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Switching Auxiliary Chains for Speech Recognition

Hui Lin, Student Member, IEEE, and Zhijian Ou, Member, IEEE

Abstract—This letter investigates the problem of incorporating
auxiliary information, e.g., pitch, zero crossing rate (ZCR), and
rate-of-speech (ROS), for speech recognition using dynamic
Bayesian networks. In this letter, we propose switching auxiliary
chains for exploiting different auxiliary information tailored to
different phonetic states. The switching function can be specified
by a priori knowledge or, more flexibly, be learned from data with
information-theoretic dependency selection. Experiments on the
OGI Numbers database show that the new model achieves 7%
word-error-rate relative reduction by jointly exploiting pitch,
Z.CR, and ROS, while keeping almost the same parameter size as
the standard HMM.

Index Terms—Auxiliary features, dynamic Bayesian networks
(DBNs), speech recognition.

I. INTRODUCTION

OR automatic speech recognition (ASR), HMMs consist
F of two sets of random variables, the hidden phonetic state
variable and the acoustic feature variable at each time. One im-
portant deficiency is that the single phonetic state variable is
burdened to contain all relevant contextual information. There
are clearly some contextual cues that are not explicitly repre-
sented by the phonetic states (e.g., pitch, zero crossing rate, rate
of speech, etc.), which we call auxiliary information. Various
methods have been proposed to incorporate such auxiliary in-
formation to improve ASR robustness. Bayesian networks [1],
in particular, dynamic Bayesian networks (DBN) [2], in which
HMMs can be considered as one small instance, has been used
for these studies [3]-[7].

One method is to encode the auxiliary information in contin-
uous observed variables. It is shown in [5] and [8] that simply
appending the auxiliary feature to the standard feature vector
(MFCCs) degrades the recognition performance. It is beneficial,
however, to use the auxiliary feature as a conditional variable to
model the distribution of the cepstral-based features. To have
tractable exact inference when using hidden continuous vari-
ables, only the dependencies within a given time frame are con-
sidered [5].

On the other hand, the auxiliary information can also be incor-
porated in the form of discrete variables [3], [4], [6], [7], which
can be temporally linked to form an auxiliary chain along time
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to account for contextual information. The works in [3] and [4]
show the advantage of including a discrete context variable that
is always hidden during both training and recognition; it is not
clear what auxiliary information it may represent. In [6], pitch
information is explicitly related to a discrete variable by quan-
tization. In [7], rate-of-speech (ROS) information is used by in-
troducing an additional discrete mode variable. There are other
possible sources for auxiliary information, e.g., zero crossing
rate (ZCR), short-term energy. Each auxiliary feature has its
own merit to aid the modeling of the standard feature O, by
conditioning O,’s distribution. Previous works mainly investi-
gate the use of each auxiliary feature separately [6], [7]. If we
consider jointly exploiting the different auxiliary features, say
Agl), ce AgL), via L auxiliary chains, a problem is that the
model complexity will be increased by a factor equal to the
product of the cardinalities of the L auxiliary variables.

Note that, for different phonetic states, the effects of an aux-
iliary feature may be different. For example, pitch information
is meaningful only for voiced phones. While it is reasonable to
augment a voiced phonetic state like/a/with an auxiliary variable
representing pitch, it is less appropriate to associate such auxil-
iary variable to an unvoiced phonetic state like/s/. It is also ob-
served that vowels receive greater influence than consonants by
speaking rate [9]. ZCR is well known to be useful for voiced/un-
voiced detection, and additionally, it also helps to distinguish
voiceless plosives (including affricates) from voiceless frica-
tives [10]. With these observations, in this letter, we propose
switching auxiliary chains for exploiting different auxiliary in-
formation tailored to different phonetic states.

The new model is essentially built on the switching parent
functionality of Bayesian multinets [12], [13]. Normally in
Bayesian networks, a variable has only one set of parents. How-
ever, in Bayesian multinets, a variable’s parents are allowed to
change (or switch) depending on the current values of other
parents (as illustrated in Fig. 1). This switching functionality
enables us to jointly use multiple auxiliary features in a parsi-
monious way, by selectively exploiting the auxiliary features
for different phonetic states. For each phonetic state, only the
most effective auxiliary feature is switched to be the parent of
the standard feature. The switching function can be specified
by a priori knowledge (e.g., in our previous work [11], we
implemented a knowledge-driven switching voiced/unvoiced
auxiliary chain model for exploiting pitch information), or
more flexibly, be learned from data with information-theoretic
dependency selection [13].

In the data-driven approach, for each value ¢ of the phonetic
state @+, the conditional mutual information I(Oy, AEI |Q: =
q) between the standard feature O, and each individual auxiliary
feature Agl) , is computed using training data. Then the auxiliary
feature which corresponds to the maximum mutual information
is selected as the conditional parent of the standard feature.
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Fig. 1. Tllustration of Bayesian multinets. Solid lines represent conditional de-
pendency. Dashed lines represent switching dependency. When s = 0, v is s
parent, when s = 1, w is x’s parent. s is called the switching parent and v,
w are called the conditional parents. s switches the parents of 2 between v and
w, corresponding to the probability distribution: p(z | v, w) = p(xz|v,s =
0)p(s = 0) + p(z|w,s = 1)p(s = 1).
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Fig. 2. Basic auxiliary chain model. Round nodes represent continuous vari-
ables, while square nodes represent discrete variables.

Experiments are carried out on the OGI Numbers database
[14], which is an English telephone speech corpus consisting
of continuously spoken numbers. The results show that the new
model achieves 7% word-error-rate (WER) relative reduction by
jointly exploiting pitch, ZCR, and ROS as the auxiliary features,
while remaining almost the same parameter size as the standard
HMM.

II. SWITCHING AUXILIARY CHAINS: MODEL FORMULATION

The switching auxiliary chains are implemented in the frame-
work of dynamic Bayesian networks (DBNs) [2]. Fig. 2 shows
the DBN representation of the basic auxiliary chain model as
in [3], [4], and [6]. Q;, O, are, respectively, the discrete pho-
netic state variable and the continuous standard feature variable
at time ¢. In Fig. 2, there are two discrete auxiliary variables
Agl), A§2), which can be used to encode two kinds of auxil-
iary information. Suppose that there are L auxiliary variables
Agl), A§2), ceey AgL), representing L different types of auxiliary
information, then we have the following joint probability distri-
bution:

p(aur o {a} )
T
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Traditionally, the new condltlonal probabilistic distribution
(CPD) of Oy, (Ot|Qt,{A )}l_ L), requires a model
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Fig. 3. Switching auxiliary chain model. Q. is both the conditional parent and
switching parent of O, and AEI). A&Z) are (J;’s conditional parents.

for each possible combination of the auxiliary variables
{A }l* _____ .. Note that, for different phonetic states, the
effects of an auxiliary feature are different, maybe strong, weak
or even irrelevant. A good example is that pitch information is
meaningful only for voiced states. To account for such selective
effect of auxiliary information for different phonetic states, we
propose the following switching auxiliary chain model, which
also reduces model complexity:

! (Ql:T? Ovr, {Agl:)T}l:LZ,...,L>

T

:H (Qe1Q:-1)p(O4 | Qr, A(Qy))

X H P (A”) | AD ) ©)

where A;(Q:) C {A4; ) A(2) ..... A(L } is selected, by Q:,
to be a parent of O;. Here, Qt is both the conditional parent
and switching parent of O;, and Agl), A§2)7 e ,AgL) are O;’s
conditional parents, as illustrated in Fig. 3

In the traditional multiple auxiliary chain model, all auxil-
iary features are used without selection for different values of
Q. In contrast, the new model selects the most effective auxil-
iary features to condition the modeling of Oy, as specified by
the switching function A;(Q:). A multinet occurs here since
A4(Qy) is a function of Q. If the underlying phonetic state
chain changes, so will the set of dependencies.

The switching function A;(Q;) is defined to be a determin-
istic mapping from a classification of the possible values of
Q: to the set of auxiliary variables, where each class is suited
to some particular auxiliary information. The mapping can be
specified by a priori knowledge, or more flexibly, be learned
from data with information-theoretic dependency selection, as
described below.

III. DATA-DRIVEN SWITCHING

For specific phonetic state (); = ¢, we define the effec-
tiveness of an auxiliary feature Agl) by the strength of the
(conditional) dependency between O, and Agl). This can be
naturally measured by the conditional mutual information
I(Oy; Afl) |Q: = q). If the conditional mutual information is
large, the auxiliary feature is viewed as being effective for the
modeling of the standard feature for state q.
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Furthermore, if we constrain that only one auxiliary feature
is selected to take effect for each phonetic state, that is

|A:(Q: = q)| = 1,Yq (3)

then the model size of using L auxiliary features remains al-
most the same as that of using only one auxiliary feature. It can
be easily seen that the switching function under this constraint
should be

A(Qr =) = argmax I(0: A" | Qi =) @)
At

What remains is to obtain the conditional mutual information
1(Oy; Atl) | Q¢+ = q), which can be computed as follows:

1(014"| Qi =4)

= H(0/| Q=) ~ H(0.] Q= 0.47)
=H(0¢|Qr = q)
(a0 e
(04| Qi = .47 =a). 5)

Here, for a random variable X with the distribution p(z),,
H(X) denotes its entropy [15], which is defined as

H(X) = - / p(x) log p(z) . ®)

Therefore, we first need to estimate the distributions
p(O1|Qr = ¢) and p(0| Qs = ¢, 47" = ),
These can be achieved by fitting Gaussian mixture distributions
to the training data. Specifically, the training data associated
with specific ; = ¢ can be obtained via forced alignment
using the standard HMM. For [ = 1,..., L, the aligned data
can be further divided into several groups according to different
values of A,El). Analytical formulae exist for the entropy of a
Gaussian, but not for the entropy of a Gaussian mixture density
(GMD); therefore, we use a Monte Carlo sampling method to
compute the entropy in (6). In the experiments, GMDs with
diagonal covariance matrices are used. It is easy to draw a set
of samples {2V |i = 1,..., N} from such diagonal GMDs,
say p(x) [16]. Then the entropy can be approximated by a finite
sum

LN
_—NZIng( 7). )
Finally, from the aligned training data, we have

Ete{t|Q«f qA(l)—a} 1
Z Zte{ |Q =q, A(l)_(l} U
®)

Combining (5), (7), and (8), we can obtain the required con-
ditional mutual information.
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TABLE 1
WERS FOR DIFFERENT MODELS

Model Aux. Param. | WER(%)
HMM — 101k 9.80
pitch 102k 9.39
Single Aux. Chain ZCR 102k 9.36
ROS 102k 9.59
Switching Two Aux. Chains pitch+ZCR 102k 9.25
(Knowledge-Driven) pitch+ROS 102k 9.40
- ] pitch+ZCR 102k 922
Switching Two Aux. Chains pitch+ROS 02k 918
(Data-Driven) ZCR+ROS T02K 935
Sw 'tm"z%;grg‘ii(};g' Chains | iich+zCR+ROS | 102k | 914

IV. EXPERIMENTS

Experiments are carried out on the OGI Numbers database
[14], which is an English telephone speech corpus consisting
of naturally spoken numbers with 30-word vocabulary. We use
6049 utterances from the corpus for training and 2061 utter-
ances for testing. All utterances are framed with 25-ms length
and 10-ms shift. From each frame, 12 MFCCs plus normalized
log-energy are extracted along with their first and second deriva-
tives, giving a feature vector of 39 dimensions. Cepstral mean
subtraction is then applied to the feature vector. The Graphical
Model Toolkit (GMTK) [17] is utilized for DBN implementa-
tion. There are 26 monophone models, a silence model, and a
short-pause model. The silence and all monophones are mod-
eled with three emitting states each, and the short-pause has only
one state which is tied to the middle state of the silence model.

Three kinds of auxiliary information are used: pitch (the
fundamental frequency fj), ZCR, and ROS. ROS is estimated
by the mrate program [18] and the Entropic Signal Processing
System (ESPS) [19] tool get_fy is used to estimate the pitch.
All the extracted auxiliary information is then quantized into
binary auxiliary features.

A baseline DBN is built to emulate the standard HMM. There
is an upper layer including position and transition variables as
introduced in [3]. The various DBNs replace the lower layer
with the different structures from Figs. 2 and 3. 16 Gaussian
components per state are used for the CPD of the acoustic fea-
ture O.

In the auxiliary chain models, for each state, the Gaussian
components of the GMDs for different values of the quantized
auxiliary variable are tied for robust parameter estimation, as
done in [4], [7], and [20]. Only the mixture weights depend
on the auxiliary chain variable. The WER results for various
models are shown in Table I, along with the model parameter
size.

First, we implement three single auxiliary chain models,
using quantized pitch, ZCR, and ROS as the auxiliary variable,
respectively. It can be seen that incorporating auxiliary infor-
mation via a single chain is beneficial. Every single auxiliary
chain model outperforms the baseline HMM. As we use tied
Gaussian mixtures on the state level, introducing the auxiliary
variable keeps almost the same number of parameters as the
baseline HMM. If no parameter tying scheme was used, using a
single binary auxiliary chain would double the parameter size,
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which may cause unreliable parameter estimation. As reported
in [20], using discrete auxiliary chain to carry pitch information
without parameter tying may even degrade the recognition
performance.

Next, we consider jointly exploiting multiple auxiliary
features via switching auxiliary chains. Since we constrain
the switching function to select only one auxiliary feature to
take effect as in (3), the number of parameters of all the new
models remain almost unchanged. For comparison, both the
knowledge-driven and data-driven methods to determine the
switching function are implemented.

Consider the case of exploiting two different auxiliary fea-
tures. For the knowledge-driven method, we divide the pho-
netic states into voiced/unvoiced classes by a priori knowledge,
and assign relevant auxiliary features to them, respectively. Two
possible switching two-chain models are tested, which can be
expressed as in the following, respectively, using the switching
function notation:

if ¢ is voiced

quantized pitch,
otherwise

A(Qr = 0) = { quantized ZCR.

_\ _ | quantized pitch,
AQe=a) = {quantized ROS

if ¢ is voiced
otherwise.

For the data-driven method, all the three possible combinations
of the three auxiliary features are considered. The switching
function is determined by first computing conditional mutual
information, and then selecting the auxiliary feature with the
maximum effectiveness. In the sampling method used for en-
tropy computation, diagonal GMDs with eight components are
estimated, and one million samples are drawn. Using more sam-
ples or more Gaussian components gives the identical switching
function in our experiment.

It can be seen from Table I that the switching two auxil-
iary chain models further improve the performance over the
corresponding single auxiliary chain models, while keeping
almost the same model size. The results also show that the
data-driven approach is more effective and flexible than the
knowledge-driven approach. The performance of the knowl-
edge-driven switching two chain models is worse than corre-
sponding data-driven models, especially in the case of using
pitch and ROS. In this case, the knowledge-driven switching
two chain model performs similarly to using pitch alone. In
contrast, the corresponding data-driven model gives the best
result among all switching two chain models.

Finally, the data-driven switching three auxiliary chain model
is implemented, exploiting pitch, ZCR and ROS together. It
further improves the performance, achieves 7% WER relative
reduction over the baseline HMM, and again, keeps almost the
same model size. Jointly exploiting multiple auxiliary features
by information-theoretic dependency selection via switching
function proves to be useful for building compact yet powerful
acoustic models.

V. CONCLUSION

In this letter, we propose switching auxiliary chains for ex-
ploiting different auxiliary information tailored to different pho-
netic states. The new model is essentially built on the switching
parent functionality of Bayesian multinets. The switching func-
tion can be determined by a priori knowledge, or more flexibly,
be learned from data with information-theorectic dependency
selection. Experiments on the OGI Numbers database show that
the new model achieves 7% WER relative reduction by jointly
exploiting pitch, ZCR, and ROS, while keeping almost the same
parameter size as the standard HMM. In the future, we plan to
use the switching chain representation to exploit as much aux-
iliary information as possible.
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