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What is this talk about?

• Brief introduction to SPMI lab

• Motivation

• Bayesian HMM modeling of speech, ICASSP 2007.

• Variational nonparametric Bayesian HMM, ICASSP 2010.

• NMF modeling of voice in song, and a monaural voice and 
accompaniment separation system, ICASSP 2011.

• Probabilistic Acoustic Tube (PAT) Model, AISTATS 2012, ICASSP 2014.
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Overview of SPMI Lab

• Setup the lab, since 2003.

• 2 master and 2 ph.d. students (Current), 7 master students (Graduated).

• Research interests

• Speech Signal and Information Processing
• Speech recognition and understanding (LVCSR - Mandarin, English)

• Source separation

• Speaker recognition

• Natural language processing

• Microphone array

• Statistical Machine Intelligence
• Construct probabilistic models of the studied phenomenon using human knowledge 

and machine learning algorithms;

• Find efficient ways of implementing probabilistic inference with those models.
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Motivation
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As far as the laws of mathematics refer to 

reality, they are not certain; 

and as far as they are certain, they do 

not refer to reality. 

—— Albert Einstein



Motivation
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… to think from first principles and real-

world physics rather than having to 

accept the prevailing “wisdom.” 

—— Larry Page



Motivation - Probabilistic Modeling of Speech

• Dealing with uncertainty + Thinking from physics

• Most speech processing tasks (e.g. pitch estimation, speech 
recognition, source separation and so on) require a 
probabilistic model of speech. 

• The more scientific the model is, the better we can do for 
speech processing.
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HMM based Acoustic Model
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Correlation between different sounds
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3000 states * 32 gaussians in R39

3 states * 1 gaussian in R2

Correlation between the Gaussian means of different sounds

due to high-level factors (e.g. speaker).



Bayesian HMM modeling of speech
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Bayesian Network Representation of the Generative Model of Speech, 

incorporating the Supervector Variable 𝜇.

𝜇~𝑁 𝜇0, Σ

𝑥𝑡|𝑞𝑡 = 𝑖~𝑁 𝜇𝑖 , 𝐶𝑖

• Use Variational EM algorithm to learn Θ = 𝜇0, Σ, 𝐶𝑖 .

• Use ICM to adapt and recognize  

max
𝑞1⋯𝑞𝑇
𝑝 𝑞1⋯𝑞𝑇|𝑥1⋯𝑥𝑇 , 𝜇, Θ ,max

𝜇
𝑝 𝜇|𝑥1⋯𝑥𝑇 , 𝑞1⋯𝑞𝑇 , Θ .



Experimental Results – ICASSP 2007
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 OGI Numbers: 30-word vocabulary

 39-dim feature : (12 MFCCs, Energy)++

 26 monophone + sil + pause, each modeled by 3 states.

Mixture num per state 1 2 4

Baseline 20.86 16.85 13.34

Speaker 

adaptation

MLLR 20.71 16.79 13.25

MAP 20.75 16.83 13.32

MLLR+EV 20.79 16.27 12.59

EM+EV 18.42 15.76 12.44

Utterance 

adaptation

MLLR 20.71 16.80 13.29

MAP 20.75 16.86 13.24

MLLR+EV 20.81 16.62 13.20

EM+EV 18.31 15.20 11.97

Word Error Rates

i-vector in speaker 
recognition (2010)



Motivation to the next work
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When applying HMMs, how many states should we use, 
and how the states are connected ?

Can we infer the state-transition structure from data ?
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Variational Nonparametric Bayesian HMM
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iHMM: Beal, Ghahramani, Rasmussen, “The infinite hidden Markov model,” NIPS 2002.

HDP-HMM: Teh, Jordan, Beal, Blei, “Hierarchical Dirichlet processes,” JASA 2006.

Differences from other existing nonparametric Bayesian HMM

1
iHMM and HDP-HMM employ sampling 

based inference.

We apply the efficient variational inference 

for the NBHMM.

2 iHMM deals only with discrete observations.
NBHMM supports continuous observations 

via (infinite) Gaussian mixtures.

3
The transition distribution in iHMM and 

HDP-HMM is generated from HDP

In the NBHMM, directly created from a 

stickbreaking construction, simpler



Graphical Model of the Nonparametric Bayesian HMM
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Gaussian-Gamma prior 

for the Gaussian means and 

variances

A stickbreaking construction of 

Dirichlet Process prior 

for the infinite-length 

multinomial distributions



Experimental Results

16

• A toy example of continuous 

speech recognition which uses 

four phonetic states (no.1-4) plus 

a silence state (no. 5).

• The data contains 50 chains, and 

the length of each chain is 20. 

• The classical HMM with the size of 

state-space N = 20.

• The NBHMM with the truncation 

level L = 20.



Experimental Results
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A “triphone” structure

Synthetic observations

Hinton graph for NBHMM
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• Block diagram of voice/accompaniment  separation systems

• Various implementations

Introduction

Melody 

extraction

Time-frequency 

masking

Mixed

Signal

Voice &

Accompaniment

Melody extraction T-F masking

D.L.Wang [IEEE ASLP 2007] HMM Hard

Hsu(1) [IEEE ASLP 2010]
Dressler 

(Neither HMM nor NMF)
Hard

Hsu(2) [ISMIR 2009] HMM

Virtanen [ISCA 2008] HMM NMF Soft

Durrieu [ICASSP 2009] NMF NMF Soft

Ours

Melody extraction T-F masking

D.L.Wang [IEEE ASLP 2007] HMM Hard

Hsu(1) [IEEE ASLP 2010]
Dressler

(Neither HMM nor NMF)
Hard

Hsu(2) [ISMIR 2009] HMM

Virtanen [ISCA 2008] HMM NMF Soft

Durrieu [ICASSP 2009] NMF NMF Soft

Ours HMM NMF Soft

Flaw
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NMF based Acoustic Model

• Observed spectogram X as a stochastic process

• Power spectrogram D as its variance parameters

• Main task: Estimate D with NMF constraints to maximize p(X|D)
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NMF based Acoustic Model
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NMF based Acoustic Model

• B matrices are “codebooks”

• A matrices are linear combination coefficients

Glottal excitation Vocal tract Music
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NMF-based melody extraction and separation

• Fix BF, estimate Θ = {AF, BK, AK, BM, AM} under max likelihood

• Find the strong continuous pitch trajectory on AF , using DP

• Fix BF and AF , Re-estimate and Soft masking
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Flaw of NMF-based melody extraction

• Imbalance in AF

• Two causes:
• Non-linearity of midi number scale

• Columns of BF unnormalized
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Flaw of NMF melody extraction

• Durrieu’s compensation:

• Our compensation:

• Compensation cannot eliminate imbalance!



Experimental Results
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Additive noise

Reverberation

Grand Challenge
Make Intelligent Machines That Can Hear, 

Especially In Complex Acoustic Environment Like Cocktail Party.



Motivation

—— The Acoustic Tube Model, a.k.a Source-Filter Model.
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What is the basic physical model of speech production ?



Motivation
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Are there any generative models of speech?



Motivation

• Most of them are actually generative models of the speech features 
(e.g. Magnitude, Correlogram, Cepstrum).

• Only a few directly model the spectrogram (Reyes-Gomez et al. 2005, 
Bach and Jordan 2005, Kameoka et al. 2006, Hershey et al. 2010). 

• None of them fully respect the physical acoustic tube model
• Pitch, Glottal source, Vocal tract response, Aspiration noise, Phase
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• Drawback: Speech analysis is incomplete, inaccurate or even incorrect.

• Chicken and egg effect;

• Vocal tract estimate (e.g. LPC and MFCC) corrupted by spectral tilt.



Impulse 
train

Glottal 
filter

Vocal tract 
filter

Voiced 
speech

Unvoiced 
Excitation

Unvoiced 
Speech

usually 
dominates 

𝑉𝑡 𝜔 = 𝐺𝑡 𝜔 𝑒
−𝑗𝜔𝜏𝑡 

𝑘

𝛿 𝜔 − 𝑘𝜔0𝑡

PAT Model

Voiced excitation

Unvoiced excitation
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Complex Cepstrum

𝑆𝑡 𝜔 = 𝑎𝑡𝑉𝑡 𝜔 + 𝑏𝑡𝑈 𝜔 𝐻𝑡 𝜔 ⊛𝑊𝑡 𝜔 +𝑁𝑡 𝜔



Highlight of PAT

• PAT is based on the fundamental physics of speech production.

• A probabilistic generative model that jointly considers all 
important speech parameters;

• Incorporates breathiness and glottal source;

• Incorporates phase modeling and so completely defines a 
probabilistic model for the complex spectrum of speech;

• Makes U/V states a continuum by introducing voiced 
amplitude and unvoiced amplitude, which is closer to the 
nature of speech.
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Experimental Results
Voiced Reconstruction Voiced Reconstruction – Single Frame GCI Location Estimation

Vocal Tract Filter Estimation Voiced vs Whispered

Original 
Spectrogram

Voiced 
Reconstruct

Real 
Spectrum

Imaginary 
Spectrum

PAT2 MFCC PAT2 MFCC



Summary - Probabilistic Modeling of Speech 

• PAT: On the way …

• One of the reviewers comments "to my knowledge the most complete 
attempt on developing a true generative model for speech".

• Bayesian HMM modeling of speech, ICASSP 2007 

-> Put a prior over model parameters to account for high-level factors 
(e.g. the speaker, utterance style).

• Variational nonparametric Bayesian HMM, ICASSP 2010 

-> Discover the state-transition structure according to data.

• NMF modeling of voice, ICASSP 2011

-> feasible
35
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Thanks for your attention !

Thanks: 
Jun Luo, Nan Ding, Yun Wang, Yang Zhang, Mark Hasegawa-Johnson.




