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𝑞 𝑙, 𝑥𝑙; 𝜇 an auxiliary LM with parameter 𝜇
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Model Evaluation
LMs trained on Penn Treebank (PTB) training set are applied to rescore the 1000-

best lists from recognizing WSJ’92 test data (330 utterances).

Model PPL WER(%) #param Training Time Inference Time

KN5 141.2 8.78 2.3 M 22 s (1 CPU) 0.06 s (1 GPU)

LSTM-2x200 113.9 7.96 4.6 M 1.7 h (1 GPU) 6.36 s (1 GPU)

LSTM-2x650 84.1 7.66 19.8 M 7.5 h (1 GPU) 6.36 s (1 GPU)

LSTM-2x1500 78.7 7.36 66.0 M 1 day (1 GPU) 9.09 s (1 GPU)

discrete TRF ≥130 7.92 6.4 M 1 day (8 CPUs) 0.16 s (1 GPU)

neural TRF ≥37.4 7.60 4.0 M 3 days (1 GPU) 0.40 s (1 GPU)

KN5 + LSTM-2x1500 7.47

neural TRF + 
LSTM-2x1500

7.17

Fig. 1. The deep CNN architecture used to define the potential 

function 𝜙 𝑥𝑙; 𝜃 . Shadow areas denote the padded zeros.
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1. For 𝜃. Maximize the likelihood. 

2. For 𝜁. Optimize the length distribution
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Fig.4. The negative log-likelihood 

on PTB test set
Fig.3. The KL-divergence 𝐾𝐿 𝑝||𝑞

where:

• 𝐷 𝑡 is the mini-batch of training data at iteration 𝑡

• 𝐵 𝑡 is the sample set at iteration 𝑡, and 𝐾𝐵 = 𝐵 𝑡 .

• 𝛾𝜃,𝑡, 𝛾𝜁,𝑡, 𝛾𝜇,𝑡 are the learning rates for 𝜃, 𝜁, 𝜇 respectively.

• 𝐴𝑑𝑎𝑚 is the Adam method

𝜃 𝑡 = 𝜃 𝑡−1 + 𝛾𝜃,𝑡𝐴𝑑𝑎𝑚 𝐸𝐷 𝑡
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Three objectives induce the following update operations 

Trans-dimensional mixture sampling

𝑙 𝑡 , 𝑥 𝑡

MH accept or reject
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propose a new length 𝑗

or

or

or
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propose words

MH accept

MH reject

propose words

𝑙 𝑡 , 𝑥 𝑡

Fig 2. Trans-dimensional mixture sampling with an auxiliary 

distribution 𝑞 𝑙, 𝑥𝑙; 𝜇 . Step I (left) changes the length of the input 

sequence and Step II (right) draws the words at each positions. 

Metropolis-Hasting (MH) method is used at both steps with 

𝑞 𝑙, 𝑥𝑙; 𝜇 served as the proposal distribution. 

Step I: local jump Step II: Markov move
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Directed graphical language models:

𝑝 𝑥𝑖|𝑥1, … , 𝑥𝑖−1

Trans-dimensional random field (TRF) language models:

𝑝 𝑥1, 𝑥2, … , 𝑥𝑙
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Variables need to be estimated:

• 𝜃: the model parameters.

• 𝜁 = 𝜁1, 𝜁2, … , 𝜁𝑚 : normalization constants.

𝑥𝑙 is the a word sequence of length 𝑙, ranging from 1 to 𝑚

 Being able to flexibly integrate rich features – discrete 

features and neural network features

 Computationally more efficient in inference than LSTM LMs.
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