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Experiments

𝑥 𝑡 = 𝑣 𝑡 +  𝑏 𝑢 𝑡 ∗ ℎ 𝑡 +  𝑒 𝜀 𝑡 𝑤 𝑡
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Viterbi approximation : 
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We exploit 2nd-order Taylor expansion of the single-site conditional 
distribution
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to define the single-site proposal distribution.
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for d=1
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• 𝑋𝑛 𝜔 = 𝑉𝑛 𝜔 +  𝑏𝑛𝑈𝑛 𝜔 𝐻𝑛 𝜔 +  𝑒𝑛𝐸𝑛 𝜔 ⊗ 𝑊𝑛 𝜔

• Voiced part 𝑆𝑛 𝜔 = 𝑉𝑛 𝜔 𝐻𝑛 𝜔 ⊗ 𝑊𝑛 𝜔 , vectorized as 𝒔𝑛.

• Stack the real and imaginary parts of 𝑋𝑛
2𝜋𝑘

𝐿
, 𝑘 = 0 to 𝐿/2, as 𝒙𝑛. 

𝑓0𝑓0 𝑓0

𝜏𝜏 𝜏

𝒈𝒈 𝒈

𝒉𝒉 𝒉

𝑏𝑏 𝑏

𝒙𝑛−1𝒙𝑛−2 𝒙𝑛

𝑰𝑛−1𝑰𝑛−𝟐 𝑰𝑛

𝑶𝑛 = 𝑓0,𝑛, 𝜏𝑛, 𝒈𝑛, 𝒉𝑛, 𝑏𝑛𝑶𝑛−2 𝑶𝑛−1

=
𝑎𝑛 𝑡

𝑓𝑛 𝑡

Speech frames are modeled as a non-linear state-space model.
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2 Observation likelihood :

State transition :

Frame-level MAP inference :   𝑶1:𝑁
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