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Introduction

Trans-dimensional random field (TRF) LMs
Who

© Avoid local normalization;
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© Flexible: no acyclic and local normalization constraint.

le-sentence modeling: directly fit the joint probability p(xy, ..., x1); Humans employ context for reading and writing.

The cat is on the table.
- =

The cat is in the house.
ose the dynamic noise-contrastive estimation (DNCE) to solve the two problems of NCE: —

1| Cut down the noise sample number (20 -> 4);

lleviate the overfitting problem.

Model Definition Model Training
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AugSA (ACL 2015, TPAMI 2018), AugSA plus JSA (ASRU 2017), NCE (ICASSP 2018)

Dynamic Noise-contrastive Estimation (DNCE)
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Models Device
WER | #Param (M) | Infer. (s) WER #Param (M) | Infer. (s) WER #Param (M) | Infer. (s)
KN5 8.78 2.3 0.06 28.48 3.5 0.004 6.13 133 0.49 CPU
LSTM 7.36 1 66.0 9.09 27.60 1 2.2 0.048 5.55 1 191 0.91 GPU
TRF 7.40 J 2.6 0.08 27.72 - 1.4 0.009 5.47 114 0.02 GPU
TRF+KN5+LSTM - - 26.87 - 5.06 - GPU

TRFs perform as good as LSTMs with less parameters and being 5x ~ 114x faster in inference.




