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Semi-supervised learning (SSL)
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SSL methods (for using DNNs)

* Recent SSL methods with DNNs can be distinguished by the priors they
adopt, and, can be divided into two classes.
= Generative SSL

= Discriminative SSL: The outputs from the discriminative classifier are smooth with
respect to local and random perturbations of the inputs [1-5].
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Discriminative SSL

* Recent SSL methods with DNNs can be distinguished by the priors they
adopt, and, can be divided into two classes.
= Generative SSL

= Discriminative SSL: The outputs from the discriminative classifier are smooth with
respect to local and random perturbations of the inputs.

® heavily rely on domain-specific data augmentations, which are tuned intensively for
images leading to impressive performance in some image domains
® less successful for other domains where these augmentations are less effective (e.g.,

medical images and text). For instance, random input perturbations are more difficult
to apply to discrete data like text [6].

[6] Kevin Clark, Minh-Thang Luong, Christopher D Manning, and Quoc Le, “Semi-supervised sequence modeling with
cross-view training,” in EMINLP, 2018




Generative SSL - Basics

* Exploit unsupervised learning of generative models over unlabeled data,
blend unsupervised learning and supervised learning.
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© inherently not require data augmentations and generally can be applied
to a wider range of domains.
© make fewer domain-specific assumptions and tend to be domain-agnostic.
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Generative SSL - Two Different Approaches

* Joint-training
= A joint model of p(x,y) is defined.

= When we have label y, we maximize p(y|x) (the supervised objective), and when the
label is unobserved, we marginalize it out and maximize p(x) (the unsupervised
objective).

= Semi-supervised learning over a mix of labeled and unlabeled data is formulated as
maximizing the (weighted) sum of log p(y|x) and log p(x).

* Pre-training
= Only define p(x) withouty.

» Perform unsupervised representation learning (called pre-training) on unlabeled data,
followed by supervised training (called fine-tuning) on labeled data.

= This manner of pre-training followed by fine-tuning has received increasing
application in natural language processing.



Generative SSL - Two Different Probabilistic Models

* Directed Graphical Models / Bayesian Networks (BNs)

= Self-normalized @ @
» e.g. Hidden Markov Models (HMMs), Neural network (NN) based

classifiers, Variational AutoEncoders (VAEs), Generative Adversarial

Networks (GANs), auto-regressive models (e.g. RNNs/LSTMs) @ @

P(x1, %3, %3,%4) = P(x1)P(x2]x1)P(x3]|x2) P(x4]%1, X3)

* Undirected Graphical Models / Random Fields (RFs) / Energy-based models

= Involves the normalizing constant (the partition function) Z @ @
= e.g. Conditional Random Fields (CRFs)

1
P (1, Xz, %3, %4) = (1, 1) P, x3) D3, x) (e, x0) (3}l g)
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EBM models can be very flexibly defined for SSL, by either of
joint-training and pre-training.

... previously known in the literature*, but it is unclear which
is better when evaluated in a common experimental setup.

To the best of our knowledge, this paper is the first to
systematically compare joint-training and pre-training for
EBM-based for SSL, across domains (image classification and
natural language labeling).

& E

* EBM based SSL results have been reported across different data modalities (images, natural languages, an protein
structure prediction and year prediction from the UCI dataset repository) [12,13,14].
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Neural Random Fields (NRFs) - Basics

ug(x)
: : : ®
* NRFs are defined by using NNs to implement ug(x): R - R 1
1
(x) = explug(x)] Potential
Pe Z(6) PLie function
B uy(x) can be very flexibly defined; allows a close connection between p(y|x) and p(x,y). |
* This type of RFs has been studied several times in different contexts 2@;
= Deep energy models (DEMs) r.
e Ngiam et al., 2012 X € ]Rd

* Kim & Bengio, 2016 - includes linear and squared terms in ug(x)

= Descriptive models / Generative ConvNet

* Xie etal., 2016 / Dai et al., 2014 - defines in the form of exponential tilting of a reference
distribution (Gaussian white noise)

= Neural random field language models

 Wang & Ou, 2017 - defines over sequences

11



euO (x)

Learning NRFs - Basics Po(x) = 7

* Maximume-likelihood training
min KL[F(%)||pe (%))

Vo = E5)|Vologpe(X)] = Ep)[Veue (X)] — Ep ) [Voue (x)]

7

Expectation under Expectation under
empirical distribution p(X) model distribution pg(x)

e Stochastic maximum likelihood (SML) (Younes, 1989)

= Approximate the model expectations by Monte Carlo sampling for calculating the gradient.
= Examples: contrastive divergence (CD) 2002, persistent contrastive divergence (PCD) 2008

L. Younes, “Parametric inference for imperfectly observed gibbsian fields,” Probability Theory and Related Fields, 1989. 12



Table 1. Applications of EBMs across different domains:
comparison and connection (See text for details).

Image classification Natural language labeling
D l
Observation . z€R . . _Te UiV
continuous, fixed-dimensional discrete, sequence
Label ye{1,2,--- ,K} yelU{1,2,--- K}
Pre-training (1)  wug(z) = w’h 2) ug(x)in Eq.(3)

Joint-training  (3) ug(z,y) = Yy(x)[y] @) wg(z,y) in Eq.(6)

13



(D Pre-training of an EBM for semi-supervised image classification

1) Pre-training: estimate pg (x) over unlabeled images g lx)
() = —— explutg (0] AL
Po(x) = explug(x | ARG
2(6) Y
_ Poter_, )l
UsKDﬁ—‘‘‘—LL‘*‘AL"J4‘—*“—‘~%L3—‘]M"—“]3“—LQl
wi

It can be seen that pre-training aims to learn representations that may be
useful for multiple downstream tasks, and any information about the
labels is not utilized until the fine-tuning stage. E

foh_wed by softmax(Wh), to predict y € {1,-:+, K}, where W € R**"

[12] Yunfu Song, Zhijian Ou. Learning Neural Random Fields with Inclusive Auxiliary Generators. arXiv:1806.00271, 2018. 14



(2 Pre-training of an EBM for semi-supervised natural language labeling

1) Pre-training: estimate pg (x) over unlabeled sentences x = (xq,*, x;)

po(x) = explug(x)]

Z(6)

Use a B-LSTM to implement ug(x): vVt - R

hyp i ‘ '
u@(x)_zhflel+1+2hblel 1 \ \ \ . A

)~

2) Fine-tuning: we add a CRF on top of the extracted representations
{(hf,i, hb,i),i =1,--, l} to predict label sequence y = (y4,**, y;).

[20] Bin Wang, Zhijian Ou. Improved training of neural trans-dimensional random field language models with
dynamic noise-contrastive estimation. IEEE Workshop on Spoken Language Technology (SLT), 2018. 15



(3 Joint-training of an EBM for semi-supervised image classification

Ug (X,y

» Joint modeling of observation x € R? and class label y € {1,---, K} AR AR
1 h 11

pe(x,y) = Z(0) explug(x,y)] Potential

function

» Consider a NN W5(x): R* —» RX and define:
-

- &)

. ( Different from pre-training, the unsupervised objective pg(x) 3 ‘i'
in joint-training depends on the targeted task.

(min KLF@|Ips(®] —a ) logpeGID)

: (X, y)~L
| min KL[ps(X)||qe ()]
[12] Yunfu Song, Zhijian Ou. Learning Neural Random Fields with Inclusive Auxiliary Generators. arXiv:1806.00271, 2018. 16
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(@ Joint-training of an EBM for semi-supervised natural language labeling

* From JRF we have: e From JRF we have:
Po(v'|xh) = exp (u (x! yl)) po (L, x) = — Z eXp (%(xl,yl))
0 Zyl exp(ug (x4, y1)) oL~ - Zo(l) Lyt
_ l l
— Ze (l) exp (Ug (.'X' ))
which is a CRF

where ug(x}) = logz ek (ue(xl»yl))
y

which is a trans-dimensional random field (TRF)

[14] Yunfu Song, Zhijian Ou, et al. Upgrading CRFs to JRFs and its benefits to sequence modeling and labeling. ICASSP, 2020. 1
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Inclusive-NRF algo. for learning from continuous data, e.g., Images.

simultaneously training a random field and a generator.

Ug .(X)

]

Potential
function

|

min KL[P(2)|[ps (2)
min K1 [Pe ) 1ge ()]

()

Update (.X', h) Update

Generator
A

Revise g x i

f

\

(x', k") Propose g¢ (h)

Vo = E5)|Vologpe(X)] = Ep)[Voue (X)] — E, ) [ Voug (x)]

Vo = Epg)|Vplogde ()] = Epyxygenin[Velogae (x, )]

[12] Yunfu Song, Zhijian Ou. Learning Neural Random Fields with Inclusive Auxiliary Generators. arXiv:1806.00271, 2018.
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Dynamic NCE algo. for learning from discrete data, e.g., texts.

Simultaneously train a random field and a generator.

* The target RF model

* Treat logZ (@) as a parameter { and rewrite

po(x) =

euG(x)

Z(0)

pg,¢(x) oc eto¥)=¢

* Introduce a noise distribution g,,(x), and consider a binary classification

-

l

X" ~ Do
_ J

~

/

s

&

l
X" ~ DPn

~

J

A

Binary
discriminator

C=0
)
C=1

Po (x)
Poc(x) +van(x)’

P(C =1|x) = 1—P(C = 0|x)

P(C = 0|x) =

* Noise Contrastive Estimation (NCE):
MaX Expo(x) llog P(C = 0]x)] + Exq,(x)[log P(C = 1|x)]

where v =

P(C=1)

P(C =0)

© pg — py (oracle), under infinite amount of data and infinite capacity of pg.

@ Reliable NCE needs a large v = 20; Overfitting. Dynamic-NCE in (Wang&Ou, SLT 2018). 19
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Table 2. SSL for image classification over CIFAR-10 with 4,000
labels. The upper/lower blocks show generative/discriminative SSL
methods respectively. The means and standard deviations are calcu-
lated over ten independent runs with randomly sampled labels.

Methods error (%)
CatGAN [30] 19.58+0.46
Ladder network [31] 20.4040.47
Improved-GAN [32] 18.63+2.32
BadGAN [33] 14.41+0.30 CIFAR-10 SVHN
Sobolev-GAN [34] 15.774+0.19 35 A —&— Supervised 20.0 - —&— Supervised
Supervised baseline 25.724+0.44 Joint-training EBMs | Joint-training EBMs
Pre-training+fine-tuning EBM 21.4040.38 e
Joint-training EBM 15.124+0.36 S 15.0 -
Results below this line cannot be directly compared to those above. ‘E 12.5 1
VAT small [1] 14.87 £ 10.01
Temporal Ensembling [2] 12.16+0.31 7.5 1
Mean Teacher [3] 12.31+0.28 504
8% 20% 50% 100% 1.37% 20% 50% 100%

Proportions of labeled data

Fig. 1. Error rates of supervised baseline and joint-training EBMs as
the amount of labels varies on SVHN and CIFAR-10 datasets. The
dash line is the supervised result trained with 100% labeled data.
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Table 3. Natural language labeling results. The evaluation metric is
accuracy for POS and F} for chunking and NER. “Labeled” denotes
the amount of labels in terms of the proportions w.r.t. the full set
of labels. “U/L” denotes the ratio between the amount of unlabeled
and labeled data. “U/L=0" denotes the supervised baseline. “pre.”
and “joint” denote the results by pre-training+fine-tuning EBMs and
joint-training EBMs, respectively.

Labeled | Uz | POStagging | Chunking NER
pre. joint pre. joint pre. joint

0 95.57 78.73 78.19
2% 50 9572 9592 | 81.62 8224 | 76.74 77.61
250 | 9596 96.13 | 82.10 82.26 | 78.49 78.51
500 | 96.08 96.24 | 83.10 83.05 | 79.47 79.17

0 96.81 90.06 86.93
10% 50 | 96.87 96.99 | 91.60 91.85 | 86.37 87.05
250 | 96.88 97.00 | 91.09 91.93 | 86.86 86.77
500 | 9692 97.08 | 91.93 92.23 | 87.57 87.06

0 97.41 94.77 90.74
100% 50 | 9740 9749 | 95.05 95.31 | 91.24 91.34
250 | 9745 97.54 | 95.12 9548 | 91.19 91.51
500 | 97.46 97.57 | 95.19 95.50 | 91.30 91.52

Table 4. Relative improvements by joint-training EBMs compared
to the supervised baseline (abbreviated as sup.) and pretraining-+fine-
tuning EBMs respectively. Refer to Table 3 for notations.

‘ joint over sup. ‘ joint over pre.

Labeled ‘ U/L ‘ POS Chunking NER ‘ POS Chunking NER
50 7.9 16.5 -2.7 4.7 3.4 3.7

2% 250 | 12.6 16.6 1.5 4.2 0.9 0.1

500 | 15.1 20.3 4.5 4.1 -0.3 -1.5

50 5.6 18.0 0.9 3.8 3.0 5.0

10% 250 6.0 18.3 -1.2 3.8 9.4 -0.7

500 8.5 21.8 1.0 5.2 3.7 -4.1

50 3.1 10.3 6.5 3.5 5.3 1.1

100% 250 5.0 13.6 8.3 3.5 7.4 3.6
500 6.2 14.0 8.4 4.3 6.4 2.5

22



Conclusions

* We systematically evaluate and compare joint-training and pre-training for
EBM-based domain-agnostic SSL, through a suite of experiments across a
variety of domains such as image classification and natural language labeling.

* Joint-training EBMs outperform pre-training EBMs marginally but nearly
consistently.

» Presumably, this is because that the optimization of joint-training is directly related to
the targeted task, but pre-training is not aware of the labels for the targeted task.

* We hope this new finding would be helpful for future work to further explore
better methods to leverage unlabeled data.

23



Thanks for your attention !

Reproducible code is at https://github.com/thu-spmi/semi-EBM
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Learning Neural Random Fields with Inclusive Auxiliary Generators

Yunfu Song, Zhijian Ou

In this paper we develop Neural Random Field learning with Inclusive-divergence minimized Auxiliary Generators (NRF-IAG), which is under-
appreciated in the literature. The contributions are two-fold. First, we rigorously apply the stochastic approximation algorithm to solve the joint
optimization and provide theoretical justification. The new approach of learning NRF-IAG achieves superior unsupervised learning performance
competitive with state-of-the-art deep generative models (DGMs) in terms of sample generation quality. Second, semi-supervised learning (SSL)
with NRF-IAG gives rise to strong classification results comparable to state-of-art DGM-based SSL methods, and simultaneously achieves
superior generation. This is in contrast to the conflict of good classification and good generation, as observed in GAN-based SSL.

Classifier JEM
Published as a conference paper at ICLR 2020 log p(y|x) '

YOUR CLASSIFIER IS SECRETLY AN ENERGY BASED
MODEL AND YOU SHOULD TREAT IT LIKE ONE

Will Grathwohl Kuan-Chieh Wang*"& Jorn-Henrik Jacobsen®

University of Toronto & Vector Institute University of Toronto & Vector Institute

Google Research wangkualf@cs.toronto.edu

wgrathwohlfics.toronto.edu j.Jjacobsenlvectorinstitute.ai

David Duvenaud Kevin Swersky & Mohammad Norouzi

University of Toronto & Vector Institute Google Research Figure 1: Visualization of our method,
duvenaud@cs.toronto.edu {kswersky, mnorouzi}Bgoogle.com JEM, which defines a joint EBM from

classifier architectures.
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Conditional random field (CRF)

(Linear-chain) CRFs define a conditional distribution y* given x! of length [ :

1

Do (y5|$3) — ZQ(QJE) eXp(‘ULQ (ml?yﬂ)) Zﬂ(xg) — Zyl eXp(uﬁ(*{I"E: yi))

Potential function: Node potential  Edge potential

[ — l —
uo(z',y') = dilyi,x') + Y Yi(yi-1,vi,2') @
i=1 i=1

9

S

- Upgrade CRFs to, a joint generative model of x* and y*, p({, x, y!)
» Use u(x!, y) in the original CRF

Lafferty, John, Andrew McCallum, and Fernando CN Pereira. "Conditional random fields:
Probabilistic models for segmenting and labeling sequence data." (2001).
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JRF

CRF TRF
L[A-1 l
X [, x
Supervised Po (y | ) Pe( ' ) Unsupervised
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Vi Yy e Y3
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