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𝑝𝜃 𝑦|𝑥

(SSL)



SSL methods (for using DNNs) 
• Recent SSL methods with DNNs can be distinguished by the priors they 

adopt, and, can be divided into two classes.
 Generative SSL

 Discriminative SSL: The outputs from the discriminative classifier are smooth with 
respect to local and random perturbations of the inputs [1-5].

4

[1] Takeru Miyato, et al, “Virtual adversarial training: a regularization method for supervised and semi-supervised 
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learning of visual representations,” arXiv:2002.05709, 2020.



Discriminative SSL
• Recent SSL methods with DNNs can be distinguished by the priors they 

adopt, and, can be divided into two classes.
 Generative SSL

 Discriminative SSL: The outputs from the discriminative classifier are smooth with 
respect to local and random perturbations of the inputs.

5
[6] Kevin Clark, Minh-Thang Luong, Christopher D Manning, and Quoc Le, “Semi-supervised sequence modeling with 
cross-view training,” in EMNLP, 2018

 heavily rely on domain-specific data augmentations, which are tuned intensively for 
images leading to impressive performance in some image domains 
 less successful for other domains where these augmentations are less effective (e.g., 
medical images and text). For instance, random input perturbations are more difficult 
to apply to discrete data like text [6].



Generative SSL - Basics 
• Exploit unsupervised learning of generative models over unlabeled data, 

blend unsupervised learning and supervised learning. 
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 inherently not require data augmentations and generally can be applied 
to a wider range of domains.
make fewer domain-specific assumptions and tend to be domain-agnostic.



Generative SSL - Two Different Approaches
• Joint-training

 A joint model of p(x,y) is defined.

 When we have label y, we maximize p(y|x) (the supervised objective), and when the 
label is unobserved, we marginalize it out and maximize p(x) (the unsupervised 
objective). 

 Semi-supervised learning over a mix of labeled and unlabeled data is formulated as 
maximizing the (weighted) sum of log p(y|x) and log p(x).

• Pre-training
 Only define p(x) without y.

 Perform unsupervised representation learning (called pre-training) on unlabeled data, 
followed by supervised training (called fine-tuning) on labeled data.

 This manner of pre-training followed by fine-tuning has received increasing 
application in natural language processing.
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Generative SSL - Two Different Probabilistic Models

• Directed Graphical Models / Bayesian Networks (BNs)
 Self-normalized

 e.g. Hidden Markov Models (HMMs), Neural network (NN) based 
classifiers, Variational AutoEncoders (VAEs), Generative Adversarial 
Networks (GANs), auto-regressive models (e.g. RNNs/LSTMs)
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• Undirected Graphical Models  / Random Fields (RFs) / Energy-based models

 Involves the normalizing constant (the partition function) 𝑍

 e.g. Conditional Random Fields (CRFs)

x1

x4

x2

x3

x1

x4

x2

x3

𝑃 𝑥1, 𝑥2, 𝑥3, 𝑥4 = 𝑃 𝑥1 𝑃 𝑥2|𝑥1 𝑃 𝑥3|𝑥2 𝑃 𝑥4|𝑥1, 𝑥3

𝑃 𝑥1, 𝑥2, 𝑥3, 𝑥4 =
1

𝑍
Φ 𝑥1, 𝑥2 Φ 𝑥2, 𝑥3 Φ 𝑥3, 𝑥4 Φ 𝑥1, 𝑥4
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EBM models can be very flexibly defined for SSL, by either of 
joint-training and pre-training.

… previously known in the literature*, but it is unclear which 
is better when evaluated in a common experimental setup.

To the best of our knowledge, this paper is the first to 
systematically compare joint-training and pre-training for 

EBM-based for SSL, across domains (image classification and 
natural language labeling).

* EBM based SSL results have been reported across different data modalities (images, natural languages, an protein 
structure prediction and year prediction from the UCI dataset repository) [12,13,14].
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Neural Random Fields (NRFs) - Basics

• NRFs are defined by using NNs to implement 𝑢𝜃 𝑥 :ℝ𝑑 → ℝ
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𝑝𝜃 𝑥 =
1

𝑍 𝜃
𝑒𝑥𝑝 𝑢𝜃 𝑥

• This type of RFs has been studied several times in different contexts
 Deep energy models (DEMs)

• Ngiam et al., 2012

• Kim & Bengio, 2016 - includes linear and squared terms in 𝑢𝜃 𝑥

 Descriptive models / Generative ConvNet

• Xie et al., 2016 / Dai et al., 2014 - defines in the form of exponential tilting of a reference 
distribution (Gaussian white noise)

 Neural random field language models 

• Wang & Ou, 2017 - defines over sequences

Potential 
function

𝑥 ∈ ℝ𝑑

𝑢𝜃 𝑥

 𝑢𝜃 𝑥 can be very flexibly defined; allows a close connection between p(y|x) and p(x,y). 



Learning NRFs - Basics
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𝑝𝜃 𝑥 =
1

𝑍 𝜃
𝑒𝑢𝜃 𝑥

𝛻𝜃 = 𝐸 ෤𝑝 ෤𝑥 𝛻𝜃𝑙𝑜𝑔𝑝𝜃 ෤𝑥 = 𝐸 ෤𝑝 ෤𝑥 𝛻𝜃𝑢𝜃 ෤𝑥 − 𝐸𝑝𝜃 𝑥 𝛻𝜃𝑢𝜃 𝑥

Expectation under 
empirical distribution ෤𝑝 ෤𝑥

Expectation under 
model distribution 𝑝𝜃 𝑥

• Maximum-likelihood training

min
𝜃

𝐾𝐿 ෤𝑝 ෤𝑥 ||𝑝𝜃 ෤𝑥

• Stochastic maximum likelihood (SML) (Younes, 1989)
 Approximate the model expectations by Monte Carlo sampling for calculating the gradient.

 Examples: contrastive divergence (CD) 2002, persistent contrastive divergence (PCD) 2008

L. Younes, “Parametric inference for imperfectly observed gibbsian fields,” Probability Theory and Related Fields, 1989.
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① Pre-training of an EBM for semi-supervised image classification

1) Pre-training: estimate 𝑝𝜃 𝑥 over unlabeled images
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𝑝𝜃 𝑥 =
1

𝑍 𝜃
𝑒𝑥𝑝 𝑢𝜃 𝑥

Potential 
function

𝑥

Use a feedforward NN to implement 𝑢𝜃 𝑥 :ℝ𝑑 → ℝ

which, in the final layer, calculates 𝑢𝜃 𝑥 = 𝑤𝑇ℎ via a linear layer.

2) Fine-tuning: throw 𝑤 and fed ℎ into an new linear output layer, 
followed by softmax 𝑊ℎ , to predict 𝑦 ∈ 1,⋯ , 𝐾 , where 𝑊 ∈ ℝ𝐾×𝐻

𝑢𝜃 𝑥

ℎ

1,⋯ ,𝐾

[12] Yunfu Song, Zhijian Ou. Learning Neural Random Fields with Inclusive Auxiliary Generators. arXiv:1806.00271, 2018.

It can be seen that pre-training aims to learn representations that may be 
useful for multiple downstream tasks, and any information about the 
labels is not utilized until the fine-tuning stage.



② Pre-training of an EBM for semi-supervised natural language labeling

1) Pre-training: estimate 𝑝𝜃 𝑥 over unlabeled sentences 𝑥 = (𝑥1, ⋯ , 𝑥𝑙)
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𝑝𝜃 𝑥 =
1

𝑍 𝜃
𝑒𝑥𝑝 𝑢𝜃 𝑥

Use a B-LSTM to implement 𝑢𝜃 𝑥 : 𝕍𝑙 → ℝ

𝑢𝜃 𝑥 =෍

𝑖=1

𝑙−1

ℎ𝑓,𝑖
𝑇 𝑒𝑖+1 +෍

𝑖=2

𝑙

ℎ𝑏,𝑖
𝑇 𝑒𝑖−1

2) Fine-tuning: we add a CRF on top of the extracted representations 

ℎ𝑓,𝑖 , ℎ𝑏,𝑖 , 𝑖 = 1,⋯ , 𝑙 to predict label sequence 𝑦 = (𝑦1, ⋯ , 𝑦𝑙).

ℎ𝑓,𝑖

ℎ𝑏,𝑖

𝑦1 𝑦2 𝑦3 𝑦4 𝑦5

[20] Bin Wang, Zhijian Ou. Improved training of neural trans-dimensional random field language models with 
dynamic noise-contrastive estimation. IEEE Workshop on Spoken Language Technology (SLT), 2018.



③ Joint-training of an EBM for semi-supervised image classification
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• Joint modeling of observation 𝑥 ∈ ℝ𝑑 and class label 𝑦 ∈ 1,⋯ , 𝐾 :

𝑝𝜃 𝑥, 𝑦 =
1

𝑍 𝜃
𝑒𝑥𝑝 𝑢𝜃 𝑥, 𝑦

• Consider a NN Ψθ 𝑥 :ℝ𝑑 → ℝ𝐾 and define:
𝑢𝜃 𝑥, 𝑦 = Ψθ 𝑥 [𝑦]

• Classifier: 𝑝𝜃 𝑦|𝑥 =
𝑝𝜃 𝑥,𝑦

𝑝𝜃 𝑥
=

𝑒𝑥𝑝 𝑢𝜃 𝑥,𝑦

σ𝑦 𝑒𝑥𝑝 𝑢𝜃 𝑥,𝑦
, like a 𝐾-class logistic regression

Marginal density: 𝑝𝜃 𝑥 =
1

𝑍 𝜃
𝑒𝑥𝑝 𝑢𝜃 𝑥 , where 𝑢𝜃 𝑥 ≜ 𝑙𝑜𝑔σ𝑦 𝑒𝑥𝑝 𝑢𝜃 𝑥, 𝑦

ቐ
min
𝜃

𝐾𝐿 ෤𝑝 ෤𝑥 ||𝑝𝜃 ෤𝑥

min
𝜙

𝐾𝐿 𝑝𝜃 𝑥 ||𝑞𝜙 𝑥

−𝛼 ෍

෤𝑥, ෤𝑦 ~ℒ

𝑙𝑜𝑔𝑝𝜃 ෤𝑦| ෤𝑥

Potential 
function

𝑥

ℎ

𝑢𝜃 𝑥, 𝑦

[12] Yunfu Song, Zhijian Ou. Learning Neural Random Fields with Inclusive Auxiliary Generators. arXiv:1806.00271, 2018.

Different from pre-training, the unsupervised objective 𝒑𝜽 𝒙
in joint-training depends on the targeted task.



④ Joint-training of an EBM for semi-supervised natural language labeling
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• From JRF we have:

𝑝𝜃(𝑦
𝑙|𝑥𝑙) =

1

෌
𝑦𝑙
exp )𝑢𝜃(𝑥

𝑙 , 𝑦𝑙
exp ൯𝑢𝜃(𝑥

𝑙 , 𝑦𝑙

which is a CRF

• From JRF we have:

𝑝𝜃(𝑙, 𝑥
𝑙) =

𝜋𝑙
)𝑍𝜃(𝑙
෍

𝑦𝑙
exp ൯𝑢𝜃(𝑥

𝑙 , 𝑦𝑙

=
𝜋𝑙

)𝑍𝜃(𝑙
exp ൯𝑢𝜃(𝑥

𝑙

where 𝑢𝜃(𝑥𝑙) = log෍
𝑦𝑙
exp ൯𝑢𝜃(𝑥

𝑙 , 𝑦𝑙

which is a trans-dimensional random field (TRF)

• JRF: Define a joint distribution over 𝑥 = (𝑥1, ⋯ , 𝑥𝑙) and 𝑦 = (𝑦1, ⋯ , 𝑦𝑙)

𝑝𝜃(𝑙, 𝑥
𝑙 , 𝑦𝑙) = 𝜋𝑙𝑝𝜃(𝑥

𝑙 , 𝑦𝑙; 𝑙) =
𝜋𝑙

)𝑍𝜃(𝑙
exp ൯𝑢𝜃(𝑥

𝑙 , 𝑦𝑙

• Consider a NN Ψθ 𝑥 : 𝕍𝑙 → ℝ𝑙×𝐾 and define:

𝑢𝜃 𝑥, 𝑦 =෍

𝑖=1

𝑙

Ψθ 𝑥 [𝑖, 𝑦𝑖] +෍

𝑖=1

𝑙

𝐴 𝑦𝑖−1, 𝑦𝑖

[14] Yunfu Song, Zhijian Ou, et al. Upgrading CRFs to JRFs and its benefits to sequence modeling and labeling. ICASSP, 2020.
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𝑢𝜃 𝑥

Potential 
function

𝑥

ℎ

Generator

𝑔𝜙 ℎ 𝜖

𝑥

𝑥′, ℎ′

𝑥, ℎ

Propose

Revise

UpdateUpdate 

Inclusive-NRF algo. for learning from continuous data, e.g., Images.
simultaneously training a random field and a generator.

ቐ
min
𝜃

𝐾𝐿 ෤𝑝 ෤𝑥 ||𝑝𝜃 ෤𝑥

min
𝜙

𝐾𝐿 𝑝𝜃 𝑥 ||𝑞𝜙 𝑥
ቐ
𝛻𝜃 = 𝐸 ෤𝑝 ෤𝑥 𝛻𝜃𝑙𝑜𝑔𝑝𝜃 ෤𝑥 = 𝐸 ෤𝑝 ෤𝑥 𝛻𝜃𝑢𝜃 ෤𝑥 − 𝐸𝑝𝜃 𝑥 𝛻𝜃𝑢𝜃 𝑥

𝛻𝜙 = 𝐸𝑝𝜃 𝑥 𝛻𝜙𝑙𝑜𝑔𝑞𝜙 𝑥 = 𝐸𝑝𝜃 𝑥 𝑞𝜙 ℎ|𝑥 𝛻𝜙𝑙𝑜𝑔𝑞𝜙 𝑥, ℎ

[12] Yunfu Song, Zhijian Ou. Learning Neural Random Fields with Inclusive Auxiliary Generators. arXiv:1806.00271, 2018.



• The target RF model
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𝑝𝜃 𝑥 =
1

𝑍 𝜃
𝑒𝑢𝜃 𝑥

• Treat log𝑍 𝜃 as a parameter 𝜁 and rewrite 𝑝𝜃,𝜁 𝑥 ∝ 𝑒𝑢𝜃 𝑥 −𝜁

• Introduce a noise distribution 𝑞𝑛 𝑥 , and consider a binary classification

𝑃 𝐶 = 0|𝑥 =
𝑝𝜃,𝜁 𝑥

𝑝𝜃,𝜁 𝑥 + 𝜈𝑞𝑛 𝑥
, 𝑤ℎ𝑒𝑟𝑒 𝜈 =

𝑃 𝐶 = 1

𝑃 𝐶 = 0

𝑃 𝐶 = 1|𝑥 = 1 − 𝑃 𝐶 = 0|𝑥

max
𝜃,𝜁

𝐸𝑥∼𝑝0 𝑥 log 𝑃 𝐶 = 0|𝑥 + 𝐸𝑥∼𝑞𝑛 𝑥 log 𝑃 𝐶 = 1|𝑥

• Noise Contrastive Estimation (NCE):

 𝑝𝜃 → 𝑝0 (oracle), under infinite amount of data and infinite capacity of 𝑝𝜃.

 Reliable NCE needs a large 𝜈 ≈ 20; Overfitting. Dynamic-NCE in (Wang&Ou, SLT 2018).

𝑥𝑙 ∼ 𝑝0

𝑥𝑙 ∼ 𝑝𝑛

𝐶 = 0

𝐶 = 1

Binary 

discriminator

Dynamic NCE algo. for learning from discrete data, e.g., texts.
Simultaneously train a random field and a generator.
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Conclusions

• We systematically evaluate and compare joint-training and pre-training for 
EBM-based domain-agnostic SSL, through a suite of experiments across a 
variety of domains such as image classification and natural language labeling. 

• Joint-training EBMs outperform pre-training EBMs marginally but nearly 
consistently.
Presumably, this is because that the optimization of joint-training is directly related to 

the targeted task, but pre-training is not aware of the labels for the targeted task.

• We hope this new finding would be helpful for future work to further explore 
better methods to leverage unlabeled data.

23



24

Thanks for your attention !

Reproducible code is at https://github.com/thu-spmi/semi-EBM

https://github.com/thu-spmi/semi-EBM
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Conditional random field (CRF)
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𝑦𝑖−1 𝑦𝑖

𝒙

𝑦𝑖+1

(Linear-chain) CRFs define a conditional distribution 𝑦𝑙 given 𝑥𝑙 of length 𝑙 : 

Potential function:

Lafferty, John, Andrew McCallum, and Fernando CN Pereira. "Conditional random fields: 
Probabilistic models for segmenting and labeling sequence data." (2001).

• Upgrade CRFs to, a joint generative model of 𝑥𝑙 and 𝑦𝑙, 𝑝 𝑙, 𝑥𝑙 , 𝑦𝑙

• Use 𝑢(𝑥𝑙 , 𝑦𝑙) in the original CRF

Node potential Edge potential



JRF
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Supervised 

Learning

CRF

𝑝𝜃(𝑦
𝑙|𝑥𝑙)

Labeled 

Data

TRF

𝑝𝜃(𝑙, 𝑥
𝑙)

Unlabeled 

Data

Unsupervised 

Learning

𝑝𝜃(𝑙, 𝑥
𝑙 , 𝑦𝑙)

JRF

Node Potentials

𝑥1

ℎ1
Bi-LSTM

𝑜1

ℎ2 ℎ3

𝑜2 𝑜3

𝑦1 𝑦2 𝑦3

Edge Potentials

𝑥2 𝑥3


