Probabilistic Modeling of Speech and Language

Zhijian Ou

Speech Processing and Machine Intelligence (SPMI) Lab,

Department of Electronic Engineering, Tsinghua University, Beijing, China.

Now Visiting Scholar at Beckman Institute, UIUC.

6/16/2015, IBM

What is this talk about?

- Brief introduction to SPMI lab
- Motivation
- Probabilistic Acoustic Tube (PAT) Model, AISTATS 2012, ICASSP 2014.
- Random field approach to language modeling, ACL 2015.

Overview of SPMI Lab

- Setup the lab, since 2003.
- 2 master and 2 ph.d. students (Current), 7 master students (Graduated).
- Research interests
 - Speech Signal and Information Processing
 - Speech recognition and understanding (LVCSR Mandarin, English)
 - Source separation
 - Speaker recognition
 - Natural language processing
 - Microphone array
 - Statistical Machine Intelligence
 - Construct probabilistic models of the studied phenomenon using human knowledge and machine learning algorithms;
 - Find efficient ways of implementing probabilistic inference with those models.

Motivation - Probabilistic Modeling of Speech and Language

- Speech Models: Speech recognition, pitch estimation, source separation, ...
- Language Models: Speech recognition, machine translation, handwriting recognition, ...
- The more scientific the models are, the better we can do for speech and language processing.

What is this talk about?

- Brief introduction to SPMI lab
- Motivation
- Probabilistic Acoustic Tube (PAT) Model, AISTATS 2012, ICASSP 2014.
- Random field approach to language modeling, ACL 2015.

Our trial-and-error efforts

- Relax the state independent assumption in HMMs
 - ICASSP 2002, ICSLP 2002, INTERSPEECH 2004.
- Bayesian HMM modeling of speech
 - ICASSP 2007
- Variational nonparametric Bayesian HMM
 - ICASSP 2010
- NMF modeling of voice in song, and a monaural voice and accompaniment separation system
 - ICASSP 2011.
- Eigenvoice Speaker Modeling + VTS-based Environment Compensation for Robust Speech Recognition
 - ICASSP 2012
- PAT Models
 - AISTATS 2012, ICASSP 2014

What is the basic physical model of speech production ?

—— The Acoustic Tube Model, a.k.a Source-Filter Model.

Are there any generative models of speech?

- Most of them are actually generative models of the speech features
 - e.g. Magnitude, Cepstrum, Correlogram
- Only a few directly model the spectrogram
 - Reyes-Gomez, Jojic, Ellis, 2005; Bach and Jordan, 2005; Kameoka et al. 2010; Hershey et al. 2010; Deng et al. 2006.
- None of them fully respect the physical acoustic tube model

Important speech elements

- Pitch
- Glottal source
- Vocal tract response
- Aspiration noise
- Phase

- Drawback: Speech analysis is inaccurate, making great troubles for back-end inference
 - Chicken and egg effect ¹
 - Entangled variation/randomness
 - e.g. Vocal tract estimate (e.g. LPC and MFCC) corrupted by 'spectral tilt' due to glottal pulse
- A complete model of speech
 - Disentangle the underlying elements of variation, knowledgeably vs blindly.
 - Provide strong constraints/priori knowledge²
- ¹ Kameoka, Ono, Sagayama, "Speech spectrum modeling for joint estimation of spectral envelope and fundamental frequency", 2010.
- ² Simsekli, Le Roux, Hershey, "Non-negative source-filter dynamical system for speech enhancement", 2014¹⁰

• Previous efforts

- Additive deterministic-stochastic model, (Serra & Smith 1990)
- STRAIGHT model, (Kawahara, et al. 2008)
- Mixed source model and its adapted vocal tract filter estimate for voice transformation and synthesis, (Degottex, et. al 2013)
- Non-negative source-filter dynamical system for speech enhancement, (Simsekli, Le Roux, Hershey, 2014)
- Probabilistic Acoustic Tube (PAT)
 - Jointly consider breathiness, glottal excitation and vocal tract in a probabilistic modeling framework, and notably with phase information.
- **PAT1**: Probabilistic acoustic tube: A Probabilistic Generative Model of Speech for Speech Analysis/Synthesis. (Ou, Zhang. AISTATS 2012)
- PAT2: Improvement of PAT Model for Speech Decomposition.

(Zhang, Ou, Hasegawa-Johnson. ICASSP 2014)

PAT3: Incorporating AM-FM effect in voiced speech for PAT model.

(Zhang, Ou, Hasegawa-Johnson. Submitted)

Three-pole Model for Glottal Pulse (Doval et al 2013)

PAT2 Summary

Hidden variables:

MAP inference $p(z|\vec{s}) \propto p(\vec{s}|z)p(z)$ by Monte Carlo sampling and L-BFGS search.

 $z = \{a, b, \omega_0, \tau, \hat{g}, \hat{h}\} \in R^{31}$

14

PAT3 Motivation

• To incorporate AM-FM effect in voiced speech

- Harmonic part is assumed to be strictly periodic.
- Variations within a single voiced frame are common and non-negligible.

• Two main variations are pitch jitter and amplitude shimmer

• Give voiced speech its naturalness

PAT2 Model

PAT3 Model

$$v[t] = \sum_{d} real[\alpha_{d}e^{jd\omega_{0}t}] \qquad v[t] = \sum_{d} real[\alpha_{d}\eta_{d}[t]e^{jd\omega_{0}t+jd\phi[t]}]$$

where $\alpha_{d} = aH(d\omega_{0})G(d\omega_{0})e^{-jd\omega_{0}\tau}$ Amplitude perturbation

Phase perturbation

$$v[t] = \sum_{d} x_{d}[t]^{T} \xi_{d}[t]$$

$$\begin{bmatrix} x_{d}[t] = \begin{pmatrix} |\alpha_{d}| \cos(d\omega_{0}t + \angle \alpha_{d}) \\ |\alpha_{d}| \sin(d\omega_{0}t + \angle \alpha_{d}) \end{pmatrix}, \text{ the strictly periodic signal} \\ \xi_{d}[t] = \begin{pmatrix} \eta_{d}[t] \cos(d\phi[t]) \\ \eta_{d}[t] \sin(d\phi[t]) \end{pmatrix}, \text{ the amplitude and phase perturbation, phasor} \end{bmatrix}$$

An AM-FM sinusoid $y(t) = \Re(a(t) \exp(i\phi(t)))$

Qi, Minka, Picara, "Bayesian spectrum estimation of unevenly sampled nonstationary data", ICASSP 2002. Turner and Sahani, "Probabilistic amplitude and frequency demodulation", NIPS 2011. 18

Theorem: If $\theta(t)$ is uniform distributed, a(t) is Rayleigh distributed, Then $\xi(t) \sim \mathcal{N}\left(\begin{pmatrix} 0\\0 \end{pmatrix}, \sigma^2 \begin{pmatrix} 1&0\\0&1 \end{pmatrix}\right)$

PAT3 Model

$$v[t] = \sum_{d} x_{d}[t]^{T} \xi_{d}[t] = \begin{pmatrix} |\alpha_{d}| cos(d\omega_{0}t + \angle \alpha_{d}) \\ |\alpha_{d}| sin(d\omega_{0}t + \angle \alpha_{d}) \end{pmatrix}, \text{ the strictly periodic signal}$$

$$v[t] = \sum_{d} x_{d}[t]^{T} \xi_{d}[t] = \begin{pmatrix} \eta_{d}[t] cos(d\phi[t]) \\ \eta_{d}[t] sin(d\phi[t]) \end{pmatrix}, \text{ the amp. & phase perturbation, phasor}$$

$$\xi_{d}(t) \sim \mathcal{N}\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \sigma_{d}^{2}\begin{pmatrix} 1 & 0 \\ 0 & \rho_{d} \end{pmatrix}\right) \quad \text{it can be shown that} \begin{cases} \sigma_{d} = \frac{c}{\sqrt{1 - e^{-2cd.\delta}}} \\ \rho_{d} = tanh(2 \cdot d \cdot \gamma) \end{cases}$$
Time domain: $s[t] = v[t] + u[t] = v[t] + (b \cdot e_{u}[t]) * h[t]$
Frequency domain: $\tilde{s} = vec(\omega_{0}, \tau, \hat{g}, \hat{h}; \delta, \gamma) + b \cdot vec\left[DFT[h[t]]\right] \Box vec[DFT[WGN]]$
Hidden variables: $z = \{a, b, \omega_{0}, \tau, \hat{g}, \hat{h}; \delta, \gamma\} \in R^{31+2}$

MAP inference $p(z|\vec{s}) \propto p(\vec{s}|z)p(z)$ by Monte Carlo sampling and L-BFGS search.

Experiment - Reconstruction of Voiced Speech with Heavy AM/FM Effect

24

PAT – Summary

• One of the reviewers comments "to my knowledge the most complete attempt on developing a true generative model for speech".

UTML TR 2006–004

To Recognize Shapes, First Learn to Generate Images

Geoffrey Hinton Department of Computer Science, University of Toronto

PAT – Future work

• PAT: On the way ...

- A sequential inference algorithm for nonlinear state-space model
- Large scale experiments

What is this talk about?

- Brief introduction to SPMI lab
- Motivation
- Probabilistic Acoustic Tube (PAT) Model, AISTATS 2012, ICASSP 2014.
- Random field approach to language modeling, ACL 2015.

Content

Random Field Language Models (RFLMs) – brand new

- State-of-the-art LMs review
 - N-gram LMs
 - Neural network LMs
- Motivation why
- Model formulation what
- Model Training breakthrough
- Experiment results evaluation
- Summary

N-gram LMs

- Language modeling (LM) is to determine the joint probability of a sentence, i.e. a word sequence.
- Dominant: Conditional approach

- Using Markov assumption leads to the N-gram LMs
 - One of the state-of-the-art LMs

Neural network LMs

Another state-of-the-art LMs

history

$$x_1, \dots, x_{i-1}$$
 Neural Network $\phi[x_1, \dots, x_{i-1}] \triangleq \phi \in \mathbb{R}^h$
 $p(x_i | x_1, \dots, x_{i-1}) \approx p(x_i | \phi[x_1, \dots, x_{i-1}])$
 $p(x_i = k | x_1, \dots, x_{i-1}) \approx \frac{\phi^T w_k}{\sum_{k=1}^V \phi^T w_k}$ where V is lexicon size, $w_k \in \mathbb{R}^h$

Some computational very expensive in both training and testing ¹ e.g. $V = 10k \sim 100k$, h = 250

¹ Partly alleviated by using un-normalized models, e.g. through noise contrastive estimation training. 30

RFLMs – Motivation (1)

 $p(x_1, x_2, \cdots, x_l) = ?$

Dominant:

Conditional approach / Directed

Alternative:

Random field approach / Undirected

⁽³⁾ Difficulty in model training

☺ A rule in language cognition: employ context for reading and writing

The cat is on the table.

The cat is in the house.

Sreakthrough in training with a number of innovations Fixed-dimensional (e.g. image) -> Trans-dimensional (sequential modeling)

RFLMs – Motivation (2)

- Drawback of N-gram LMs
 - N-gram is only one type of linguistic feature/property/constraint
 - meeting on Monday

 $P(w_i = Monday | w_{i-2} = meeing, w_{i-1} = on)$

- What if the training data only contain 'meeting on Monday' ?
- New feature 'meeting on DAY-OF-WEEK', using class
- New feature 'party on *** birthday', using skip
- New features
- Jelinek 1995: put language back into language modeling

RFLMs – Formulation

- Intuitive idea
 - Features (f_i , i = 1, 2, ..., F) can be defined arbitrarily, beyond the n-gram features.
 - Each feature brings a contribution to the sentence probability p(x)
- Formulation

$$p(x) = \frac{1}{Z} \exp\left(\sum_{i=1}^{F} \lambda_i f_i(x)\right), x \triangleq (x_1, x_2, \cdots, x_l)$$

 $f_i(x) = \begin{cases} 1, & \text{`meeting on DAY-OF-WEEK' appears in } x \Rightarrow \lambda_i \text{ is activated} \\ 0, & \text{Otherwise} & \Rightarrow \lambda_i \text{ is removed} \end{cases}$

Ore flexible features, beyond the n-gram features, can be well supported in RFLMs.
 Computational very efficient in computing sentence probability.

WSME - Introduction

- Whole-sentence maximum entropy (WSME)
 - Rosenfeld, Chen, Zhu. "Whole-sentence exponential language models: a vehicle for linguistic-statistical integration". Computer Speech & Language, 2001.

$$p(x; \lambda) = \frac{1}{Z(\lambda)} \exp[\lambda^T f(x)]$$

• The empirical results of previous WSME models are not satisfactory

- After incorporating lexical and syntactic information, 1% and 0.4% respectively in perplexity and in WER is reported for the resulting WSEM (Rosenfeld et al., 2001).
- Amaya and Benedi. "Improvement of a whole sentence maximum entropy language model using grammatical features", ACL 2001.
- Ruokolainen, Alumae, Dobrinkat. "Using dependency grammar features in whole sentence maximum entropy language model for speech recognition". HLT 2010.

WSME – Difficulty in model training

$$p(x; \lambda) = \frac{1}{Z(\lambda)} \exp[\lambda^T f(x)]$$

Normalization constant:

$$Z(\lambda) = \sum_{x} \exp\left(\sum_{i=1}^{F} \lambda_{i} f_{i}(x)\right)$$

• Maximum-likelihood training

RFLMs vs WSME

• Whole-sentence maximum entropy (WSME)

$$p(l, x^{l}; \lambda) = \frac{1}{Z(\lambda)} \exp[\lambda^{T} f(x^{l})], \qquad x = (l, x^{l}), \qquad x^{l} \triangleq (x_{1}, x_{2}, \cdots, x_{l})$$

Essentially a mixture distribution with unknown weights (differ from each other greatly, 10^{40}) ! Poor sampling \rightarrow poor estimate of gradient \rightarrow poor fitting

$$p(l, x^{l}; \lambda) = \frac{Z_{l}(\lambda)}{Z(\lambda)} \cdot \frac{1}{Z_{l}(\lambda)} \cdot \exp[\lambda^{T} f(x^{l})], Z_{l}(\lambda) = \sum_{x^{l}} \exp[\lambda^{T} f(x^{l})]$$

RFLMs vs WSME

• Whole-sentence maximum entropy (WSME)

$$p(l, x^{l}; \lambda) = \frac{1}{Z(\lambda)} \exp[\lambda^{T} f(x^{l})], \qquad x \triangleq (l, x^{l}), \qquad x^{l} \triangleq (x_{1}, x_{2}, \cdots, x_{l})$$

Essentially a mixture distribution with unknown weights (differ from each other greatly, 10^{40}) ! Poor sampling \rightarrow poor estimate of gradient \rightarrow poor fitting

$$p(l, x^{l}; \lambda) = \frac{Z_{l}(\lambda)}{Z(\lambda)} \cdot \frac{1}{Z_{l}(\lambda)} \cdot \exp[\lambda^{T} f(x^{l})], Z_{l}(\lambda) = \sum_{x^{l}} \exp[\lambda^{T} f(x^{l})]$$

• We propose a trans-dimensional RF model

$$p(l, x^{l}; \lambda) = \frac{\pi_{l}}{Z_{l}(\lambda)} \cdot \exp[\lambda^{T} f(x^{l})], \qquad l = 1, \cdots, m$$

Empirical length probabilities in the training data

Serve as a control device to improve sampling from multiple distributions !

37

Introduction to Stochastic Approximation (SA)

Problem: The objective is to find a solution θ to $E_{Y \sim f(\cdot; \theta)}[H(Y; \theta)] = \alpha$, where $\theta \in \mathbb{R}^d$, noisy observation $H(Y; \theta) \in \mathbb{R}^d$ Method:

(1) Generate $Y_t \sim K(Y_{t-1}, \cdot; \theta_{t-1})$, a Markov transition kernel that admits $f(\cdot; \theta_{t-1})$ as the invariant distribution. (2) Set $\theta_t = \theta_{t-1} + \gamma_t \{ \alpha - H(Y_t; \theta_{t-1}) \}$ $e. g. \gamma_t = \frac{1}{t_0 + t}$ $e. g. \gamma_t = \frac{1}{t_0 + t} = \frac{1}{\theta_{t-1} + \theta_{t-1}} = \frac{1}{\theta_$

Robbins and Monro (1951). A stochastic approximation method. Ann. Math. Stat. Chen (2002), Stochastic Approximation and Its Applications, Kluwer Academic Publishers.

Apply SA to RFLM training

• The trans-dimensional RF model $p(l, x^{l}; \lambda) = \pi_{l} \cdot \frac{1}{Z_{l}(\lambda)} \cdot \exp[\lambda^{T} f(x^{l})] (1)$ $E_{\tilde{p}(x)}[f_{i}(x)] - E_{p(x;\lambda)}[f_{i}(x)] = 0, \quad x \triangleq (l, x^{l})$

• Consider the joint distribution of the pair (l, x^l) $p(l, x^l; \lambda, \zeta) \propto \pi_l \cdot \frac{1}{e^{\zeta_l}} \cdot \exp[\lambda^T f(x^l)]$ (2) where ζ_l is hypothesized values of the true $\zeta_l^*(\lambda) = \log Z_l(\lambda)$. The marginal probability of length l is: $p(l; \lambda, \zeta) = \frac{\pi_l e^{-\zeta_l + \zeta_l^*(\lambda)}}{\sum_i \pi_l e^{-\zeta_j + \zeta_j^*(\lambda)}}$.

• SA is used to find $\zeta_l^* = \zeta_l^*(\lambda^*)$ and λ^* that solves

$$\begin{cases} \pi_l = p(l; \lambda, \zeta), & l = 1, \cdots, m \\ 0 = E_{\tilde{p}(x)}[f_i(x)] - E_{p(l, x^l; \lambda, \zeta)}[f_i(x)] \end{cases}$$

Zhiqiang Tan. 2015. Optimally adjusted mixture sampling and locally weighted histogram. In Technical Report, Dept. of Statistics, Rutgers Univ.³⁹

RFLMs – Breakthrough in training (1)

- Propose Joint Stochastic Approximation (SA) Training Algorithm
 - Simultaneously updates the model parameters and normalization constants

```
Algorithm 1 Joint stochastic approximation
Input: training set
  1: set initial values \lambda^{(0)} = (0, \dots, 0)^T and
             \zeta^{(0)} = \zeta^*(\lambda^{(0)}) - \zeta_1^*(\lambda^{(0)})
  2: for t = 1, 2, \ldots, t_{max} do
  3: set B^{(t)} = \emptyset
        set (L^{(t,0)}, X^{(t,0)}) = (L^{(t-1,K)}, X^{(t-1,K)})
  4.
             Step I: MCMC sampling
          for k = 1 \rightarrow K do
  5:
      sampling (See Algorithm 3)
(L^{(t,k)}, X^{(t,k)}) = SAMPLE(L^{(t,k-1)}, X^{(t,k-1)})
  6:
               set B^{(t)} = B^{(t)} \cup \{ (L^{(t,k)}, X^{(t,k)}) \}
  7:
  8:
          end for
             Step II: SA updating
          Compute \lambda^{(t)} based on (13)
  9:
          Compute \zeta^{(t)} based on (14) and (15)
10:
11: end for
```


RFLMs – Breakthrough in training (2)

- Propose Trans-dimensional mixture sampling
 - Sampling from $p(l, x^l; \lambda, \zeta)$, a mixture of RFs on subspaces of different dimensions.
 - Formally like RJ-MCMC.

1: function SAMPLING(
$$(L^{(t-1)}, X^{(t-1)})$$
)
2: set $k = L^{(t-1)}$
3: set $L^{(t)} = k$
4: set $X^{(t)} = X^{(t-1)}$
5: generate $j \sim \Gamma(k, \cdot)$
6: if $j = k + 1$ then
7:
8: generate $Y \sim g_{k+1}(y|X^{(t-1)})$ (equ.24)
9: set $L^{(t)} = j$ and $X^{(t)} = \{X^{(t-1)}, Y\}$ with
probability equ.22
10: end if
11: if $j = k - 1$ then
12: set $L^{(t)} = j$ and $X^{(t)} = X^{(t-1)}_{1:k-1}$ with prob-
ability equ.23
13: end if
14: for $i = 1 \rightarrow L^{(t)}$ do
15:
16:
17: $a \sim p(L^{(t)}, \{X^{(t)}_{1:i-1}, \cdot, X^{(t)}_{i+1:L^{(t)}}\}; \Lambda, \zeta)$
18: $X^{(t)}_i \leftarrow a$
19: end for
20: return $(L^{(t)}, X^{(t)})$
21: end function

RFLMs – Breakthrough in training (3)

- Exploit Hessian diagonal in SA
- Introduce training set mini-batching

Improve the convergence !

Content

Random Field Language Models (RFLMs) – brand new

- State-of-the-art LMs review
 - N-gram LMs
 - Neural network LMs
- Motivation why
- Model formulation what
- Model Training breakthrough
- Experiment results evaluation
- Summary

Experiment setup

• LM Training — Penn Treebank portion of WSJ corpus

- Vocabulary : 10K words
- Training data : 887K words, 42K sentences
- Development data : 70K words
- Testing data : 82K words
- Test speech WSJ'92 set (330 sentences)
 - By rescoring of 1000-best lists
- Various LMs
 - KN4 (Kneser-Ney)
 - 4gram LMs with modified Kneser-Ney smoothing
 - RNNLMs (Recurrent Neural Network LMs)
 - Trained by the RNNLM toolkit of Mikolov
 - The dimension of hidden layer = 250. Mini-batch size=10, learning rate=0.1, BPTT steps=5.
 - 17 sweeps are performed before stopping (takes about 25 hours). No word classing is used.
 - RFLMs
 - A variety of features based on word and class information

Feature Definition

Туре	Features
W	$(w_{-3}w_{-2}w_{-1}w_0)(w_{-2}w_{-1}w_0)(w_{-1}w_0)(w_0)$
с	$(c_{-3}c_{-2}c_{-1}c_0)(c_{-2}c_{-1}c_0)(c_{-1}c_0)(c_0)$
WS	$(w_{-3}w_0)(w_{-3}w_{-2}w_0)(w_{-3}w_{-1}w_0)(w_{-2}w_0)$
cs	$(c_{-3}c_0)(c_{-3}c_{-2}c_0)(c_{-3}c_{-1}c_0)(c_{-2}c_0)$
wsh	$(w_{-4}w_0)(w_{-5}w_0)$
csh	$(c_{-4}c_0)(c_{-5}c_0)$
cpw	$(c_{-3}c_{-2}c_{-1}w_0)(c_{-2}c_{-1}w_0)(c_{-1}w_0)$

- w / c : the word/class ngram features up to order 4
- ws / cs : the word/class skipping ngram features up to order 4
 wsh / csh : the higher-order word/class features
- cpw : the crossing class-predict-word features up to order 4

Word Error Rate (WER) results for speech recognition

model	WER	WER PPL (\pm std. dev.)					
KN4	8.71 -	295.41	1.6M				
RNN	7.96	256.15	5.1M				
RFLMs (100c)							
w+c	8.56	268.25 ± 3.52	2.2M				
w+c+ws+cs	8.16	265.81 ± 4.30	4.5M				
w+c+ws+cs+cpw	8.05	265.63 ± 7.93	5.6M				
w+c+ws+cs+wsh+csh	8.03	276.90 ± 5.00	5.2M				
RFLMs (200c)							
w+c	8.46	257.78±3.13	2.5M				
w+c+ws+cs	8.05	257.80 ± 4.29	5.2M				
w+c+ws+cs+cpw	7.92 -	264.86 ± 8.55	6.4M				
w+c+ws+cs+wsh+csh	7.94	266.42 ± 7.48	5.9M				
RFLMs (500c)							
w+c	8.72	261.02 ± 2.94	2.8M				
w+c+ws+cs	8.29	266.34 ± 6.13	5.9M				

Table 3: The WERs and PPLs on the WSJ'92 test data. "#feat" denotes the feature number. Different RFLMs with class number 100/200/500 are reported (denoted by "100c"/"200c"/"500c")

• Encouraging performance

 The RFLM using the "w+c+ws+cs+cpw" features with class number 200 performs comparable to the RNNLM, but is computationally more efficient in computing sentence probability.

Re-ranking of the 1000-best list for a sentence takes 0.16 sec. vs 40 sec.

• The WER relative reduction is 9.1% compared with the KN4, and 0.5% compared with the RNNLM.

• Efficient in training

• Training the RFLM with up to 6 million features, takes 15 hours.

Summary

Contribution

- Breakthrough in training with a number of innovations.
- Successfully train RFLMs and make performance improvements.

	Computation efficient in training	Computation efficient in test	Bidirectional context	Flexible features	Performance
N-gram LMs		\checkmark	*	*	*
Neural network LMs	*	*	*	~	
RFLMs	*		\checkmark	V	

Future work

- Train RFLMs with richer features on larger-scale corpus.
- Features selection strategy such as L1 regularization.

Thanks:

Yang Zhang, Bin Wang, Mark Hasegawa-Johnson, Zhiqiang Tan.

Thanks for your attention !