USE OF PARTICLE FILTERING AND MCMC FOR INFERENCE IN PROBABILISTIC
ACOUSTIC TUBE MODEL

Ruobai Wang*  Yang Zhang'

Zhijian Ou*  Mark Hasegawa-Johnson'

* Tsinghua University, Department of Electronic Engineering
T University of Illinois, Urbana-Champaign, Department of Electrical and Computer Engineering

wangruobaill@tsinghua.org.cn,yzhanl43@illinois.edu,o0zj@tsinghua.edu.cn, jhasegaw@illinois.edu

ABSTRACT

The Probabilistic Acoustic Tube (PAT) model is a probabilistic gen-
erative model of speech. By associating every generative parameter
with a probability distribution, it becomes possible to convert ev-
ery standard speech analysis task into a probabilistic inference task,
thereby grounding every such task with quantifiable measures of bias
and consistency. The previously published PAT model did not ade-
quately model AM-FM and therefore phase of the voice source. In
this paper, we model the AM-FM of the voice source using an au-
toregressive process. The resulting model is a non-linear state-space
model and thus has no closed-form inference algorithm, but effec-
tive inference can be achieved by using Auxiliary Particle Filtering
(APF) and Taylor expansion assisted Markov Chain Monte Carlo
(MCMC). Results demonstrate that, unlike previous speech model-
s, this model is able to account for the phase of the voice source,
achieving signal reconstruction with 8.79dB SNR.

Index Terms— Speech modeling, particle filter, MCMC

1. INTRODUCTION

In speech analysis and synthesis, a complete model, which jointly
considers all speech parameters, would be more useful than a partial
model. For example, pitch and spectral envelope [1], vocal tract and
glottal source [2], should be considered together. Degottex et. al. [3]
proposed a speech model called SVLN, using pitch, glottal source
and vocal tract together as its parameters. Turner et. al. [4] proposed
the PAFD method, which separates the voiced signal into AM-FM
sinusoidal components. The STRAIGHT model [5] also considers
pitch, spectral envelope, and glottal source jointly. Most of these ef-
forts, however, estimate parameters separately. A speech model that
is capable of jointly inferring all speech parameters in a structural
manner is expected to yield higher consistency and accuracy.

Therefore, we have proposed a probabilistic generative model
for speech called Probabilistic Acoustic Tube (PAT) [6, 7]. It jointly
models breathiness, pitch, glottal excitation and vocal tract, notably
with phase information. In PAT3 [8], we incorporated AM-FM ef-
fects using Gaussian approximation similar to Bayesian Spectral Es-
timation (BSE) [9]. The Gaussian approximation, however, is inac-
curate especially when the instant amplitude is small [4]. Therefore,
in this paper, we model the AM-FM of the voice source using an
autoregressive (AR) process. Based on Auxiliary Particle Filtering
(APF) and Markov Chain Monte Carlo (MCMC), we successfully
develop an effective inference algorithm for this improved but com-
plicated model.
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The inference scheme of the new PAT3 consists of two layers.
The outer layer applies APF to infer the frame-level hidden vari-
ables, such as pitch, group delay, glottal vibration, vocal tract trans-
fer function, and voiced/unvoiced amplitude. The inner layer uses
Taylor expansion assisted MCMC to infer the sample-level hidden
variables, which are fine voiced amplitude and pitch variations af-
fected by AM-FM effect [13, 14], instead of making Gaussian ap-
proximation as in the previous PAT3 model.

The rest of the paper is arranged as follows: Section 2 briefly in-
troduces the model of PAT3. Sections 3 describes the inner and out-
er layers of the inference scheme respectively. Section 4 shows the
experiment results which demonstrate the effectiveness of the new
PAT3. Section 5 gives the conclusion and future research directions.

2. MODEL OF PAT3

2.1. The Signal Model

The signal model of the new PAT3 is similar to the original one [8].
It is a source-filter model, where the source is a mixture of glot-
tal vibration and breathy noise, and the filter is the vocal tract. A
discrete-time speech frame x () is modeled as

2(t) = [(0(t) + bu(®)) * h(t) + 2(5)]| w(?) )

where * represents convolution, v(t) is the voiced source, b is the
unvoiced amplitude, and € is the noise amplitude. /() is the impulse
response of the vocal tract. Both the unvoiced signal u(t) and the
noise €(t) are modeled by standard white Gaussian processes. w(t)
is the rectangular window function.

The voiced source, v(t), is modeled as a superposition of quasi-
periodic harmonics affected by AM-FM:

u(t) = a(t) Z real [G(dwo) exp(—dwoT + dp(t))] ?2)

d=1

where d is the harmonic order, and D is its maximum. 7 is the
group delay, and wo = 2w fo/Fs is the fundamental angular fre-
quency. F is the sampling rate. ¢(t) = S°0_, ;—: (s) is the instant
phase of the fundamental harmonic, which is derived from the in-
stant fundamental frequency f(s). s runs through sample points.
a(t) = log (1 + ea(t)) is the non-negative AM envelope of the
voiced source, which is determined from the transformed-modulator
a(t) by [4]. G(w) is the glottal transfer function. We use the same
three-pole model as in [8], and denote its parameters as g.

The vocal tract transfer function H (w), which is assumed to be
causal, can be represented by its real cepstral coefficients h at posi-
tive low-quefrency [15].



2.2. The Probabilistic Model

From the signal model, PAT3 further builds a probabilistic generative
model of speech, which essentially is a non-linear state-space model.

2.2.1. Observation Likelihood

Transforming Eq. (1) into frequency domain by length-L FFT, and
adding subscripts n to index frames, we obtain

Xn(@) = [(Va (@) + BuUn (@) Ho (@) + En B ()] ® W (@),
3
where ® represents circular convolution. Define the voiced part
Sn(w) as
Sn(w) = (Va(w)Hn(w)) ® W (w) ©)

As detailed in [7], we stack the real parts and then the non-zero
imaginary parts of X, (w), w = 2*k,k = 0,..., %, into a length-
L vector @, and similarly s,, for S,(w). It can be proved that
elements of «,, given s,, are independent Gaussians

|Xn (22 k) — Su(22K)|*

log p(xn|sn) = Z [— log(2mon,k) —

gt 20
)]
where
2 72 2w 2 ~2
k="0bn |Hn | —Fk || +¢&, (6)
L
2.2.2. State Transition
There are two sets of states (i.e. hidden variables). The first set,
O":{foy’nuT’ﬂvh’ﬂ?g’ﬂ7b"} (7)

where b, = log En, is the set of frame-level hidden variables, be-
cause they are constant within a frame. The letter ‘O’ stands for
‘Outer’ for reasons that will be clear soon. Note that &2 are esti-
mated directly from the first several frames of an utterance that are
assumed to be speech-free, and thus not treated as hidden. The sec-

ond set,

T
L =L} _yr = {len® L)} ®
where the letter ‘I’ stands for ‘Inner’, is the set of sample-level hid-
den variables (indexed by ¢) within a frame. a : b denotes a set of
consecutive integers from a to b.
For the first set, we assume Brownian motion on frame level !

p(On|On,1) I./V'(Onfl,zo) (9)
For the second set, we apply 2nd-order AR assumption on sample
level, inspired by the work in [4] for AM-FM demodulation

(Ln(O)|In(t—2:t—1))

=N ML (t— 1) + (1 = N (t — 10

2),%r)

Here X0, 3 are diagonal covariance matrices. For both sets, we
assume uninformative priors for boundary conditions.

To sum up, notice that s,, is determined by O,, and I,, the like-
lihood in Eq. (5) essentially specifies p(,|On, I,). Then Egs. (5),
(9) and (10) define the probabilistic model of PAT3 as a non-linear
state-space model.

'Except for 7, on which the uninformative prior is applied.

3. DUAL-LAYER MONTE CARLO INFERENCE

A rationale in PAT modeling is that the observed speech can be an-
alyzed by performing inference over hidden variables. Here we are
interested in MAP inference, i.e., finding the MAP sequence

011\%1) £ argmax p(O1.n|Z1:N) (11)

O1:n

Eq. (11) has no analytic solution for the aforementioned nonlin-
ear state-space model, therefore we adopt the method developed in
[16], which is a sequential Monte Carlo approximation to Eq. (11).
The general idea is to first perform particle filtering and view the set
of resulting particles as a discretization of the state space, and then
apply Viterbi decoding.

In order to obtain the filtering distribution p(O1.n|Z1:n), We
need to evaluate the likelihood p(z,|O;), which is estimated by
Viterbi approximation:

P(@n|On) ~ max p(@n|On, In)p(In) = p(@n|On, I)p(In)

(12)
where fn is picked from the samples {Iff) } drawn from
r=1

p(In|On, ). This amounts to (sample-level) sm%othing infer-
ence. We apply different Monte Carlo techniques to solve the
(sampling-level) smoothing and (frame-level) filtering inference
problems, which can be divided into two layers and detailed in the
next two subsections respectively.

Inner Layer: Estimate p(I,|O,,x,) using Markov Chain
Monte Carlo MCMC);

Outer Layer: Estimate p(O1.ny | 1:n) using Auxiliary Particle
Filter (APF).

3.1. Outer Layer Inference using APF

Suppose that p(Oy,—1|®1.n—1) is approximated by a discrete distri-

bution:
O(l) Jw (1) 13
{ n—1 n—1 i 1M ( )
where O'") | is the i-th sample of O,,_1 and w'"
APF aims to sample a mixture distribution

is its weight.

M
P(On|21:n) o p(24|02) Y (0,00 Nw?,  (14)
i=1
with proposal

4(0n10;” )5y (15)
The APF procedure consists of iterating the following steps (n =

1,...,N):
1. Resample: Sample M indices ji, ...

according to { BS‘)}
i=1: ]\/I

2. Propagate: Sample O from ¢(0,,|0Y", | @.,).

,Jm from {1,..., M}

3. Reweight: Assign each particle O%) the corresponding im-
portance weight:

(4) O(p(wnla(f)) P00 ), o
(0(2)|0(11

Gi) | z,) ﬁljz)

n

The efficiency of an APF scheme rests primarily on the choice
of proposal distribution ¢(O |O,(1) 1, %) and resampling weight-
S B(i) We follow the common practice to set Bff) proportional to
p(xn \O( 2 1)w£f) 1, and carefully design different proposal distribu-
tions for different hidden variables.



3.1.1. Proposal Distributions for b,, and gn,

For these three hidden variables, the proposal distributions are the
transitional distributions in Eq. (9):
a(bulb) 1) = p(balbi).

a(gnlg’ ) = p(gnlgl?,) (A7)

3.1.2. Proposal Distribution for h,,

For h,,, the proposal does not depend on previous frames, but on g,,

a(halgy)) = N(hi), s1) (18)
where s7 is a hyper-parameter and izgf ) is an estimate of h,, for par-
ticle ¢, using cepstral analysis. Specifically, denote the signal cep-
strum by ¢, [k]. In voiced case, voiced energy is assumed to domi-
nate non-voiced energy. From Eqs. (2) and (4), the filter of voiced
energy is G (w)Hn(w). According to cepstral theory [15]

cnlk] = gnlk] + hn[k], VK at low quefrency (19)

Stackmg the low quefrency part of ¢, [k] and g [k] into vectors

¢, and g gn respectlvely, we have
hi) = e — gy (20)
where g(l) is the estimate of glottal complex cepstrum from g,@.

In unvoiced case, the transfer function is H (w). Therefore

hY =e¢, @n

3.1.3. Proposal Distributions for fo n and T,

The proposal distributions for fo ., and 7, are Gaussian Mixture
Models (GMMs):

fO n Z’YIN fOn ) :Zdl'/\/(%n(l)wsi)
l

(22)
where s7 and s? are hyper-parameters, { fon(1)} are arithmetic in-
verse of lags corresponding to peaks of autocorrelation function; 7,
are peak times of short-time energy function. «y; and §; are propor-
tional to peak height.

3.2. Inner Layer Inference using Taylor Expansion Assisted M-
CMC

The inner layer inference uses the Metropolis-Hastings (MH) al-
gorithm in the MCMC framework, to sample from p(I,|On, Tn).
Hereafter, this target distribution is written as p(I|O, x), by sup-
pressing frame subscript n, since the sampling is within each frame.

In each iteration, given the current sample I (") a new sample I
is drawn from a proposal distribution ¢(I|I", O, x), and is accept-
ed with probability

. p(I|0,z)q(I"|1,0, )
i {1’ p(I[0, 2)q(IIT), 0, z) @3

To define the proposal distribution ¢, inspired by [17], we exploit
2nd-order Taylor expansion of the single-site conditional distribution

Inp (1(t)|1(’“>(1 = 1), It +1:7), O,:c) 24)

A sensible point around which to take the Taylor expansion is the
prior conditional mean of I(t), which has closed form as follows:

m(t) 2R (I(t)u“)(t — 2t — 1), I+ 1t + 2))

- n(I(”(t— 1)+ IOt + 1))

(25)

where 5 = (1 — A\)/A, 1 = A%/A, A =2(1 — X+ \?).
Here we state without further derivation that the single-site pro-
posal distribution ¢ (I(t)|I(T)(1 =1, It +1:7), O,m)
obeys 2-d independent Gaussian. Define ¥ £ diag(oZ.,_1) accord-

ing to Eq. (6). Then for dimension a = 1,2, the Gaussian mean
t,q and variance \; o are as follows:

2) +I<’")(t+2)) +L(I(T)(t—

T
fita = Ma(t) — Ma (s(”"“)) - :1:) DRV

T
)+ (o0 ) 5
(26)
To understand this, first note that the voiced part, s is a deterministic
vector function of O and I, which could be denoted by s(O, I)

with some abuse of notation. Then, VETCZ and vf;g” are defined as
the gradient and Hessian’s diagonal of

Ab = A8, + (VETQ)T 5

(r,m())
@7

s (O,I<’“>(1 ct—1),mt), I V(¢ +1: T)) 5

with respect to dimension a of m(t), a = 1, 2.
Finally, we obtain the full proposal distribution
#JTa (100

qII7,0,z) 2 OI71:t—1,t+1:T),0 :c)

(28)

4. EXPERIMENT

4.1. Configurations

To evaluate the effectiveness of the new PAT3 model along with
the newly developed inference algorithm, we adopt the Edinburgh
Speech Corpus [18], which consists of a male speaker and a female
speaker, each producing 50 sentences. The total length of 100 utter-
ances is 331.6s, and the sample rate is 20KHz. The corpus has accu-
rate glottal measurement by laryngograph, which provides valuable
ground truth for GCI and pitch frequencies.

Each utterance is segmented into 30ms speech frames with 10ms
frame shift. For each frame, the inferred values of hidden variables
OMAP and I, are computed by the new PAT3.

4.2. Signal Reconstruction and AM-FM Tracking

Reconstruction is the inferred ., (w) (voiced case) or by, Uy, (w) Hy (w)
(unvoiced case), which are both determined by the inferred O,, and
I,,. Fig. 1 compares the reconstructed spectrogram (top panel) and
the original one (bottom panel) of utterance 1 of the male speaker.
Both spectrograms are similar, particularly in low frequency, where
the energy is dominated by voiced.

Fig. 2 plots the reconstructed voiced waveform from Sy, (w) of
frame 107, utterance 1 of the male speaker. The black line is the
original waveform, and the red line is the reconstructed waveform.
The top panel shows the reconstructed waveform without AM-FM
tracking, i.e. the inferred waveform with O,, set to its inferred value,
but I,, (which contains of AM-FM related variables) set to constant.
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Fig. 1: Comparison of the reconstructed and original spectrogram.
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Fig. 2: The reconstructed voiced waveform (red line) with and with-
out AM-FM tracking, compared with the original waveform (black).

The bottom panel shows the result with AM-FM tracking, i.e. the
inferred waveform with O,, and I,, both set to their inferred values.
As can be seen, the AM-FM effect in the original waveform is sig-
nificant - it can capture constant increase in amplitude and a slight
decrease in FO.

Table 1 shows the averaged SNR of the reconstruction using
PAT3 compared to that using STRAIGHT [5]. PAT3 exceeds S-
TRAIGHT by almost 10dB. This is because STRAIGHT is a model

PAT3 GetF0
PSA;IS STIfZA?;HT GPE (%) 2.10 2.07
- - RMS (Hz) 5.052 5.780

Table 1: SNR of speech re-
construction

Table 2: Pitch tracking results on
Edinburgh dataset

0 100 200 300 400 500
Iteration

Fig. 3: SNR of reconstruction as a function of MCMC iterations.

for power spectrum only, not considering the phase, whereas PAT3
models the speech waveform itself.

Combining these results we can see that PAT3 can accurately
reconstruct not only the amplitude, but also the phase with good
accuracy. Phase modeling has been notoriously difficult in speech
processing, yet important in applications such as speech denoising
and glottal estimation.

4.3. Pitch Tracking

Pitch tracking by PAT3 is essentially the inference of fo . Since a
U/V decision scheme for PAT3 has yet to be developed, we extract
pitch on labeled voiced segments only, and compare against a pitch-
tracking benchmark, GetFO [19]. Both algorithms are run over the
complete Edinburgh dataset. For fair comparison, we compare the
pitch tracking results of all the voiced frames that are also correctly
classified as voiced by GetF0, in terms of the following 2 criteria:
Gross Pitch Error (GPE): The percentage of frames whose pitch
estimates deviate from ground truth by more than 20%.
Root Mean Squared Error (RMS): The averaged mean squared
error in Hz over the frames free of GPE.

Table 2 shows the results. As can be seen, PAT3 has comparable
GPE level to GetFO, but much smaller RMS, which means PAT3
inference is more accurate.

4.4. Performance of the Sampling Inference

Fig. 3 plots the SNR as a function of inner MCMC iterations, which
implies that it mixes well within 500 iterations. For efficiency in
practice, we set 60 particles for outer layer APF, and 5 inner M-
CMC iterations for each particle. Then the best particle is perfect-
ed with another 100 iterations. The proposed inference algorithm,
working with the 1200-dimensional AM-FM hidden variables I, in
each frame, in addition to the 55-dimensional O,,, produces satis-
factory performance, as shown in all the above results.

5. CONCLUSION

This paper introduces an AR process to model AM-FM of the voice
source. The resulting model is complex, but its parameters can be
inferred using an APF outer loop and a Taylor expansion assisted
MCMC inner loop. Results demonstrate reconstruction of both sig-
nal magnitude and phase from probabilistically inferred generative
model parameters with a reconstruction SNR of 8.79dB.
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