
Discriminative Speaker Adaptat

Jun Luo, Zhijian Ou, Zuo

Department of Electronic E
Tsinghua University, Beij

{luojun,ozj}@thsp.ee.tsin

Abstract
Eigenvoice is an effective speaker adaptation approach and ca-
pable of balancing the performance and the requirement for a
large amount of adaptation data. However, the conventional
Maximum Likelihood Eigen-Decomposition (MLED) method
in eigenvoice adaptation is based on Maximum Likelihood
(ML) criterion and suffers from the unrealistic assumption made
by HMM on speech process, so alternative schemes may be
more effective to improve the performance. In this paper, we
propose a new discriminative adaptation algorithm called Max-
imum Mutual Information Eigen-Decomposition (MMIED) in
which the mutual information between the training word se-
quences and the observation sequences is maximized. By
the use of word lattice, the competing word hypotheses are
taken into account to make the estimation more discrimina-
tive. MLED, MMIED and Maximum a Posteriori Eigen-
Decomposition (MAPED) which is based on Maximum a Pos-
teriori (MAP) criterion were all experimented to give a com-
prehensive comparison. Results showed that MMIED outper-
formed both MLED and MAPED.

1. Introduction
A speaker-dependent (SD) system performs better than a
speaker-independent (SI) one, however, it requires a large
amount of speaker-specific data, which may be impracticable in
some applications. Speaker adaptation is to use limited amount
of speaker-specific data to achieve performance approaching
that of an SD system for a speaker [1]. Currently, dominant
speaker adaptation techniques could be classified into three cat-
egories: the Maximum a Posteriori (MAP) [2] adaptation ap-
proaches, transformation-based adaptation approaches includ-
ing Maximum Likelihood Linear Regression (MLLR) [3], and
approaches related to speaker clustering such as the eigenvoice
[4, 5] method.

Eigenvoice adaptation was shown to be an effective method
for fast speaker adaptation with few data, and it has been applied
to LVCSR system successfully. Experimental results showed
that even with several seconds it could gain considerable im-
provements [5].

Most of these works were done based on Maximum Like-
lihood (ML) criterion. However, it is known that ML criterion
would be optimal only if the following two conditions are satis-
fied [6]:

• Training data set is infinite;

• The true distribution of the speech process is an HMM.

Since the assumption made by HMM on speech process is in
fact inaccurate, and training data is fairly limited in speaker
adaptation, discriminative estimation such as Maximum Mutual
Information (MMI) estimation are potentially more effective
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L estimation. Discriminative speaker adaptation with
regression [7, 8] has been successfully applied with im-

d performance.
this paper, we propose the MMI adaptation with eigen-

. By the use of word lattice, possible competing word
heses are taken into account to give better discrimination.
e-estimation formula proposed by Gunawardana et al [7]
tended Baum-Welch (EBW) algorithm is used.
he paper is organized as follows. In section 2 we review
nventional ML adaptation with eigenvoices. The MAP es-
on is also introduced in section 3 to give a comprehensive
arison of existing algorithms. In section 4 the new esti-
n algorithm based on MMI criterion is discussed in detail.
n 5 gives the experimental results and section 6 concludes
per.

2. ML Adaptation with Eigenvoices

igenvoice approach begins with a reference set of well-
d SD models. For each of the SD model, a supervector

ed by concatenating all of the mean vector parameters
osed to be D-dimension). Then a dimensionality reduc-
chnique principal component analysis (PCA) [9] is used
the eigenvectors. The supervector for a new speaker is

ed to be a linear combination of selected eigenvectors.
enote C as the sample covariance matrix of the supervec-
hen by PCA method, C can be expressed as:

[e(1), . . . , e(D)]diag(λ1, . . . , λD)[e(1), . . . , e(D)]T

(1)
e(i), i = 1, 2, . . . , D, are eigenvectors and λi are the

ponding eigenvalues of C in descendent order (λ1 ≥
≥ λD) which also represent their contributions to

er variation. The top K eigenvectors, named as ’eigen-
’ are selected (where K � D). They account for most
variation in the reference speakers. Let e(0) be the mean
ector, then for a new speaker, the supervector S could be
ented as follows.

S = e(0) +

K�

k=1

(x(k) × e(k)) (2)

the adaptation data from a new speaker, only the coef-
t vector x = (x1, x2, . . . , xK)T of size K needs to be
ted.

uppose that the single Gaussian state-output distribution is

Given the adaptation data O = oT
1

∆
= o1, · · · ,oT with

rresponding transcription W = wN
1

∆
= w1, · · · , wN , let:



n: the dimension of the feature vector;
ot: the feature vector at time t;
µs: the mean vector for state s;
Cs: the covariance for state s;
es(j): the subvector of eigenvoice j corre-

sponding to state s;

Define γs(t) as the occupation probability for state s at
time t given sentence transcriptions and γg

s (t) as the occupa-
tion probability for state s at time t without transcription1, i.e.,

γs(t) = P (st = s|W,O) (3)

γg
s (t) = P (st = s|O) (4)

Maximum Likelihood estimation method, called Maximum
Likelihood Eigen-Decomposition (MLED) in [4] aims to max-
imize the likelihood P (W,O|x) with respect to the unknown
coefficient vector x. This is done by iteratively maximizing an
auxiliary function Q(x′,x) as following:

Q(x′,x) = P (W,O|x′) ×
�

s

�

t

γs(t)[log P (ot|s,x)]

(5)
where x′ is current model, and x is the model to be estimated.

log P (ot|s,x) = −n

2
log(2π) − 1

2
log|Cs|

−1

2
(ot − µs)

T C−1
s (ot − µs)

(6)

According to Equation 2, we get:

µs = es(0) +

K�

k=1

(x(k) × es(k)) (7)

Denote x̂ as the re-estimation of coefficient vector which
maximizes Q(x′,x) over x. Let ∂Q/∂x(j) = 0, j =
1, . . . , K, we obtain the update equation for each x̂(j), j =
1, . . . , K:

�

s

�

t

γs(t)(es(j))
T C−1

s (ot − es(0))

=
�

s

�

t

γs(t) ×
K�

k=1

x̂(k)(es(k))T C−1
s es(j)

(8)

3. MAP Adapation with Eigenvoices
Note that the use of eigenvoices imposes a strong constraint on
mean vectors, it is beneficial to explore the prior information
in model estimations. Maximum a Posteriori criterion could be
used for this purpose. The MAP estimation of acoustic model
parameters θ is:

θ̂ = argmax
θ

[P (W,O|θ)P0(θ)] (9)

where P0(θ) denotes the prior probability of the known param-
eters θ. The estimation procedure under MAP criterion is called
Maximum a Posteriori Eigen-Decomposition (MAPED) [10].

In [10], coefficients x(k), k = 1, . . . , K are modeled by a
Gaussian distribution with mean µx(k) and variance σ2

x(k) re-
spectively. Thus, the prior probability P0(x) is given by:

P0(x) =

K�

k=1

1�
2πσ2

x(k)

exp− (x(k) − µx(k))
2

2σ2
x(k)

(10)

1γg
s (t) will only be used in MMIED, here we define it to keep con-
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ince x(k), k = 1, . . . , K are the projections of the speaker
ector to the eigenvectors, the prior probability can be de-

directly from the eigen-analysis of covariance matrix C

stead of modeling each individual coefficient x(k), multi-
sional Gaussian distribution is used to model supervector

h mean e(0) and covariance C, then the prior probability
n by:

P0(x) = P0(S) = N (S|e(0),C) (11)

ubstitute the Eigenvoice expression of the speaker super-
from Equation 2 into Equation 11, and rewrite C as in

ion 1, then the log prior probability of coefficient vector
iven by:

og P0(x) = −1

2
(

K�
k=1

x(k)e(k))T (e(1), . . . , e(D))

iag(λ−1
1 , . . . , λ−1

D )((e(1), . . . , e(D))T (

K�
k=1

x(k)e(k)))

(12)
e(i)T e(j) = 0, i �= j and e(i)T e(i) = 12, Equation 11
rewriten as3:

log P0(x) = −1

2

K�
k=1

x(k)2

λk
(13)

quation 13 gives that the mean of each coefficient x(k)
al to zero, and the variance is equal to the corresponding
alue λk.

edefine auxiliary function as:

Q′(x′,x) =P (W,O|x′)

×{
�

s

�
t

γs(t)[logP (ot|s,x)] + log P0(x)} (14)

ubstitute P0(x) and let ∂Q′/∂x(j) = 0, j = 1, . . . , K,
t:

�
t

γs(t)(es(j))
T C−1

s (ot − es(0)) =

K�
k=1

x̂(k)

×[
�

s

�
t

γs(t)(es(k))T C−1
s es(j) + δk,j · 1

λj
]

(15)

ch x̂(j), j = 1, . . . , K. Here:

δk,j =

�
1, if k = j
0, otherwise

(16)

. MMI Adaptation with Eigenvoices
oal of MMI estimation is to maximize the mutual infor-
n [12]:

I(W,O|θ) = log
P (wN

1 ,oT
1 |θ)

P (wN
1 )P (oT

1 |θ)
(17)

is equivalent to maximize the conditional likelihood
|oT

1 , θ) , namely Conditional Maximum Likelihood
) [13] estimation.

s the property of normalized eigenvectors.
ough it’s only derived for the case of full-ranked covariance C, it
o be adapted to other cases since the equation is only associated
e top K eigenvalues.



Gunawardana showed that for carefully chosen constant
d′(sT

1 ), iteratively updating the parameters as follows would in-
crease the conditional likelihood:
�

sT
1

[P (sT
1 |wN

1 ,oT
1 , θ′) − P (sT

1 |oT
1 , θ′)]∇θ log P (oT

1 |sT
1 , θ)|θ̂

+
�

sT
1

d′(sT
1 )

�
P (ōT

1 |sT
1 , θ′)∇θ log P (ōT

1 |sT
1 , θ)|θ̂dōT

1 = 0

(18)
Here θ′ and θ̂ means current estimation and re-estimation of
model parameters respectively, sT

1
∆
= s1, . . . , sT denotes any of

the T -length state sequences, and ōT
1

∆
= ō1, . . . , ōT represents

any of the T -length observation sequences.
In eigenvoice-based adaptation, θ is the composition coef-

ficient vector x. Let es = (es(1), es(2), . . . , es(K)), which is
a matrix of D × K, we can derive that

∇x log P (ot|s,x) = eT
s C−1

s (ot − es(0) − es · x) (19)

Rearrange equation 18, and define:

δs(q) =

�
1, if q = s
0, otherwise

(20)

D′
s =
�
sT
1

d′(sT
1 )

T�
t=1

δs(st) (21)

we get:

(
�

s

(
�

t

(γs(t) − γg
s (t)) + D′

s)es
T C−1

s es)x̂

=
�

s

es
T C−1

s (
�

t

(γs(t) − γg
s (t))(ot − es(0)) + D′

sesx
′)

(22)
We call the resulting procedure Maximum Mutual Information
Eigen-Decomposition (MMIED), since the target is to maxi-
mize the mutual information.

The γs(t) is calculated by conventional forward-backward
procedure, and γg

s (t) can be efficiently computed by using
word-lattice. The recognition result is organized as a word lat-
tice as in Figure 1, where wl,m, l = 1, . . . , L, m = 1, . . . , M
denotes the mth candidate at the position l, L is the length of
the normalized recognized word lattice4, and M is the number
of candidate words at each position. In addition, segment points
of the states in every wl,m are stored in the word lattice. Given
time t, word position l(t) could be determined from this lattice.
We assume a uniform unigram which is indeed the case in the
acoustic part of the system. Thus γg

s (t) can be expressed as:

γg
s (t) =

�
m:Φ(wl(t),m,t)=s

P (O
el(t)
sl(t) |wl(t),m)

�
m

P (O
el(t)
sl(t) |wl(t),m)

(23)

Here Φ(wl,m, t) means state in time t for candidate word
wl,m, sl and el denote the start and end time of lth position
respectively.

The setting of const D′
s is a key issue in the update equa-

tion. Large value would cause slow convergence, while small
value may cause unstable results. D′

s fixed to E
�

t γg
s (t) for

const E is used in following experiments, as is suggested in [6].

4L is not necessarily equal to N , since it’s depend on the recognition
result.
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1: Illustration of a word lattice (Here a word is in fact a
se syllable and we use M = 100).

5. Experimental Results
luate the performance of MMIED, experiments were car-
ut on a Chinese LVCSR task using speech database for
a 863 Assessment”. We tested our method for male and
e speech respectively. Thus the database was split into two
by gender information, which we would denote as 863-
set and 863-Female set. For each set, the training data
he utterances from 83 speakers, each with 650 sentences.
there were 83 SD models to be constructed. Other 5 male
female’s data were used for evaluation respectively, each
m contributed 120 sentences.
ll the Chinese characters are pronounced as one of the
08 un-toned Chinese syllables in CV structure. A left-

ht HMM syllable model was used, with 2 states for conso-
nd 4 states for the vowel part. The total number of states is
nd the acoustic features were 45-dimensional formed by
CCs along with normalized log-energy and their first and

d order differentials, thus the dimension D of each super-
is 857 × 45 = 38565. Single Gaussian model was used
te-output probability density with full covariance matrix.
ere we focus on the acoustic part. The speech are decoded
ee syllable strings without any grammar constraints, and
sult was organized into syllable-lattices. No language
l was used. Only the syllable Error Rate (SER) are re-

for performance comparisons.
daptation were carried out in supervised mode, where
st 60 sentences were used to estimate the weight coeffi-
, and other 60 sentences reserved for evaluation. We chose
60 during the experiment. Baseline SER was 31.33% in
ale set and 45.16% in 863-Female set. The results of
, MAPED and MMIED with different const E settings
1.0 and E = 2.0 respectively) are listed in Table 1.

D outperformed both MLED and MAPED according to

1: Comparison of SER for MLED, MAPED and MMIED.
voice number K is chosen to be 60, and 60 sentences were
s adaptation data.

863-Male 863-Female
MLED 23.48% 24.92%

MAPED 23.46% 24.24%
MMIED(E=1.0) 22.75% 23.42%
MMIED(E=2.0) 23.22% 24.04%

sult.
e also compared the performance of MMIED, MLED and
D when the amount of adaptation data was increased

ally. In this procedure, the number of adaptation sentences
dded gradually from 10 to 60. Results on 863-Male set are
in Table 2, where the eigenvoices number is 60. When we
sed the number of eigenvoices, minor improvement was



Table 2: Performance of 863-Male with gradually added adap-
tation data, using K = 60 eigenvoices.

nSent MLED MAPED MMIED
10 28.31% 28.25% 28.20%
20 27.77% 27.76% 26.99%
30 26.42% 26.40% 25.72%
40 24.95% 24.95% 24.35%
50 24.43% 24.43% 23.82%
60 23.48% 23.46% 22.75%

Table 3: Performance of 863-Male with gradually added adap-
tation data, using K = 80 eigenvoices.

nSent MLED MAPED MMIED
10 28.22% 28.24% 28.19%
20 27.79% 27.75% 26.58%
30 26.45% 26.43% 25.54%
40 25.25% 25.25% 24.38%
50 24.68% 24.67% 23.86%
60 23.54% 23.57% 22.89%

observed. The results with K = 80 are listed in Table 3. The
value of constant E is fixed to be 1.0 during this procedure.

Experiments on 863-Female set gave similar result, in
which MMIED also outperformed MLED and MAPED. Results
are listed in Table 4 (K = 60) and Table 5 (K = 80).

6. Conclusions
Since Maximum Likelihood estimation is not optimal in prac-
tical situations, we applied Maximum Mutual Information es-
timation to eigenvoice adaptation, and it proves to be effective.
Experimental results show there is observable gain over ML and
MAP estimation.

Some questions are open for further investigation. One is
the relationship between convergence and the setting of const
D′

s. Since the choice of D′
s was always discussed for the un-

constrained training cases, there may exist better choice in con-
strained cases. And the solution to MMIED is not unique. It was
shown in [14] that EBW could be deducted from Quasi Newton
Method (though trivial differences in expression was observed),
which would give another MMIED approach. Finally, the gen-
eration of word lattice requires more detailed consideration.
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