

Improved Training of Neural Trans-dimensional Random field Language Models with Dynamic Noise-contrastive Estimation

Bin Wang, Zhijian Ou Speech Processing and Machine Intelligence (SPMI) Lab, Tsinghua University, Beijing, China. wangbin12@mails.Tsinghua.edu.cn, ozj@Tsinghua.edu.cn

Open-source toolkit: https://github.com/wbengine/TRF-NN-Tensorflow

Tsinghua University Department of Electronic Engineering

Introduction

Trans-dimensional random field (TRF) LMs

Whole-sentence modeling: directly fit the joint probability $p(x_1, ..., x_l)$;

Humans employ context for reading and writing.

The cat is on the table.

The cat is in the house.

© Avoid local normalization;

Propose the dynamic noise-contrastive estimation (DNCE) to solve the two problems of NCE:

© Flexible: no acyclic and local normalization constraint.

- Cut down the noise sample number (20 -> 4);
- Alleviate the overfitting problem.

Model Definition

$$p_m(s; \theta, Z) = \pi_l e^{\phi(s; \theta) - \log Z_l}$$

$s = (x_1, \dots, x_l)$	A word sequence of length l
π_l	The prior length probability
	The normalization constant of length l (to be estimated)

$$\phi(s;\theta)$$
 Potential function with parameter θ
$$\phi(s;\theta) = \sum_{i=1}^{l-1} h_{f,i}^T e_{i+1} + \sum_{i=2}^{l} h_{b,i}^T e_{i-1}$$

Model Training

$$\nabla_{\theta} \operatorname{Log} Likelihood = E_{p_d(s)}[\nabla_{\theta} \phi(s; \theta)] - E_{p_m(s; \theta)}[\nabla_{\theta} \phi(s; \theta)]$$

Expectation under empirical distribution

Expectation under model distribution

AugSA (ACL 2015, TPAMI 2018), AugSA plus JSA (ASRU 2017), NCE (ICASSP 2018)

Dynamic Noise-contrastive Estimation (DNCE)

Experiments

Models	РТВ		HKUST			Google one-billion			Dovice	
	WER	#Param (M)	Infer. (s)	WER	#Param (M)	Infer. (s)	WER	#Param (M)	Infer. (s)	Device
KN5	8.78	2.3	0.06	28.48	3.5	0.004	6.13	133	0.49	CPU
LSTM	7.36	66.0	9.09	27.60 7	2.2	0.048	5.55	191	0.91	GPU
TRF	7.40	2.6	0.08	27.72	1.4	0.009	5.47	114	0.02	GPU
TRF+KN5+LSTM	_		_	26.87		-	5.06		_	GPU

TRFs perform as good as LSTMs with less parameters and being 5x ~ 114x faster in inference.