
LANGUAGE MODELING WITH NEURAL TRANS-DIMENSIONAL RANDOM FIELDS

Bin Wang, Zhijian Ou

Department of Electronic Engineering, Tsinghua university, Beijing, China.
wangbin12@mails.tsinghua.edu.cn, ozj@tsinghua.edu.cn

ABSTRACT
Trans-dimensional random field language models (TRF LMs)

have recently been introduced, where sentences are modeled as a
collection of random fields. The TRF approach has been shown to
have the advantages of being computationally more efficient in infer-
ence than LSTM LMs with close performance and being able to flex-
ibly integrate rich features. In this paper we propose neural TRFs,
beyond of the previous discrete TRFs that only use linear potentials
with discrete features. The idea is to use nonlinear potentials with
continuous features, implemented by neural networks (NNs), in the
TRF framework. Neural TRFs combine the advantages of both NNs
and TRFs. The benefits of word embedding, nonlinear feature learn-
ing and larger context modeling are inherited from the use of NNs.
At the same time, the strength of efficient inference by avoiding ex-
pensive softmax is preserved. A number of technical contributions,
including employing deep convolutional neural networks (CNNs) to
define the potentials and incorporating the joint stochastic approx-
imation (JSA) strategy in the training algorithm, are developed in
this work, which enable us to successfully train neural TRF LMs.
Various LMs are evaluated in terms of speech recognition WERs by
rescoring the 1000-best lists of WSJ’92 test data. The results show
that neural TRF LMs not only improve over discrete TRF LMs, but
also perform slightly better than LSTM LMs with only one fifth of
parameters and 16x faster inference efficiency.

Index Terms— Language modeling, Random field, Stochastic
approximation

1. INTRODUCTION

Statistical language models, which estimate the joint probability of
words in a sentence, form a crucial component in many applications
such as automatic speech recognition (ASR) and machine transla-
tion (MT). Recently, neural network language models (NN LMs),
which can be either feedforward NNs (FNNs) [1] or recurrent NNs
(RNNs) [2, 3], have been shown to surpass classical n-gram LMs.
RNNs with Long Short-Term Memory (LSTM) units are particularly
popular. Remarkably, both n-gram LMs and NN LMs follow the di-
rected graphical modeling approach, which represents the joint prob-
ability in terms of conditionals. In contrast, a new trans-dimensional
random field (TRF) LM [4, 5] has recently been introduced in the
undirected graphical modeling approach, where sentences are mod-
eled as a collection of random fields and the joint probability is de-
fined in terms of local potential functions. It has been shown that
TRF LMs significantly outperform n-gram LMs, and perform close
to LSTM LMs but are computationally more efficient (200x faster)
in inference (i.e. computing sentence probability).

Although the TRF approach has the capacity to support nonlin-
ear potential functions and rich features, only linear potentials with

This work is supported by NSFC grant 61473168.

discrete features (such as word and class n-gram features) are used
in the previous TRF models, which limit their performances. The
previous TRF models [4,5] will thus be referred to as discrete TRFs.
This limitation is clear when comparing discrete TRF LMs with L-
STM LMs. First, LSTM LMs associate with each word in the vocab-
ulary a real-valued feature vector. Such word embedding in contin-
uous vector space creates a notion of similarity between words and
achieves a level of generalization that is hard with discrete features.
Discrete TRFs mainly rely on word classing and various orders of
discrete features for smoothing parameter estimates. Second, LST-
M LMs learn nonlinear interactions between underlying features by
use of NNs, while discrete TRF LMs basically are log-linear models.
Third, LSTM models could model larger contexts by using memory
cells than discrete TRF models. Despite these differences, discrete
TRF LMs still achieves impressive performances, being close to L-
STM LMs. A promising extension is to integrate NNs into the TRF
framework, thus eliminating the above limitation of discrete TRFs.

The above analysis motivates us to propose neural trans-
dimensional random fields (neural TRFs) in this paper. The idea
is to use nonlinear potentials with continuous features, implemented
by NNs, in the TRF framework. Neural TRFs combine the advan-
tages of both NNs and TRFs. The benefits of word embedding,
nonlinear feature learning and larger context modeling are inherited
from the use of NNs. At the same time, the strength of efficient
inference by avoiding expensive softmax is preserved.

We have developed a stochastic approximation (SA) algorithm,
called augmented SA (AugSA), with Markov chain Monte Carlo (M-
CMC) to estimate the model parameters and normalizing constants
for discrete TRFs. Note that the log-likelihood of a discrete TRF is
concave, guaranteeing training convergence to the global maximum.
Fitting neural TRFs is a non-convex optimization problem, which
is more challenging. There are a number of technical contribution-
s made in this work, which enable us to successfully train neural
TRFs. First, we employ deep convolutional neural networks (CNNs)
to define the potential functions. CNNs can be stacked to represent
larger and larger context, and allows easier gradient propagation than
LSTM RNNs. Second, the AugSA training algorithm is extended to
train neural TRFs, by incorporating the joint stochastic approxima-
tion (JSA) [6] strategy, which has been used to successfully train
deep generative models. The JSA strategy is to introduce an aux-
iliary distribution to serve as the proposal for constructing MCMC
operator for the target distribution. The log-likelihood of the target
distribution and the KL-divergence between the target distribution
and the auxiliary distribution are jointly optimized. The resulting
AugSA plus JSA algorithm is crucial for handling deep CNN fea-
tures, not only significantly reducing computation cost for every SA
iteration step but also considerably improving SA training conver-
gence. Third, several additional techniques are found to improve the
convergence for training neural TRFs, including wider local jump in
MCMC, Adam optimizer [7], and training set mini-batching.

294978-1-5090-4788-8/17/$31.00 ©2017 IEEE ASRU 2017

Various LMs are evaluated in terms of speech recognition WERs
by rescoring the 1000-best lists of WSJ’92 test data. The neural TRF
LM improves over the discrete TRF LM, reducing WER from 7.92%
to 7.60%, with less parameters. Compared with state-of-the-art LST-
M LMs [8], the neural TRF LM outperforms the small LSTM LM
(2 hidden layers and 200 units per layer) with relative WER reduc-
tion of 4.5%, and performs slightly better than the medium LSTM
LM (2 hidden layers and 650 units per layer) with only one fifth of
parameters. Moreover, the inference of the neural TRF LM is about
16 times faster than the medium LSTM LM. The average time cost
for rescoring a 1000-best list for a utterance in WSJ’92 test set are
about 0.4 second vs 6.36 seconds, both using 1 GPU.

In the rest of the paper, we first discuss related works in Section
2. Then we introduce the new neural TRF model in Section 3 and
its training algorithm in Section 4. After presenting experimental
results in Section 5, the conclusions are made in Section 6.

2. RELATED WORK

LM research can be roughly divided into two tracks. The direct-
ed graphical modeling approach, includes the classic n-gram LMs
and various NN LMs. The undirected graphical modeling approach,
has few priori work, except [4, 5, 9]. A review of the two tracks
can be found in [5]. To our knowledge, the TRF work represents
the first success in using undirected graphical modeling approach
to language modeling. Starting from discrete TRFs, the main new
features of neural TRFs proposed in this paper is the marriage of
random fields and neural networks, and the use of CNNs for fea-
ture extraction. In the following, we mainly comment on these two
related studies and the connection to our work.

2.1. Marriage of random fields and neural networks

A key strength of NNs is their nonlinear feature learning ability.
Random fields (RFs) are powerful for describing interactions among
structured random variables. Combining RFs and NNs has been pur-
sued but most models developed so far are in fact combining condi-
tional random fields (CRFs) [10] and NNs, namely “CRFs+NNs”.
In conventional CRFs, both node potentials and edge potentials are
defined as linear functions using discrete indicator features. “CRF-
s+NNs” has been introduced a few times in priori literature. It was
termed Conditional Neural Fields in [11], and later Neural Condi-
tional Random Fields [12] with a slightly different specification of
potentials. It also appeared previously in the speech recognition lit-
erature [13]. Recently, there are increasing more studies that use var-
ious types of NNs, e.g. FNNs [14], RNNs [15], LSTM RNNs [16],
to extract features as input to CRFs. Remarkably, the general idea
in “CRFs+NNs” models is to implement the combination by using
NNs to represent the potential functions in a RF. This is in spirit
the same as in neural TRFs. However the algorithms developed in
“CRFs+NNs” studies are not applicable to neural TRFs because the
sample spaces of these CRFs are much smaller than that of TRFs.

It is worth pointing out that CRFs can only be used for discrim-
inative tasks, e.g. sequence labeling, structured prediction tasks. In
contrast, language modeling is a generative modeling task. A gen-
erative random field model is proposed in [17], where the potentials
are also defined as CNNs, but it is only for modeling fixed-size im-
ages (i.e. fix-dimensional modeling).

2.2. Convolutional neural networks

Besides the great success in computer vision, CNNs have recently
received more attention in language modeling. CNNs over language
act as feature detectors and can be stacked hierarchically to capture
large context, like in computer vision. It is shown in [18] that apply-
ing convolutional layers in FNNs performs better than conventional
FNN LMs but is below LSTM LMs. Convolutional layers can al-
so be used within RNNs, e.g. as studied in [19], 1-D convolutional
filters of varying widths are applied over characters, whose output
is fed to the upper LSTM RNN. Recently, it is shown in [20] that
CNN-FNNs with a novel gating mechanism benefit gradient propa-
gation and perform slightly better than LSTM LMs. Similarly, our
pilot experiment shows that using the stacked structure of CNNs in
neural TRFs allows easier model training than using the recurrent
structure of RNNs.

3. MODEL DEFINITION

Throughout, we denote by xl = (x1, · · · , xl) a sentence (i.e. word
sequence) of length l, ranging from 1 to m. Sentences of length l are
assumed to be distributed from an exponential family model:

pl(x
l; θ) =

1

Zl(θ)
eϕ(x

l;θ) (1)

where θ indicates the set of parameters and ϕ is the potential func-
tion, and Zl(θ) is the normalization constant of length l, i.e. Zl(θ) =∑

xl e
ϕ(xl;θ). Moreover, assume that length l is associated with a

probability πl for l = 1, · · · ,m. Therefore, the pair (l, xl) is jointly
distributed as:

p(l, xl; θ) = πlpl(x
l; θ) (2)

Different from using linear potentials in discrete TRFs [5], neu-
ral TRFs define the potential function ϕ(xl; θ) by a deep CNN, as
described below and shown in Fig. 1.

Embedding and projection. First, each word xi (i = 1, · · · , l)
in a sentence is mapped to an embedded vector ei ∈ Rde . Then
a projection layer with rectified linear unit (ReLU) activation is ap-
plied to each embedding vector to reduce the dimension, i.e.

yi = max{Wpei + bp, 0}, i = 1, · · · , l (3)

where yi ∈ Rdp is the output of the projection layer of dimension
dp; Wp ∈ Rdp×de and bp ∈ Rdp are the parameters.

CNN-bank. The outputs of the projection layer are fed into a
CNN-bank module, which contains a set of 1-D convolutional filters
with widths ranging from 1 to K. These filters explicitly model
local contextual information (akin to modeling unigrams, bigrams,
up to K-grams) [19]. Denote by F ∈ Rdp×k a filter of width k,
k = 1, · · · ,K, and by Y = [y1, · · · , yl] ∈ Rdp×l the output of the
projection layer. We first symmetrically pad zeros to the beginning
and end of Y to make it k−1 longer, denoted by Y ′ ∈ Rdp×(l+k−1).
Then the convolution is performed between Y ′ and filter F , and the
output feature map f ∈ Rl is given by

f [i] = max{⟨Y ′[:, i : i+ k − 1], F ⟩, 0}, i = 1, · · · , l (4)

where f [i] is the i-th component of vector f , Y ′[:, i : i + k − 1] is
the i-to-(i + k − 1)-th columns of Y ′ and ⟨A,B⟩ is the Forbenius
inner product. Such convolution with the above padding scheme is
known as half convolution1. The output feature maps from multiple

1http://deeplearning.net/software/theano/library/tensor/nnet/conv.html

295

word embedding

projection layer

multiple convolutional

filters with varying

widths

max-pooling with

width 2 and stride 1

CNN layer-1

CNN layer-2

CNN layer-3

weighted summation

summation over time

linear layer

The sun will always

CNN-bank

CNN-stack

come out

Fig. 1. The deep CNN architecture used to define the potential func-
tion ϕ(xl; θ). Shadow areas denote the padded zeros.

filters with varying widths are spliced together, and followed by a
max-pooling over time with width 2 and stride 1. Zeros are also
padded before the max-pooling to preserve the time dimensionality.
Suppose there are w filters for each filter width. The output of the
CNN-bank module is Yb ∈ RwK×l.

CNN-stack. On the top of the CNN-bank module, a CNN-stack
module consists of a stack of 1-D convolutional layers to further
extract hierarchical features with n layers. The outputs of each con-
volutional layer are weighted summarized, which is similar to the
skip-connections in [21]. Let Y j

s ∈ Rds×l denote the output of
the j-th convolutional layer, j = 1, · · · , n. Our experiments use
ds < wK to reduce the dimension and employ half convolution at
each CNN layer. The output of the CNN-stack module Ys ∈ Rds×l

is:

Ys[:, i] = max{0,
n∑

j=1

aj ∗ Y j
s [:, i]}, i = 1, · · · , l (5)

where aj ∈ Rds is the weights applied to the j-th layer and ∗ is the
element-wise multiplication.

Summation over time. Finally, the potential function is defined
to take the following value:

ϕ(xl; θ) = λT
l∑

i=1

Ys[:, i] + c (6)

where λ ∈ Rds , c ∈ R are the parameters. In summary, θ denotes
the collection of all the parameters defined in the deep CNNs.

4. MODEL LEARNING

A novel learning algorithm, called augmented SA (AugSA), has
been developed to estimate both the model parameters and normal-
izing constants for discrete TRFs [5]. In this section, the AugSA
algorithm is extended to train neural TRFs.

4.1. AugSA plus JSA

In AugSA, we introduce the following joint distribution of (l, xl):

p(l, xl; θ, ζ) = π0
l pl(x

l; θ, ζ) =
π0
l

Z1(θ)eζl
eϕ(x

l;θ) (7)

where ζ = (ζ1, · · · , ζm)T with ζ1 = 0 and ζl is the hypothe-
sized value of the log ratio of Zl(θ) with respect to Z1(θ), namely
log{Zl(θ)/Z1(θ)}, l = 1, · · · ,m. Z1(θ) is chosen as the refer-
ence value and can be calculated exactly. π0

l is the specified length
probability used in model training. Note that we set the prior length
probability πl to the empirical length probability in inference.

Denote by D the training set and by Dl the collection of sen-
tences of length l in the training set. The maximum likelihood esti-
mation of parameter θ and normalization constant ζ can be found by
solving the following simultaneous equations [5]:

ED

[
∂ϕ

∂θ

]
−

m∑
l=1

|Dl|
|D| Epl

[
∂ϕ

∂θ

]
= 0, (8)∑

xl

p(l, xl; θ, ζ) = π0
l , (9)

where |Dl| is the number of sentences in set Dl, |D| =
∑m

l=1 |Dl|,
ED is the empirical expectation on the training set D and Epl is the
expectation with respect to the model distribution pl(x

l; θ, ζ) in (7):

ED

[
∂ϕ

∂θ

]
=

1

|D|

m∑
l=1

∑
xl∈Dl

∂ϕ(xl; θ)

∂θ

Epl

[
∂ϕ

∂θ

]
=

∑
xl

pl(x
l; θ, ζ)

∂ϕ(xl; θ)

∂θ

Exact solving (8) and (9) is infeasible. AugSA is proposed to
stochastically solve (8) and (9) in the SA framework [22], which it-
erates MCMC sampling and parameter update. The convergence of
SA has been studied under various conditions [23, 24, 25]. The M-
CMC sampling in AugSA is implemented by the trans-dimensional
mixture sampling (TransMS) algorithm [5] to simulate sentences of
different dimensions from the joint distribution p(l, xl; θ, ζ) in (7).

The sampling operations in TransMS make the computational
bottleneck in AugSA. Suppose that we use Gibbs sampling to sim-
ulate a sentence for a given length, which is the method used in [5]
for training discrete TRFs. We need to calculate the conditional dis-
tribution pl(xi|x̸=i) of word xi for each position i, given all the oth-
er words x ̸=i. This is computational expensive because calculating

296

Input: training set D
1: Init the parameter θ(0) and µ(0) and set

ζ(0) = (0, log |V|, 2 log |V|, · · · , (m − 1) log |V|), where
|V| is the vocabulary size.

2: for t = 1, 2, . . . , tmax do
3: Random select KD sentences from the training set, as D(t)

4: Generate KB sentences using TransMS in section 4.2, as
B(t)

5: Compute θ(t) based on (11)
6: Compute ζ(t) based on (12) and (13)
7: Compute µ(t) based on (14)
8: end for

Fig. 2. The AugSA plus JSA algorithm for training neural TRFs

pl(xi|x̸=i) needs to enumerate all the possible values of xi ∈ V and
to compute the joint probability pl(xi, x ̸=i) for each possible value,
where V denotes the vocabulary. In [5], word classing is introduced
to accelerate sampling, which means that each word is assigned to
a single class. Through applying Metropolis-Hastings (MH) within
Gibbs sampling, we first sample the class by using a reduced model
as the proposal, which includes only the features that depend on xi

through its class, and then sample the word. This reduces the com-
putational cost from |V| to |V|/|C|, where |C| denotes the number of
classes. However, the computation reduction in using word classing
in neural TRFs is not as significant as in discrete TRFs, because the
deep CNN potentials in neural TRFs involve a much larger context,
which makes the sampling computation with the reduced model still
expensive.

To apply AugSA to neural TRFs, we borrow the idea of joint
stochastic approximation (JSA) [6], which has been used to success-
fully train deep generative models. The JSA strategy is to introduce
an auxiliary distribution q(l, xl;µ) with parameter µ to serve as the
proposal for constructing MCMC operator for the target distribution
p(l, xl; θ, ζ) in (7). The log-likelihood of the target distribution and
the KL-divergence between the target distribution and the auxiliary
distribution are jointly optimized. Therefore, the AugSA plus JSA
algorithm is defined as stochastically solving the three simultaneous
equations, namely (8), (9) together with

∂

∂µ
KL(p(l, xl; θ, ζ)||q(l, xl;µ)) = 0 (10)

At each iteration, the parameter µ of the auxiliary distribution
q(l, xl;µ) is updated together with the parameter θ and normaliza-
tion constants ζ, and q(l, xl;µ) is used in TransMS as a proposal
distribution (See Section 4.2 for details). In this paper, the auxiliary
distribution is implemented by an LSTM RNN.

Moreover, several additional techniques are used to suit the use
of nonlinear potentials and to improve the convergence for training
neural TRFs. The first technique, called training set mini-batching
[4], is that at each iteration, a mini-batch of sentences is randomly
selected from the training set and the empirical expectation is calcu-
lated over this mini-batch. This is crucial for training neural TRFs
because unlike in discrete TRFs, the gradient of the nonlinear po-
tential function ϕ with respect to θ depends on the parameters θ.
Second, the Adam [7] optimizer is used to update the parameter θ,
saving the computation cost for estimating the empirical variances.

The AugSA plus JSA algorithm is summarized in Fig. 2 and de-
tailed as follows. At iteration t, we first random select KD samples
from training set D, denoted by D(t). Then TransMS (in Section
4.2) is performed to generate KB samples, denoted by B(t). The

update for the parameters θ is:

θ(t) = θ(t−1)+γθ,tAdam

ED(t)

[
∂ϕ

∂θ

]
− 1

KB

∑
(l,xl)∈B(t)

π̃l

π0
l

∂ϕ

∂θ

 ,

(11)
where Adam denotes the Adam optimizer, γθ,t is the learning rate
for θ and π̃l is the empirical probability of length l. Remarkably,
the gradient of ϕ with respect to θ can be efficiently computed by
backpropagtion. The update for the normalization constants ζ is the
same as in [5]:

ζ(t−
1
2
) = ζ(t−1) + γζ,t

{
δ1(B

(t))

π0
1

, · · · , δm(B(t))

π0
m

}T

, (12)

ζ(t) = ζ(t−
1
2
) − ζ

(t− 1
2
)

1 , (13)

where ζ
(t)
1 , the first element of ζ(t), is set to 0 by (13), and γζ,t

is the learning rate for ζ, and δl(B
(t)) is the proportion of length l

appearing in B(t):

δl(B
(t)) =

1

KB

∑
(j,xj)∈B(t)

1(j = l).

The update for the parameters µ of the auxiliary distribution is:

µ(t) = µ(t−1) + γµ,t
∑

(l,xl)∈B(t)

∂

∂µ
log q(l, xl;µ), (14)

where γµ,t is the learning rate for µ.

4.2. TransMS with an auxiliary distribution

The trans-dimensional mixture sampling (TransMS) proposed in [5]
is extended for applying AugSA plus JSA. The TransMS consists
of two steps at each iteration: local jump between dimensions and
Markov move for a given dimension. First, the auxiliary distribu-
tion q(l, xl;µ) is introduced as the proposal distribution g(·|xh) in
both local jump and Markov move. Second, multiple-trial metropo-
lis independence sampling (MTMIS) [26] is used to increase the ac-
ceptance rate. Let l(t−1) and x(t−1) denote the length and sequence
before sampling at iteration t. The algorithm is described as follows.

Step I: Local jump. Assuming l(t−1) = k, first we draw a new
length j ∼ Γ(k, ·), where the jump distribution Γ(k, ·) is defined to
be uniform in the neighborhood of k:

Γ(k, j) =
1

min(k + r,m)−max(k − r, 1) + 1
, (15)

if |k−j| ≤ r and to be 0 otherwise, where m is the maximum length
and r is the jump range, which is set to be one in [5].

If j = k, we retain the observation, i.e. set l(t) = l(t−1) and
x(t) = x(t−1), and perform the next step directly.

If j > k, we first draw a subsequence uj−k of length j−k from
a proposal distribution: uj−k ∼ g(·|x(t−1)). Then we set l(t) = j

and x(t) = {x(t−1), uj−k} with probability

min

{
1,

Γ(j, k)

Γ(k, j)

p(j, {x(t−1), uj−k}; θ, ζ)
p(k, x(t−1); θ, ζ)g(uj−k|x(t−1))

}
, (16)

where {x(t−1), uj−k} denotes the sequence with length j whose
first k elements are x(t−1) and the last j − k elements are uj−k.

297

LSTMs PPL WER-p WER-r WER-s
LSTM-2×200 113.9 8.14 7.96 7.80
LSTM-2×650 84.1 7.59 7.66 7.85
LSTM-2×1500 78.7 7.32 7.36 8.18

Table 1. Comparison of three different rescoring strategies for L-
STM LMs. “LSTM-2×200/650/1500” indicates the LSTM with 2
hidden layers and 200/650/1500 hidden units per layer. “PPL” de-
notes the perplexity on the PTB test set. “WER-p”, “WER-r” and
“WER-s” correspond to the preserve, reset and shuffle strategy re-
spectively.

If j < k, we set l(t) = j and x(t) = x
(t−1)
1:j with probability

min

{
1,

Γ(j, k)

Γ(k, j)

p(j, x
(t−1)
1:j ; θ, ζ)g(x

(t−1)
j+1:k|x

(t−1)
1:j)

p(k, x(t−1); θ, ζ)

}
, (17)

where x
(t−1)
i:j denotes the subsequence of x(t−1) from the i-th posi-

tion to the j-th position.
Here, the proposal distribution g(·|xh) is computed using the

auxiliary distribution q(l, xl;µ). For q(l, xl;µ) implemented by an
LSTM RNN as in this paper, calculating g(·|xh) and sampling form
g(·|xh) can be performed recurrently.

Step II: Markov move. In this step, given the current sequence
and fixing the length, we perform the block Gibbs sampling from
the first position to the last position with block-size s. MTMIS is
used with the same proposal distribution g(·|xh) as in local jump.
In our experiments, the block-size s = 5 and multiple-trial number
M = 10. Denote by (l, xl) the current length and sequence after
local jump. For positions i = 1, s + 1, 2s + 1, · · · , Markov move
proceeds as follows:

• Generate M i.i.d. samples us
(k) ∼ g(·|xl

1:i−1), each of length
s, k = 1, · · · ,M , compute

w(us
(k)) =

p(l, {xl
1:i−1, u

s
(k), x

l
i+s:l}; θ, ζ)

g(us
(k)|xl

1:i−1)

and W =
∑M

k=1 w(us
(k)), where us

(k) is a sequence of length
s and {xl

1:i−1, u
s
(k), x

l
i+s:l} denotes the concatenation of the

three subsequences xl
1:i−1, us

(k) and xl
i+s:l.

• Draw us from the trial set {us
(1), · · · , us

(M)} with probability
proportional to w(us

(k)).

• Set x(t+1) = {xl
1:i−1, u

s, xl
i+s:l} with probability

min

{
1,

W

W − w(us) + w(xl
i:i+s−1)

}

5. EXPERIMENTS

5.1. Experiment setup and baseline LMs

In this section, we compare neural TRF LMs with different LMs on
speech recognition. The LM training corpus is the Wall Street Jour-
nal (WSJ) portion of Penn Treebank (PTB). Sections 0-20 are used
as the training set (about 930 K words), sections 21-22 as the devel-
opment set (74 K) and section 23-24 as the test set (82 K). The vo-
cabulary is limited to 10 K words, including a special token ⟨UNK⟩
denoting the word not in the vocabulary. This setting is the same
as that used in other studies [2, 4, 5, 8]. For evaluation in terms of

speech recognition WERs, various LMs obtained using PTB train-
ing and development sets are applied to rescore the 1000-best lists
from recognizing WSJ’92 test data (330 utterances). For each utter-
ance, the 1000-best list of candidate sentences are generated by the
first-pass recognition using the Kaldi toolkit [27] with a DNN-based
acoustic models. The oracle WER of the 1000-best list is 0.93%.

The baseline LMs include a 5-gram LM with modified Kneser-
Ney smoothing [28] (denoted by “KN5”), and three LSTM LMs with
2 hidden layers and 200, 600, 1500 hidden units per layer respec-
tively, which are called small, medium and large LSTMs in [8]. We
reproduce the three LSTM LMs in [8] and use them in our rescoring
experiments. The 5-gram LM is trained using the SRILM toolk-
it [29], which automatically adds the beginning-token ⟨s⟩ and end-
token ⟨/s⟩ at the beginning and the end of each sentence. When ap-
plying the KN5 LM to rescoring, the beginning-token and end-token
are also added to each sentence in the 1000-best list.

In contrast, for training LSTM LMs, a tricky practice [8] is to
only add the end-token at the end of each sentence, and then con-
catenate all training sentences. This in fact treats the whole training
corpus as a single long sentence. In rescoring, only the end-token is
added to each sentence, like in training. But there are three strategies
of how the initial hidden state is configured in rescoring.

1. preserve: the final hidden state (i.e. the hidden state which
predicts the end-token) of the previous sentence is preserved
and used to compute the initial state of the current sentence
together with the end-token.

2. reset: the final state of the previous sentence is reset to zero.

3. shuffle: we first shuffle all the candidate sentences of all the
testing utterances, and then use the first strategy. This elimi-
nate the unfair use of information across sentences.

The WERs of the above strategies are shown in Table 1. It can
be seen that the lowest WER is achieved by “LSTM-2×1500” with
2 hidden layer and 1500 hidden units, using the preserve strategy.
When we shuffle the sentences, the WER increases significantly,
from 7.32 to 8.18, which is even worse than the WER of “LSTM-
2×200”. This is because that in the preserve strategy, the candidate
sentences of each utterance are rescored successively. The final hid-
den state carries relevant information to benefit the prediction of the
next candidate sentence which belongs to the same testing utterance
as the current candidate sentence. After shuffling, the relation be-
tween adjacent candidate sentences is broken. The information pre-
served in the hidden states may mislead the prediction.

In the following, we use “WER-r”, the WER obtained by the
reset strategy, as the performance measure of the LSTM LMs, since
the resulting WERs are independent of the processing order of the
candidate sentences and stable. Moreover, this enables a more fair
comparison with KN5 and neural TRF LMs, since they do not use
any information across sentences.

5.2. Neural TRF LMs in speech recognition

The CNN configuration used in neural TRF models is shown in ta-
ble 3. The AugSA plus JSA algorithm in Fig.2 is used to train neural
TRF LMs on PTB training corpus. At each iteration, we random
select KD = 1000 sentences from training corpus, and generate
KB = 100 sentences of various lengths using the TransMS algo-
rithm described in Section 4.2. The auxiliary distribution q(l, xl;µ)
is defined as a LSTM LM with 1 hidden layers and 250 hidden units.
The learning rates in (11), (12) and (14) are set as γθ,t = 1/(t+104),
γζ,t = t−0.2 and γµ,t = 1.0. The length distribution π0

l is set as
specified in [5].

298

Model PPL WER(%) #param (M) Training time Inference time
KN5 141.2 8.78 2.3 22 seconds (1 CPU) 0.06 seconds (1 CPU)
LSTM-2×200 113.9 7.96 4.6 about 1.7 hours (1 GPU) 6.36 seconds (1 GPU)
LSTM-2×650 84.1 7.66 19.8 about 7.5 hours (1 GPU) 6.36 seconds (1 GPU)
LSTM-2×1500 78.7 7.36 66.0 about 1 day (1 GPU) 9.09 seconds (1 GPU)
discrete TRF [5] ≥130 7.92 6.4 about 1 day (8 CPUs) 0.16 seconds (1 CPU)
neural TRF ≥37.4 7.60 4.0 about 3 days (1 GPU) 0.40 second (1 GPU)
KN5+LSTM-2×1500 - 7.47
TRF+LSTM-2×1500 - 7.17

Table 2. Performances of various LMs. “PPL” is the perplexity on PTB test set. “WER” is the word error rate on WSJ’92 test data. “#param”
is the number of parameter numbers (in millions). “+” denotes the log-linear interpolation with equal weights of 0.5. For LSTMs, the WER
is obtained using the reset strategy. “Inference time” denotes the average time of rescoring the 1000-best list for each utterance.

word embedding size 256
projection dimension 128

CNN-bank cnn-k-128, with k ranging from 1 to 10
max-pooling width 2 and stride 1
CNN-stack cnn-3-128 → cnn-3-128 → cnn-3-128

Table 3. CNN configuration in neural TRFs. “cnn-k-n” denotes a
1-D CNN with filter width k and output dimension n. “A → B”
denotes that the output of layer A is fed into layer B.

All the parameters of the CNN and LSTM are initialized ran-
domly within an interval from -0.1 to 0.1, except for the word em-
bedding of the CNN, which is initialized by running the word2vec
toolkit [30] on PTB training set and updated during training. We
stop the training once the smoothed log-likelihood (moving average
of 1000 iterations) on the PTB development set does not increase
significantly, resulting in 33,000 iterations (about 800 epochs). The
negative log-likelihood of TRF LMs on PTB test set and the KL-
divergence between the model distribution p(l, xl; θ, ζ) and the aux-
iliary distribution q(l, xl;µ) are shown in Fig. 3.

As the model parameters of neural TRF LMs are estimated s-
tochastically, we cache 10 model parameters from the most recent
10 training epochs. After the training is stopped, we calculate the
PPLs over PTB test set and the LM scores of the 1000-best lists, us-
ing the cached 10 model parameters. Then the resulting 10 PPLs are
averaged as the final PPL, and the LM scores from the 10 models are
averaged and used in rescoring, giving the final WER. This is similar
to model combination using sentence-level log-linear interpolation,
which reduces the variance of stochastically estimated models.

The PPLs and WERs of various LMs are shown in Table 2,
from which there are several comments. First, as studied in [5],
AugSA tends to underestimate the perplexity on test set. The re-
ported PPLs in Table 2 should be a lower bound of the true PPLs
of the TRF models. Second, the neural TRF LM achieves the W-
ER of 7.60, which outperforms the discrete TRF using features
“w+c+ws+cs+wsh+csh+tied” [5] with relative reduction of 4.0%.
Compared with “LSTM-2x200” with similar model size, the neural
TRF LM achieves a relative WER reduction of 4.5%. Compared
with “LSTM-2x650”, the neural TRF LM achieves a slightly lower
WER with only a fifth of parameters. The large “LSTM-2x1500”
performs slightly better than the neural TRF but with 16.5 times
more parameters. Third, we examine how neural TRF LMs and
LSMT LMs are complimentary to each other. The probability of
each sentences are log-linearly combined with equal interpolated
weights of 0.5. The interpolated neural TRF and “LSTM-2x1500”
further reduces the WER and achieves the lowest WER of 7.17.

0 200 400 600
epochs

50

100

150

200

ne
ga

tiv
e

lo
g-

lik
el

ih
oo

d neural TRF
KN5
LSTM-2x200
LSMT-2x650

(a)

0 200 400 600
epochs

-20

-10

0

10

20

K
L

-d
is

ta
nc

e

neural TRF

(b)

Fig. 3. (a) The negative log-likelihood on PTB test set and (b) the
KL-divergence KL(p||q), at each training epoch.

Moreover, the inference with neural TRF LMs is much faster
than with LSTM LMs. The time cost of using ten neural TRFs to
rescore the 1000-best list for each utterance is about 0.4 second.
Compared with LSTM LMs, the inference of neural TRFs is about
16 times faster than “LSTM-2x200” and “LSTM-2x650”, and about
23 times faster than “LSTM-2x1500”.

6. CONCLUSION

In this paper, we further study the TRF approach to language model-
ing and define neural TRF LMs that combine the advantages of both
NNs and TRFs. The following contributions enable us to success-
fully train neural TRFs.

• Although the nonlinear potential functions could be imple-
mented by arbitrary NNs (FNNs or RNNs), the design of the
deep CNN architecture in this paper is found to be important
for efficient training.

• The proposed AugSA plus JSA training algorithm is crucial
for the learning of neural TRFs to be feasible.

• Several additional techniques are found to be useful for train-
ing neural TRFs, including wider local jump in MCMC,
Adam optimizer, and training set mini-batching.

It is worth pointing out that apart from the success in language
modeling, the neural TRF models can also be applied to other se-
quential and trans-dimensional data modeling tasks in general, and
also to discriminative modeling tasks, e.g. extending current “CRF-
s+NNs” models. For language modeling, integrating richer nonlin-
ear and structured features is an important future direction.

299

7. REFERENCES

[1] Holger Schwenk, “Continuous space language models,” Com-
puter Speech & Language, vol. 21, pp. 492–518, 2007.

[2] Tomas Mikolov, Stefan Kombrink, Lukas Burget, Jan H Cer-
nocky, and Sanjeev Khudanpur, “Extensions of recurrent neu-
ral network language model,” in Proc. International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP),
2011.

[3] Martin Sundermeyer, Ralf Schlüter, and Hermann Ney, “Lstm
neural networks for language modeling.,” in Proc. Interspeech,
2012, pp. 194–197.

[4] Bin Wang, Zhijian Ou, and Zhiqiang Tan, “Trans-dimensional
random fields for language modeling,” in Proc. Annu. Meeting
of the Association for Computational Linguistics (ACL), 2015.

[5] Bin Wang, Zhijian Ou, and Zhiqiang Tan, “Learning trans-
dimensional random fields with applications to language mod-
eling,” IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), 2017.

[6] Haotian Xu and Zhijian Ou, “Joint stochastic approximation
learning of helmholtz machines,” International Conference on
Learning Representations (ICLR) Workshop Track, 2016.

[7] Diederik Kingma and Jimmy Ba, “Adam: A method for s-
tochastic optimization,” arXiv:1412.6980 [cs.LG], 2014.

[8] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals, “Re-
current neural network regularization,” arXiv preprint arX-
iv:1409.2329, 2014.

[9] Ronald Rosenfeld, Stanley F. Chen, and Xiaojin Zhu, “Whole-
sentence exponential language models: a vehicle for linguistic-
statistical integration,” Computer Speech & Language, vol. 15,
pp. 55–73, 2001.

[10] John Lafferty, Andrew McCallum, and Fernando Pereira,
“Conditional random fields: Probabilistic models for segment-
ing and labeling sequence data,” Proc. International Confer-
ence on Machine Learning (ICML), pp. 282–289, 2001.

[11] Jian Peng, Liefeng Bo, and Jinbo Xu, “Conditional neural
fields,” in Advances in neural information processing systems,
2009, pp. 1419–1427.

[12] Thierry Artieres et al., “Neural conditional random fields,” in
Proceedings of the Thirteenth International Conference on Ar-
tificial Intelligence and Statistics, 2010.

[13] Rohit Prabhavalkar and Eric Fosler-Lussier, “Backpropagation
training for multilayer conditional random field based phone
recognition,” in Acoustics Speech and Signal Processing (I-
CASSP), 2010 IEEE International Conference on. IEEE, 2010,
pp. 5534–5537.

[14] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen,
Koray Kavukcuoglu, and Pavel Kuksa, “Natural language pro-
cessing (almost) from scratch,” Journal of Machine Learning
Research, vol. 12, no. Aug, pp. 2493–2537, 2011.

[15] Kaisheng Yao, Baolin Peng, Geoffrey Zweig, Dong Yu, Xiao-
long Li, and Feng Gao, “Recurrent conditional random field
for language understanding,” in Acoustics, Speech and Signal
Processing (ICASSP), 2014 IEEE International Conference on,
2014.

[16] Xuezhe Ma and Eduard Hovy, “End-to-end sequence la-
beling via bi-directional lstm-cnns-crf,” arXiv preprint arX-
iv:1603.01354, 2016.

[17] Jianwen Xie, Yang Lu, Song-Chun Zhu, and Yingnian Wu, “A
theory of generative convnet,” in International Conference on
Machine Learning, 2016.

[18] Ngoc-Quan Pham, German Kruszewski, and Gemma Boleda,
“Convolutional neural network language models,” in Proc. of
EMNLP, 2016.

[19] Yoon Kim, Yacine Jernite, David Sontag, and Alexander M
Rush, “Character-aware neural language models,” in Thirtieth
AAAI Conference on Artificial Intelligence, 2016.

[20] Yann N Dauphin, Angela Fan, Michael Auli, and David Grang-
ier, “Language modeling with gated convolutional networks,”
arXiv preprint arXiv:1612.08083, 2016.

[21] Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Si-
monyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner, An-
drew Senior, and Koray Kavukcuoglu, “Wavenet: A generative
model for raw audio,” CoRR abs/1609.03499, 2016.

[22] Herbert Robbins and Sutton Monro, “A stochastic approxi-
mation method,” The Annals of Mathematical Statistics, pp.
400–407, 1951.

[23] Albert Benveniste, Michel Métivier, and Pierre Priouret, Adap-
tive algorithms and stochastic approximations, New York:
Springer, 1990.

[24] Hanfu Chen, Stochastic approximation and its applications,
Springer Science & Business Media, 2002.

[25] Zhiqiang Tan, “Optimally adjusted mixture sampling and lo-
cally weighted histogram analysis,” Journal of Computational
and Graphical Statistics, vol. 26, pp. 54–65, 2017.

[26] Jun S Liu, Monte Carlo strategies in scientific computing,
Springer Science & Business Media, 2008.

[27] “Kaldi,” http://kaldi.sourceforge.net/.

[28] Stanley F. Chen and Joshua Goodman, “An empirical study
of smoothing techniques for language modeling,” Computer
Speech & Language, vol. 13, pp. 359–394, 1999.

[29] “Srilm - the sri language modeling toolkit,” http://www.
speech.sri.com/projects/srilm/.

[30] “word2vec,” https://code.google.com/archive/
p/word2vec.

300

