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What is this talk about?

• Brief introduction to SPMI lab

• Motivation

• Probabilistic Acoustic Tube (PAT) Model, AISTATS 2012, ICASSP 2014.

• Random field approach to language modeling, ACL 2015.
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Overview of SPMI Lab

• Setup the lab, since 2003.

• 2 master and 2 ph.d. students (Current), 7 master students (Graduated).

• Research interests

• Speech Signal and Information Processing
• Speech recognition and understanding (LVCSR - Mandarin, English)

• Source separation

• Speaker recognition

• Natural language processing

• Microphone array

• Statistical Machine Intelligence
• Construct probabilistic models of the studied phenomenon using human knowledge 

and machine learning algorithms;

• Find efficient ways of implementing probabilistic inference with those models.
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Motivation - Probabilistic Modeling of Speech and Language

• Speech Models: Speech recognition, pitch estimation, source separation, …

• Language Models: Speech recognition, machine translation, handwriting recognition, …

• The more scientific the models are, the better we can do for speech and language processing.
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What is this talk about?

• Brief introduction to SPMI lab

• Motivation

• Probabilistic Acoustic Tube (PAT) Model, AISTATS 2012, ICASSP 2014.

• Random field approach to language modeling, ACL 2015.
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Our trial-and-error efforts

• Relax the state independent assumption in HMMs
• ICASSP 2002, ICSLP 2002, INTERSPEECH 2004. 

• Bayesian HMM modeling of speech
• ICASSP 2007 

• Variational nonparametric Bayesian HMM
• ICASSP 2010 

• NMF modeling of voice in song, and a monaural voice and accompaniment 
separation system
• ICASSP 2011.

• Eigenvoice Speaker Modeling + VTS-based Environment Compensation for 
Robust Speech Recognition
• ICASSP 2012

• PAT Models
• AISTATS 2012, ICASSP 2014
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Motivation

—— The Acoustic Tube Model, a.k.a Source-Filter Model.
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What is the basic physical model of speech production ?



Motivation
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Are there any generative models of speech?



Motivation

• Most of them are actually generative models of the speech features 
• e.g. Magnitude, Cepstrum, Correlogram

• Only a few directly model the spectrogram
• Reyes-Gomez, Jojic, Ellis, 2005; Bach and Jordan, 2005; Kameoka et al. 2010; 

Hershey et al. 2010; Deng et al. 2006.

• None of them fully respect the physical acoustic tube model
Important speech elements

• Pitch

• Glottal source

• Vocal tract response

• Aspiration noise

• Phase

9



Motivation
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• Drawback: Speech analysis is inaccurate, making great 
troubles for back-end inference
• Chicken and egg effect 1

• Entangled variation/randomness

• e.g. Vocal tract estimate (e.g. LPC and MFCC) corrupted by ‘spectral 
tilt’ due to glottal pulse

• A complete model of speech
• Disentangle the underlying elements of variation, knowledgeably  

vs blindly.

• Provide strong constraints/priori knowledge 2

1 Kameoka, Ono, Sagayama, “Speech spectrum modeling for joint estimation of spectral envelope and 
fundamental frequency”, 2010.

2 Simsekli, Le Roux, Hershey, “Non-negative source-filter dynamical system for speech enhancement”,  2014.



Motivation
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• Previous efforts
• Additive deterministic-stochastic model, (Serra & Smith 1990)

• STRAIGHT model, (Kawahara, et al. 2008)

• Mixed source model and its adapted vocal tract filter estimate for voice transformation and 
synthesis, (Degottex, et. al 2013)

• Non-negative source-filter dynamical system for speech enhancement, (Simsekli, Le Roux, 
Hershey, 2014)

• Probabilistic Acoustic Tube (PAT)

• Jointly consider breathiness, glottal excitation and vocal tract in a 
probabilistic modeling framework, and notably with phase information.

PAT1:  Probabilistic acoustic tube: A Probabilistic Generative Model of Speech for Speech Analysis/Synthesis. 
(Ou, Zhang. AISTATS 2012)

PAT2: Improvement of PAT Model for Speech Decomposition. 
(Zhang, Ou, Hasegawa-Johnson. ICASSP 2014)

PAT3: Incorporating AM-FM effect in voiced speech for PAT model. 
(Zhang, Ou, Hasegawa-Johnson. Submitted)



PAT2 Model

12

Impulse 
train

Glottal 
filter

Vocal tract 
filter

Voiced 
speech

Unvoiced 
Excitation

Unvoiced 
Speech

dominates 

𝑠 𝑡 = 𝑣 𝑡 + 𝑢 𝑡
= 𝑎 ∙ 𝑒𝑣 𝑡 + 𝑏 ∙ 𝑒𝑢 𝑡 ∗ ℎ 𝑡

𝑒𝑢 𝑡 ~𝒩 0,1 , 𝑖. 𝑒. 𝑊𝐺𝑁

𝑒𝑣 𝑡 = 

𝑑

𝑟𝑒𝑎𝑙 𝐺 𝑑𝜔0 ∙ 𝑒𝑗𝑑𝜔0 𝑡−𝜏

speech

Impulse response of vocal tract

26-dim Complex Cepstrum  ℎ with quefrency  𝑡

Serra & Smith 1990, Degottex et al  2013

Doval et al 2013



Three-pole Model for Glottal Pulse (Doval et al 2013) 
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Glottal Flow Waveform

Glottal Pulse

𝐺 𝜔 =
1

1 + 2𝑔1 cos 𝛽 𝑒−𝑗𝜔 + 𝑔1
2𝑒−2𝑗𝜔 1 + 𝑔2𝑒

−𝑗𝜔

𝜏

parameterized by   𝑔 = 𝑔1, 𝛽, 𝑔2

𝑒𝑣 𝑡 = 

𝑑

𝑟𝑒𝑎𝑙 𝐺 𝑑𝜔0 ∙ 𝑒𝑗𝑑𝜔0 𝑡−𝜏



PAT2 Summary
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Impulse 
train

Glottal 
filter

Vocal tract 
filter

Voiced 
speech

Unvoiced 
Excitation

Unvoiced 
Speech

dominates 

𝑠 𝑡 = 𝑣 𝑡 + 𝑢 𝑡 = 𝑎 ∙ 𝑒𝑣 𝑡 + 𝑏 ∙ 𝑒𝑢 𝑡 ∗ ℎ 𝑡Time domain:

Frequency domain:

𝑣𝑒𝑐 𝐷𝐹𝑇 𝑠 𝑡

 𝑠 = 𝑎 ∙ 𝑣𝑒𝑐 𝜔0, 𝜏,  𝑔,  ℎ + 𝑏 ∙ 𝑣𝑒𝑐 𝐷𝐹𝑇 ℎ 𝑡 ⊡ 𝑣𝑒𝑐 𝐷𝐹𝑇 𝑊𝐺𝑁

Hidden variables: 𝑧 = 𝑎, 𝑏, 𝜔0, 𝜏,  𝑔,  ℎ ∈ 𝑅31

MAP inference 𝑝 𝑧| 𝑠 ∝ 𝑝  𝑠|𝑧 𝑝 𝑧 by Monte Carlo sampling and L-BFGS search.
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Experimental Results
Voiced Reconstruction Voiced Reconstruction – Single Frame GCI Location Estimation

Vocal Tract Filter Estimation Voiced vs Whispered

Original 
Spectrogram

Voiced 
Reconstruct

Real 
Spectrum

Imaginary 
Spectrum

PAT2 MFCC PAT2 MFCC



PAT3 Motivation
• To incorporate AM-FM effect in voiced speech

• Harmonic part is assumed to be strictly periodic.

• Variations within a single voiced frame are common and non-negligible.

• Two main variations are pitch jitter and amplitude shimmer
• Give voiced speech its naturalness
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PAT3 Model
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𝑣 𝑡 = 

𝑑

𝑟𝑒𝑎𝑙 𝛼𝑑𝑒
𝑗𝑑𝜔0𝑡

where 𝛼𝑑 = 𝑎𝐻 𝑑𝜔0 𝐺 𝑑𝜔0 𝑒−𝑗𝑑𝜔0𝜏

PAT2 Model

𝑣 𝑡 = 

𝑑

𝑟𝑒𝑎𝑙 𝛼𝑑𝜂𝑑 𝑡 𝑒𝑗𝑑𝜔0𝑡+𝑗𝑑𝜙 𝑡

Amplitude perturbation

Phase perturbation

𝑣 𝑡 = 

𝑑

𝑥𝑑 𝑡 𝑇𝜉𝑑 𝑡

𝑥𝑑 𝑡 =
𝛼𝑑 𝑐𝑜𝑠 𝑑𝜔0𝑡 + ∠𝛼𝑑
𝛼𝑑 𝑠𝑖𝑛 𝑑𝜔0𝑡 + ∠𝛼𝑑

, the strictly periodic signal 

𝜉𝑑 𝑡 =
𝜂𝑑 𝑡 𝑐𝑜𝑠 𝑑𝜙 𝑡

𝜂𝑑 𝑡 𝑠𝑖𝑛 𝑑𝜙 𝑡
, the amplitude and phase perturbation, phasor
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Qi, Minka, Picara, “Bayesian spectrum estimation of unevenly sampled nonstationary data”, ICASSP 2002.
Turner and Sahani,  “Probabilistic amplitude and frequency demodulation”, NIPS 2011.

An AM-FM sinusoid

y

x
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If 𝜙 𝑡 = 𝜔𝑡 + 𝜃 𝑡 , then

𝑓 𝑡 =
𝑐𝑜𝑠 𝜔𝑡
𝑠𝑖𝑛 𝜔𝑡

, a fixed freq signal

𝜉 𝑡 =
𝑎 𝑡 𝑐𝑜𝑠 𝜃 𝑡

𝑎 𝑡 𝑠𝑖𝑛 𝜃 𝑡
, a  phasor

= 𝑓 𝑡 𝑇𝜉 𝑡

Theorem: If 𝜃 𝑡 is uniform distributed, 𝑎 𝑡 is Rayleigh distributed, 

Then 𝜉 𝑡 ~𝒩
0
0

, 𝜎2
1 0
0 1

y

x

𝑦 𝑡 = 𝑟𝑒𝑎𝑙 𝑎 𝑡 𝑒𝑗𝜔𝑡+𝑗𝜃 𝑡
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PAT3 Model

𝑣 𝑡 = 

𝑑

𝑥𝑑 𝑡 𝑇𝜉𝑑 𝑡

𝑥𝑑 𝑡 =
𝛼𝑑 𝑐𝑜𝑠 𝑑𝜔0𝑡 + ∠𝛼𝑑
𝛼𝑑 𝑠𝑖𝑛 𝑑𝜔0𝑡 + ∠𝛼𝑑

, the strictly periodic signal 

𝜉𝑑 𝑡 =
𝜂𝑑 𝑡 𝑐𝑜𝑠 𝑑𝜙 𝑡

𝜂𝑑 𝑡 𝑠𝑖𝑛 𝑑𝜙 𝑡
, the amp. & phase perturbation, phasor

𝜉𝑑 𝑡 ~𝒩
0
0

, 𝜎𝑑
2 1 0
0 𝜌𝑑

It can be shown that   
𝜎𝑑 =

𝑐

1−𝑒−2∙𝑑∙𝛿

𝜌𝑑 = 𝑡𝑎𝑛ℎ 2 ∙ 𝑑 ∙ 𝛾

𝑠 𝑡 = 𝑣 𝑡 + 𝑢 𝑡 = 𝑣 𝑡 + 𝑏 ∙ 𝑒𝑢 𝑡 ∗ ℎ 𝑡Time domain:

Frequency domain:  𝑠 = 𝑣𝑒𝑐 𝜔0, 𝜏,  𝑔,  ℎ; 𝛿, 𝛾 + 𝑏 ∙ 𝑣𝑒𝑐 𝐷𝐹𝑇 ℎ 𝑡 ⊡ 𝑣𝑒𝑐 𝐷𝐹𝑇 𝑊𝐺𝑁

Hidden variables: 𝑧 = 𝑎, 𝑏, 𝜔0, 𝜏,  𝑔,  ℎ; 𝛿, 𝛾 ∈ 𝑅31+2

MAP inference 𝑝 𝑧| 𝑠 ∝ 𝑝  𝑠|𝑧 𝑝 𝑧 by Monte Carlo sampling and L-BFGS search.



Experiment - Reconstruction of Voiced Speech with Heavy AM/FM Effect
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PAT – Summary
• One of the reviewers comments "to my knowledge the most complete 

attempt on developing a true generative model for speech".
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PAT – Future work
• PAT: On the way …

• A sequential inference algorithm for nonlinear state-space model

• Large scale experiments
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What is this talk about?

• Brief introduction to SPMI lab

• Motivation

• Probabilistic Acoustic Tube (PAT) Model, AISTATS 2012, ICASSP 2014.

• Random field approach to language modeling, ACL 2015.
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Content

Random Field Language Models (RFLMs) – brand new

• State-of-the-art LMs - review
• N-gram LMs

• Neural network LMs

• Motivation - why

• Model formulation - what

• Model Training - breakthrough 

• Experiment results - evaluation

• Summary
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N-gram LMs

• Language modeling (LM) is to determine the joint probability of a 
sentence, i.e. a word sequence.

• Dominant: Conditional approach

29

𝑝 𝑥1, 𝑥2, ⋯ , 𝑥𝑙 = 

𝑖=1

𝑙

𝑝 𝑥𝑖|𝑥1, ⋯ , 𝑥𝑖−1

≈ 

𝑖=1

𝑙

𝑝 𝑥𝑖|𝑥𝑖−𝑛+1, ⋯ , 𝑥𝑖−1

Current word All previous words/history

Previous 𝑛 − 1 words

• Using Markov assumption leads to the N-gram LMs

– One of the state-of-the-art LMs



Neural network LMs

• Another state-of-the-art LMs

30

𝑝 𝑥𝑖|𝑥1, ⋯ , 𝑥𝑖−1 ≈ 𝑝 𝑥𝑖|𝜙 𝑥1, ⋯ , 𝑥𝑖−1

𝑥1, ⋯ , 𝑥𝑖−1 Neural Network 𝜙 𝑥1, ⋯ , 𝑥𝑖−1 ≜ 𝜙 ∈ 𝑅ℎ

𝑝 𝑥𝑖 = 𝑘|𝑥1, ⋯ , 𝑥𝑖−1 ≈
𝜙𝑇𝑤𝑘

 𝑘=1
𝑉 𝜙𝑇𝑤𝑘

where 𝑉 is lexicon size, 𝑤𝑘 ∈ 𝑅ℎ

history

 Computational very expensive in both training and testing 1

e.g. 𝑉 = 10𝑘~100𝑘, ℎ = 250

1 Partly alleviated by using un-normalized models, e.g. through noise contrastive estimation training.



RFLMs – Motivation (1)

31

𝑝 𝑥1, 𝑥2, ⋯ , 𝑥𝑙 =?

𝑥2𝑥1 𝑥3 𝑥𝑙⋯

𝑥2𝑥1 𝑥3 𝑥𝑙⋯

Dominant:
Conditional approach / Directed

Alternative:
Random field approach / Undirected

 A rule in language cognition: employ context for reading and writing

 Difficulty in model training

 Breakthrough in training with a number of innovations
Fixed-dimensional (e.g. image) -> Trans-dimensional (sequential modeling)

The cat is on the table. 

The cat is in the house.



RFLMs – Motivation (2)

• Drawback of N-gram LMs
• N-gram is only one type of linguistic feature/property/constraint

• meeting on Monday 
𝑃 𝑤𝑖 = 𝑀𝑜𝑛𝑑𝑎𝑦|𝑤𝑖−2 = 𝑚𝑒𝑒𝑖𝑛𝑔,𝑤𝑖−1 = 𝑜𝑛

• What if the training data only contain ‘meeting on Monday’ ?

• New feature ‘meeting on DAY-OF-WEEK’, using class

• New feature  ‘party on *** birthday’, using skip 

• New features ….

• Jelinek 1995: put language back into language modeling
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RFLMs – Formulation

• Intuitive idea
• Features (𝑓𝑖 , 𝑖 = 1,2,… , 𝐹) can be defined arbitrarily, beyond the n-gram features. 

• Each feature brings a contribution to the sentence probability 𝑝 𝑥

• Formulation

33

𝑝 𝑥 =
1

𝑍
exp  

𝑖=1

𝐹

𝜆𝑖 𝑓𝑖 𝑥 , 𝑥 ≜ 𝑥1, 𝑥2, ⋯ , 𝑥𝑙

𝑓𝑖 𝑥 =  
1, ‘meeting on DAY−OF−WEEK’ appears in 𝑥
0, Otherwise

⇒ 𝜆𝑖 is activated
⇒ 𝜆𝑖 is removed

More flexible features, beyond the n-gram features, can be well supported in RFLMs.
 Computational very efficient in computing sentence probability.



WSME - Introduction

• Whole-sentence maximum entropy (WSME)
• Rosenfeld, Chen, Zhu. “Whole-sentence exponential language models: a vehicle for 

linguistic-statistical integration”. Computer Speech & Language, 2001.

34

𝑝 𝑥; 𝜆 =
1

𝑍 𝜆
exp 𝜆𝑇𝑓 𝑥

• The empirical results of previous WSME models are not satisfactory
• After incorporating lexical and syntactic information, 1% and 0.4% respectively in 

perplexity and in WER is reported for the resulting WSEM (Rosenfeld et al., 2001).

• Amaya and Benedi. “Improvement of a whole sentence maximum entropy language 
model using grammatical features”, ACL 2001.

• Ruokolainen, Alumae, Dobrinkat. “Using dependency grammar features in whole 
sentence maximum entropy language model for speech recognition”. HLT 2010.



WSME – Difficulty in model training

• Maximum-likelihood training
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𝜕𝐿𝑜𝑔𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑

𝜕𝜆
= 𝐸  𝑝 𝑥 𝑓𝑖 𝑥 − 𝐸𝑝 𝑥;𝜆 𝑓𝑖 𝑥 = 0

Expectation under 
empirical distribution  𝑝 𝑥

Expectation under 
model distribution 𝑝 𝑥; 𝜆

Normalization constant:

𝑍 𝜆 = 

𝑥

exp  

𝑖=1

𝐹

𝜆𝑖 𝑓𝑖 𝑥

𝑝 𝑥; 𝜆 =
1

𝑍 𝜆
exp 𝜆𝑇𝑓 𝑥



RFLMs vs WSME

• Whole-sentence maximum entropy (WSME)

36

𝑝 𝑙, 𝑥𝑙; 𝜆 =
1

𝑍 𝜆
exp 𝜆𝑇𝑓 𝑥𝑙 , 𝑥 = 𝑙, 𝑥𝑙 , 𝑥𝑙 ≜ 𝑥1, 𝑥2, ⋯ , 𝑥𝑙

Essentially a mixture distribution with unknown weights (differ from each other greatly, 1040) !
Poor sampling  poor estimate of gradient  poor fitting

𝑝 𝑙, 𝑥𝑙; 𝜆 =
𝑍𝑙 𝜆

𝑍 𝜆
∙

1

𝑍𝑙 𝜆
∙ exp 𝜆𝑇𝑓 𝑥𝑙 , 𝑍𝑙 𝜆 = 

𝑥𝑙

exp 𝜆𝑇𝑓 𝑥𝑙



RFLMs vs WSME

• Whole-sentence maximum entropy (WSME)

37

𝑝 𝑙, 𝑥𝑙; 𝜆 =
1

𝑍 𝜆
exp 𝜆𝑇𝑓 𝑥𝑙 , 𝑥 ≜ 𝑙, 𝑥𝑙 , 𝑥𝑙 ≜ 𝑥1, 𝑥2, ⋯ , 𝑥𝑙

Essentially a mixture distribution with unknown weights (differ from each other greatly, 1040) !
Poor sampling  poor estimate of gradient  poor fitting

𝑝 𝑙, 𝑥𝑙; 𝜆 =
𝑍𝑙 𝜆

𝑍 𝜆
∙

1

𝑍𝑙 𝜆
∙ exp 𝜆𝑇𝑓 𝑥𝑙 , 𝑍𝑙 𝜆 = 

𝑥𝑙

exp 𝜆𝑇𝑓 𝑥𝑙

• We propose a trans-dimensional RF model

𝑝 𝑙, 𝑥𝑙; 𝜆 = 𝜋𝑙 ∙
1

𝑍𝑙 𝜆
∙ exp 𝜆𝑇𝑓 𝑥𝑙 , 𝑙 = 1,⋯ ,𝑚

Empirical length probabilities in the training data
Serve as a control device to improve sampling from multiple distributions !



Introduction to Stochastic Approximation (SA)
Problem: The objective is to find a solution 𝜃 to  𝐸𝑌~𝑓 ∙; 𝜃 𝐻 𝑌; 𝜃 = 𝛼 ,

where 𝜃 ∈ 𝑅𝑑, noisy observation 𝐻 𝑌; 𝜃 ∈ 𝑅𝑑

Method:

(1) Generate 𝑌𝑡~𝐾 𝑌𝑡−1,∙ ; 𝜃𝑡−1 , a Markov transition kernel that admits 
𝑓 ∙; 𝜃𝑡−1 as the invariant distribution.

(2) Set 𝜃𝑡 = 𝜃𝑡−1 + 𝛾𝑡 𝛼 − 𝐻 𝑌𝑡; 𝜃𝑡−1

𝑒. 𝑔. 𝛾𝑡 =
1

𝑡0 + 𝑡

38
Robbins and Monro (1951). A stochastic approximation method. Ann. Math. Stat.
Chen (2002), Stochastic Approximation and Its Applications, Kluwer Academic Publishers.

𝜃

𝐸𝑌~𝑓 ∙; 𝜃 𝐻 𝑌; 𝜃

𝛼



Apply SA to RFLM training

39Zhiqiang Tan. 2015. Optimally adjusted mixture sampling and locally weighted histogram. In Technical Report, Dept. of Statistics, Rutgers Univ.

• The trans-dimensional RF model 𝑝 𝑙, 𝑥𝑙; 𝜆 = 𝜋𝑙 ∙
1

𝑍𝑙 𝜆
∙ exp 𝜆𝑇𝑓 𝑥𝑙 (1)

• Consider the joint distribution of the pair 𝑙, 𝑥𝑙 𝑝 𝑙, 𝑥𝑙; 𝜆, 𝜁 ∝ 𝜋𝑙 ∙
1

𝑒𝜁𝑙
∙ exp 𝜆𝑇𝑓 𝑥𝑙 (2)

where 𝜁𝑙 is hypothesized values of the true 𝜁𝑙
∗ 𝜆 = 𝑙𝑜𝑔𝑍𝑙 𝜆 .

The marginal probability of length 𝑙 is: 𝑝 𝑙; 𝜆, 𝜁 =
𝜋𝑙𝑒

−𝜁𝑙+𝜁𝑙
∗ 𝜆

 𝑗 𝜋𝑙𝑒
−𝜁𝑗+𝜁𝑗

∗ 𝜆
.

• SA is used to find  𝜁𝑙
∗ = 𝜁𝑙

∗ 𝜆∗ and 𝜆∗ that solves

𝜋𝑙 = 𝑝 𝑙; 𝜆, 𝜁 , 𝑙 = 1,⋯ ,𝑚

0 = 𝐸  𝑝 𝑥 𝑓𝑖 𝑥 − 𝐸𝑝 𝑙,𝑥𝑙;𝜆,𝜁 𝑓𝑖 𝑥

𝐸  𝑝 𝑥 𝑓𝑖 𝑥 − 𝐸𝑝 𝑥;𝜆 𝑓𝑖 𝑥 = 0, 𝑥 ≜ 𝑙, 𝑥𝑙



RFLMs – Breakthrough in training (1)

• Propose Joint Stochastic Approximation (SA) Training Algorithm
• Simultaneously updates the model parameters and normalization constants
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RFLMs – Breakthrough in training (2)

41

• Propose Trans-dimensional mixture sampling
• Sampling from 𝑝 𝑙, 𝑥𝑙; 𝜆, 𝜁 , a mixture of RFs on subspaces of different dimensions.

• Formally like RJ-MCMC.



RFLMs – Breakthrough in training (3)

• Exploit Hessian diagonal in SA

• Introduce training set mini-batching

42

Improve the convergence !
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Experiment setup

• LM Training — Penn Treebank portion of WSJ corpus
• Vocabulary              : 10K words
• Training data           : 887K words, 42K sentences
• Development data :  70K words
• Testing data             : 82K words

• Test speech — WSJ’92 set ( 330 sentences )
• By rescoring of 1000-best lists

• Various LMs
• KN4 (Kneser-Ney)

• 4gram LMs with modified Kneser-Ney smoothing

• RNNLMs (Recurrent Neural Network LMs)
• Trained by the RNNLM toolkit of Mikolov
• The dimension of hidden layer = 250. Mini-batch size=10, learning rate=0.1, BPTT steps=5. 
• 17 sweeps are performed before stopping (takes about 25 hours). No word classing is used.

• RFLMs
• A variety of features based on word and class information
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Feature Definition

45

w / c         :  the word/class ngram features up to order 4
ws / cs :  the word/class skipping ngram features up to order 4
wsh / csh :  the higher-order word/class features
cpw :  the crossing class-predict-word features up to order 4



Word Error Rate (WER) results for speech recognition
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• Encouraging performance
• The RFLM using the “w+c+ws+cs+cpw” 

features with class number 200 
performs comparable to the RNNLM, 
but is computationally more efficient 
in computing sentence probability.

Re-ranking of the 1000-best list for a sentence 
takes 0.16 sec. vs 40 sec.

• The WER relative reduction is 9.1%
compared with the KN4, and 0.5% 
compared with the RNNLM.

• Efficient in training
• Training the RFLM with up to 6 million 

features, takes 15 hours.



Summary

Future work

• Train RFLMs with richer features on larger-scale corpus.

• Features selection strategy such as L1 regularization. 47

Contribution

• Breakthrough in training with a number of innovations.

• Successfully train RFLMs and make performance improvements.

Computation
efficient in training

Computation
efficient in test

Bidirectional 
context

Flexible
features

Performance

N-gram LMs

Neural network LMs

RFLMs
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Thanks for your attention !

Thanks: 
Yang Zhang, Bin Wang, Mark Hasegawa-Johnson, Zhiqiang Tan.


