Language modeling with neural trans-dimensional random fields

Bin Wang, Zhijian Ou

Speech Processing and Machine Intelligence (SPMI) Lab, Tsinghua University, Beijing China

wangbin12@mails.Tsinghua.edu.cn, ozj@Tsinghua.edu.cn

Introduction

Directed graphical language models:

$$p(x_i|x_1,\ldots,x_{i-1})$$

Trans-dimensional random field (TRF) language models:

$$p(x_1, x_2, \dots, x_l)$$

- ◆ Being able to flexibly integrate rich features discrete features and neural network features
- ◆ Computationally more efficient in inference than LSTM LMs.

Training objectives

 $p(l, x^l; \theta, \zeta)$ an TRF LM with parameters θ, ζ an auxiliary LM with parameter μ

1. For θ . Maximize the likelihood.

$$E_{D} \left[\frac{\partial \phi}{\partial \theta} \right] - E_{p(l,x^{l};\theta,\zeta)} \left[\frac{\partial \phi}{\partial \theta} \right] = 0$$

The expectation on the training set D

The expectation under the TRF model distribution

2. For ζ . Optimize the length distribution

$$\sum_{x^l} p(l, x^l; \theta, \zeta) = \pi_l$$

The marginal length probability

3. For μ . Minimize the KL divergence between p and q

$$\frac{\partial}{\partial \mu} KL\left(p(l, x^l; \theta, \zeta)||q(l, x^l; \mu)\right) = 0$$

Three objectives induce the following update operations

SA updates

$$\theta^{(t)} = \theta^{(t-1)} + \gamma_{\theta,t} A dam \left\{ E_{D^{(t)}} \left[\frac{\partial \phi}{\partial \theta} \right] - \frac{1}{K_B} \sum_{(l,x^l) \in B^{(t)}} \frac{\partial \phi(x^l;\theta)}{\partial \theta} \right\}$$

where:

- $D^{(t)}$ is the mini-batch of training data at iteration t
- $B^{(t)}$ is the sample set at iteration t, and $K_B = |B^{(t)}|$.
- $\gamma_{\theta,t}, \gamma_{\zeta,t}, \gamma_{\mu,t}$ are the learning rates for θ, ζ, μ respectively.
- Adam is the Adam method

Trans-dimension random field LMs

Model Definition

 x^{l} is the a word sequence of length l, ranging from 1 to m

Variables need to be estimated:

- θ: the model parameters.
 ζ = (ζ₁, ζ₂, ..., ζ_m): normalization constants.

$$p(l,x^{l};\theta,\zeta) = \pi_{l} \cdot \frac{1}{Z_{0}} e^{\phi(x^{l};\theta)-\zeta_{l}}$$

The joint probability of sequence x^l and l

 $\triangleq p_l(x^l;\theta,\zeta)$ The empirical length probability the probability of sequence x^l

Model Training

Model Evaluation

LMs trained on Penn Treebank (PTB) training set are applied to rescore the 1000best lists from recognizing WSJ'92 test data (330 utterances).

Model	PPL	WER(%)	#param	Training Time	Interence Time
KN5	141.2	8.78	2.3 M	22 s (1 CPU)	0.06 s (1 GPU)
LSTM-2x200	113.9	7.96	4.6 M	1.7 h (1 GPU)	6.36 s (1 GPU)
LSTM-2x650	84.1	7.66	19.8 M	7.5 h (1 GPU)	6.36 s (1 GPU)
LSTM-2x1500	78.7	7.36	66.0 M	1 day (1 GPU)	9.09 s (1 GPU)
discrete TRF	≥130	7.92	6.4 M	1 day (8 CPUs)	0.16 s (1 GPU)
neural TRF	≥37.4	7.60	4.0 M	3 days (1 GPU)	0.40 s (1 GPU)
KN5 + LSTM-2x1500		7.47			
neural TRF +		7.17			
LSTM-2x1500					

Fig.3. The KL-divergence KL(p||q)

Fig.4. The negative log-likelihood on PTB test set

Deep CNN Architecture

Fig. 1. The deep CNN architecture used to define the potential function $\phi(x^l;\theta)$. Shadow areas denote the padded zeros.

Trans-dimensional mixture sampling

Fig 2. Trans-dimensional mixture sampling with an auxiliary distribution $q(l, x^l; \mu)$. Step I (left) changes the length of the input sequence and Step II (right) draws the words at each positions. Metropolis-Hasting (MH) method is used at both steps with $q(l, x^l; \mu)$ served as the proposal distribution.