Tree Bank dataset
() The next word | D v Vocabulary size: 10K
Dataset size: 929K/73K/10K words in
G from on it Y training, development and test sets
12 3 4 s 6 7 .8 9 0 respectively.
= 2-layers LSTM model = Perplexity
¥z ¥ B ¥n e A measurement of how well the language
N N N o N model predicts the word sequence.
EN Ry E T ES 1
B B + B B PPL, = e—NZlog P(wi)

A A i A A
' ' 1 1 '

.’.Ci_z 3:,:5_1 m:t xiH mi+2 Figure from Zaremba et al. 2014
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| Language Modeling Experiment

= Comparison of various models based on LSTMs on PTB dataset.

Method Model  Params FLOPs Dev. Test
SGD [10] | large 1" 1* 822 784
SGD [10] 38 large 38 x 38x 71.9 68.7
VD [|24] 10 large 10 x - - 68.7
VD+SEAL [11] individual 51M - 71.1 68.5
SGLD+GSP+PR 20large 2.0x 45x 68.6 66.4
SGLD+GSP+PR 4 large 04x 05x 722 69.7

SGLD+GSP+PR+SE 4 large 0.3x 0.7 x 644 62.1
" The baseline LSTM model has 66M parameters and 102M FLOPs.

Ref : [10] Wojciech Zaremba et al. 2014; [11] Hakan Inan et al. 2017, [24] Yarin Gal et al. 2016
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| Conclusion & Future Work

Conclusion:

= Propose a novel approach for learning ensembles of neural networks.

= Combination of SG-MCMC sampling, group sparse prior and network pruning.
= Experimental verifications for sparse structure learning for LSTM models.

Future work:
= Interleaving model sampling and model pruning.
= Expand to more tasks.
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