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What is this talk about?

e Brief introduction to SPMI lab

* Motivation
e Bayesian HMM modeling of speech, ICASSP 2007.
* Variational nonparametric Bayesian HMM, ICASSP 2010.

* NMF modeling of voice in song, and a monaural voice and
accompaniment separation system, ICASSP 2011.

* Probabilistic Acoustic Tube (PAT) Model, AISTATS 2012, ICASSP 2014.



Overview of SPMI Lab

* Setup the lab, since 2003.

e 2 master and 2 ph.d. students (Current), 7 master students (Graduated).

 Research interests

* Speech Signal and Information Processing
» Speech recognition and understanding (LVCSR - Mandarin, English)
Source separation
Speaker recognition
Natural language processing
* Microphone array

e Statistical Machine Intelligence

e Construct probabilistic models of the studied phenomenon using human knowledge
and machine learning algorithms;

* Find efficient ways of implementing probabilistic inference with those models.



Motivation

As far as the laws of mathematics refer to
reality, they are not certain;

and as far as they are certain, they do
not refer to reality.

—— Albert Einstein
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How Google Works ... to think from first principles and real-

world physics rather than having to
accept the prevailing “wisdom.”
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Motivation - Probabilistic Modeling of Speech

* Dealing with uncertainty + Thinking from physics

* Most speech processing tasks (e.g. pitch estimation, speech
recognition, source separation and so on) require a
probabilistic model of speech.

 The more scientific the model is, the better we can do for
speech processing.
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HMM based Acoustic Model
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Correlation between different sounds

3000 states * 32 gaussians in R3°

3 states * 1 gaussian in R2

Correlation between the Gaussian means of different sounds
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Bayesian HMM modeling of speech

Bayesian Network Representation of the Generative Model of Speech,
iIncorporating the Supervector Variable u.

xe|qe = i~N(u;, C;)

- Use Variational EM algorithm to learn © = {u,, %, {C;}}.
» Use ICM to adapt and recognize

magTP(Ch o qr|xq X7, 1, ) ,mﬁlxp(ulxl X7, 41 47, 9).
o
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Experimental Results — ICASSP 2007

¢ OGI Numbers: 30-word vocabulary

¢ 39-dim feature : (12 MFCCs, Energy)+A+AA
¢ 26 monophone + sil + pause, each modeled by 3 states.

Word Error Rates

i-vector in speaker
recognition (2010)

Mixture num per state 1 2 4
Baseline 20.86 16.85 13.34
MLLR 20.71 16.79 13.25
Speaker MAP 20.75 16.83 13.32
adaptation | MLLR+EV 20.79 16.27 12.59
EM+EV 18.42 15.76 12.44
MLLR 20.71 16.80 13.29
Utterance MAP 20.75 16.86 13.24
adaptation MLLR+EV 20.81 16.62 13.20
EM+EV 18.31 15.20 11.97
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Motivation to the next work

When applying HMMs, how many states should we use,
and how the states are connected ?

Can we infer the state-transition structure from data ?
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Variational Nonparametric Bayesian HMM

Differences from other existing nonparametric Bayesian HMM

IHMM: Beal, Ghahramani, Rasmussen, “The infinite hidden Markov model,” NIPS 2002.
HDP-HMM: Teh, Jordan, Beal, Blei, “Hierarchical Dirichlet processes,” JASA 2006.

1 IHMM and HDP-HMM employ sampling We apply the efficient variational inference
based inference. for the NBHMM.

2 |IHMM deals only with discrete observations. I\!BI—!M!\/I_supports c_;ontln_uous observations
via (infinite) Gaussian mixtures.

3 The transition distribution in IHMM and In the NBHMM, directly created from a
HDP-HMM is generated from HDP stickbreaking construction, simpler
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Graphical Model of the Nonparametric Bayesian HMM

A stickbreaking construction of
Dirichlet Process prior
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Experimental Results
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(¢) Hinton graph for classical HMM (d) Hinton graph for NBHMM

A toy example of continuous
speech recognition which uses
four phonetic states (no.1-4) plus
a silence state (no. 5).

The data contains 50 chains, and
the length of each chain is 20.

The classical HMM with the size of
state-space N = 20.

The NBHMM with the truncation
level L = 20.
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A “triphone” structure
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Introduction

* Block diagram of voice/accompaniment separation systems

Mixed Melody
Signal extraction

* Various implementations

Time-frequency Voice &
. — .
masking Accompaniment

Melody extraction | T-F masking
D.L.Wang [IEEE ASLP 2007] HMM Hard
Hsu(1) [IEEE ASLP 2010] (Neither?;sﬁiror NMEF) Hard
Hsu(2) [ISMIR 2009] HMM
Virtanen [ISCA 2008] q HMM NMF Soft
Durrieu [ICASSP 2009] NMF NMF Soft
Ours HMM NMF Soft
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NMF based Acoustic Model

* Observed spectogram X as a stochastic process
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* Main task: Estimate D with NMF constraints to maximize p(X|D)



NMF based Acoustic Model
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NMF based Acoustic Model

Glottal excitation

Vocal tract

Music

N— —
Dy,

B matrices are “codebooks”

N, e’

D p;

A matrices are linear combination coefficients
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NMF-based melody extraction and separation

* Fix B, estimate © = {A, By, Ay, By, Ay} under max likelihood
* Find the strong continuous pitch trajectory on Ay, using DP

Example A (in dB)
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Frame
* Fix B, and A, Re-estimate and Soft masking
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* Imbalance in A,

* Two causes:

* Non-linearity of midi number scale
* Columns of B unnormalized

(a) The B_ matrix (in dB)
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Flaw of NMF-based melody extraction

(a) Original A_ (in dB)
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Flaw of NMF melody extraction

* Durrieu’s compensation: (A%),.: = (Ar)n.t + 0.5(AF)nt12.e

* Our compensation:

" — . ! . :
(AF)’”/J — (AF)”J f‘r(ﬂ;) ;(BF)%’”

* Compensation cannot eliminate imbalance!

Midi number

Midi number

(a) Original AF (in dB)

(b) Compensated A’F {(in dB)

(c) Compensated A"F (in dB)
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Experimental Results

HI1 system

Our system

Mixing | Ideal  Annot. Extr. | Annot. Extr.
ratio masks  pitch  pitch | pitch  pitch
-5dB 10.62 ;o -0.5 1034  4.03
0dB 8.36 6.0 0.9 8.70 5:3
5dB 5.82 3.0 0.2 6.53 4.09

Table 1. Comparison of Hsu's SDR gains (in dB) on the MIR-1K
database for the HI system (cited from [2]) and our system

Original Durrieu Our system

Chip Voice Acc. | Voice Acc. | Voice Acc.
Bearlin -237 9.37 6.2 11.6 | 344 8.6
Tamy 051 -051 | 1.5 11.0 | 417 3.66
Bent 0.01  -0.01 > Jin 5.6 8.46  8.45
Chevalier | -6.79  6.79 1.5 8.3 272 9.50
Love 028 -0.28 | 8.6 8.4 517 4.89
Matter 472 4.72 8. 127 | 452 9.24

Table 2. Comparison of Durrieu’s SDRs (in dB) for voice and ac-
companiment on Durrieu’s database for Durrieu’s system using com-
pensated A'- (cited from Durrieu’s website) and our system
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Grand Challenge

Make Intelligent Machines That Can Hearr,
Especially In Complex Acoustic Environment Like Cocktail Party.
- - Additive noise
,{ |

}
Reverberation : -Q-
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Motivation

What is the basic physical model of speech production ?

—— The Acoustic Tube Model, a.k.a Source-Filter Model.
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Motivation

Are there any generative models of speech?
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Motivation

* Most of them are actually generative models of the speech features
(e.g. Magnitude, Correlogram, Cepstrum).

* Only a few directly model the spectrogram (Reyes-Gomez et al. 2005,
Bach and Jordan 2005, Kameoka et al. 2006, Hershey et al. 2010).

* None of them fully respect the physical acoustic tube model
 Pitch, Glottal source, Vocal tract response, Aspiration noise, Phase

* Drawback: Speech analysis is incomplete, inaccurate or even incorrect.

e Chicken and egg effect;
 Vocal tract estimate (e.g. LPC and MFCC) corrupted by spectral tilt.
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PAT Model

S¢(w) = [aVi(w) + beU(w)]He(w) ® Wi(w)+Np(w)

Voiced excitation
Ve(@) = Ge(we T ) §(w — kwoy)
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Highlight of PAT

* PAT is based on the fundamental physics of speech production.

* A probabilistic generative model that jointly considers all
important speech parameters;

* Incorporates breathiness and glottal source;

* Incorporates phase modeling and so completely defines a
probabilistic model for the complex spectrum of speech;

* Makes U/V states a continuum by introducing voiced
amplitude and unvoiced amplitude, which is closer to the

nature of speech.
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Summary - Probabilistic Modeling of Speech

e PAT: On the way ...

* One of the reviewers comments "to my knowledge the most complete
attempt on developing a true generative model for speech".

e Bayesian HMM modeling of speech, ICASSP 2007

-> Put a prior over model parameters to account for high-level factors
(e.g. the speaker, utterance style).

* Variational nonparametric Bayesian HMM, ICASSP 2010

-> Discover the state-transition structure according to data.
* NMF modeling of voice, ICASSP 2011

-> feasible
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Thanks:
Jun Luo, Nan Ding, Yun Wang, Yang Zhang, Mark Hasegawa-Johnson.

Thanks for your attention !
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