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Abstract
The performance of automatic speech recognizer degrades seriously when there are mismatches be-

tween the training and testing conditions. Vector Taylor Series (VTS) approach has been used to compen-

sate mismatches caused by additive noise and convolutive channel distortion in the cepsiral domain. In
this paper, the conventional VTS is extended by incorporating noise clustering into its EM iteration proce-
dure, improving its compensation effectiveness under non-stationary noisy environments. Recognition ex-

periments under babble and exhibition noisy environments demonstrate that the new algorithm achieves

35% average error rate reduction compared with the conventional VTS.
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0 Introduction

The problem of environmental robustness is one of
the most important issues in speech recognition. The per-
formance of current automatic speech recognizer degrades
seriously when there are mismatches between the training
and testing conditions, e.g. due to the additive noise and
channel distortion of the environment. One solution to the
problem of mismatch is to adapt the acoustic model trained
from clean speech to match the current working environ-
ment. However, traditional speaker adaptation methods,
such as MLIR and MAP, are not applicable because they
require large amounts of adaptation datal" 2. Parallel
Model Compensation (PMC)B] and Vector Tay]or’ s Se-
ries (VTS)[“'(’J are now two main methods for acoustic
model compensation and adaptation. Because of the non-
linear nature of the corruption model for cepstral parame-
ters under the condition of additive noise and channel dis-
tortion; some approximations need to be made to facilitate
efficient computation. PMC uses lognormal approximation
for this nonlinear model. VTS approximates the non-linear
model with its first-order vector Taylor’ s series expan-
sion, and transforms it into a linear one. In Ref.[6],
Monte Carlo experiments were tried to compare VIS and
PMC. The analysis results showed that the VIS approxi-
mation was more accurate than the lognormal approxima-
tion used in PMC. Furthermore, in VIS the maximum
likelihood estimates of environmental parameters can be
obtained through an Expectation-Maximization (EM) pro-
cedure under appropriate Gaussian assumptions. Recogni-

tion experiments in Ref. [4 - 6] showed the effectiveness
of VTS to improve the environmental robustness of speech
recognizer.

In real applications, at first voice activity detection
(VAD) algorithm is used to segment a continuous speech
stream into several utterances. Then, for each utterance,
the VTS algorithm is applied to do environmental parame-
ter estimation and model adaptation. Environmental statis-
tics obtained from the silence segment before each utter-
ance provide the starting point for EM iteration. Under
conventional VTS settings, within each utterance, the en-
vironment is assumed to be stationary. And only one envi-
ronmental model is constructed for the environment. How-
ever, in time-varying noisy environments, the statistical
nature of noise is in fact inhomogeneous across different
regions of one utterance. In this paper, unsupervised
clustering technique is incorporated into VTS to further
improve the accuracy of environmental model estimation
and acoustic model compensation within one utterance.
Noisy speech frames are not treated as being corrupted by
a single stationary noise source. Instead, they are clus-
tered into several environmental classes according to their
a posteriori distribution. Separate environmental models
were constructed respectively for each class.

The paper is organized as follows. In section 1, the
conventional VTS model compensation and parameter esti-
mation using EM are described. In section 2, unsuper-
vised noise clustering is discussed to refine the environ-
mental model. The speech recognition experiments and
results are presented in section 3. Finally, conclusions
are drawn in section 4.
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1 VTS model compensation and parameter
estimation

The speech corruption model used in this paper is
depicted in Fig.1.
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Fig.1 Speech corruption model in noisy environments

The relationship between clean speech x, corrupted
speech y, additive noise n and channel distortion ¢ is
y(1) = x(t) ® q(t) + n(2) (1)
where (®) stands for convolution. In the cepstral domain,
such corruption model can be represented as'!
Yo = % + q. + C - log(1 + exp(C~" -

(ne - % - ¢.))) (2)
where y,, %., n, and g, correspond to the cepstral pa-
rameters of ¥, x, n and ¢ respectively, C is the DCT
transformation matrix. In Ref. [5], Vector Taylor’s Se-
ries (VTS) is proposed to approximate this nonlinear cor-
ruption model with its first-order vector Taylor series ex-
pansion around (/xx s Mn ,;zq) s
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where A, B and  are the Jacobian of (3) with respect to
%, ,n, and g, evaluated at (p1,, 0, ptq) 5 1.€.
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It is usually assumed that x, and n, are independent of
each other, and both are Gaussian, i.e.
X ~ N(/“x’zx) (5)
n, ~ N(/lnszn) (6)
Channel distortion ¢, is assumed to be an unknown con-
stant vector whose current estimate is z, . Under these as-
sumptions and through the linear approximation (3), the
model parameters trained from clean speech, A, = {1,
5.1, can be compensated effectively with the estimated
environmental characteristics, A, = { 15,3, , ¢, 1, to ob-
tain an adapted model, A, = {yy , Ey} , that matches the

current working condition,
{f‘y = g(/"x r/"n’/*‘q)
S, =A%, -A"+B-3,- B
The environmental parameters are estimated through
EM algorithm. The parameter estimates of the (¢ + 1)-th
iteration, Asl“l) A {,z‘;‘,zﬁ,“”,;lg”” {, is found
through the maximization of an auxiliary function, Q,
which is defined as
QA AY) = Ellogp(x.,n. | {A,, A1) |
Yoo tAL, ALY (8)

)

and

ASL“’) = argAmaxQ(A,,,AEf)) (9)

where A" corresponds to the estimates of the z-th itera-
tion. For acoustic models using Gaussian Mixture Model
(GMM), the solution of Eq.(8) can be written as
vos K
ZZ Yi(ws,k)/‘n(yi’wwk)
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where {y;;i=1,2,,N } is the input observation fea-
ture sequence, S is the number of states in the acoustic
models, K, is the number of Gaussian mixture components
of state s, w,, , stands for the k-th Gaussian mixture
component of state s, g, (yi, w, ) and C,(y;, ws ;)
are respectively the mean and correlation matrix of the a
posteriori distribution of n,
{/‘n(ths,k) = E‘:nc I 7i1ws,kvAx’AELt)]
Co(yirws 1) = E[nnl | Yisws ks Ay, AP
(13)
They are calculated through
ta(yis s 1) = Su(ws,k) (3, + Sn(ws,k))-l :
o+ 20 (2 + S )"
PROR"NY
/“n(yivws,k) = Sn(ws.k) * (En + Sn(“’s,k))_l *
2o+ ayiy i) * pa(yiswp1)”
(14)

where
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iy ) = p0 4 (1= A) " (y; -
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(15)

g(y;,w, ;) is given as
q(}’nws,k) =Y - g(#x,/ln,#ﬂ = Ms,k ~

(I - ) (p(yir, ) - p8P)  (16)
Yilaw, ) = plog il yi,
bility of mixture component w;,; given observation y;.

AY) is the a posteriori proba-

The VTS iterative parameter estimation and recogni-
tion procedure are summarized as follows, also depicted in
Fig.2.

1. Use the currently estimated parameters to com-
pensate HMM parameters as in Eq.(7);

2. Find the maximum likelihood word sequence W
={W,, -, W} embedded in observation sequence Y
through Viterbi decoding;

3. Decide if the likelihood increase of P (Y, W1
A, A*D) compared with P(Y, W1A,,AY) is sig-
nificant; if so, using Eqs. (10)-(12) to update parameter
estimations and go to step 1; otherwise go to step 4;

4. Stop iteration procedure and output recognition
results;

In this procedure, the maximum likelihood estimate
of word sequence, W and environmental parameters, A,

are jointly optimjzedm .

w
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Fig.2 VTS parameter estimation and recognition

2 VTS with noise clustering

In the above development, it is assumed that the
noisy environment is stationary during one utterance. Thus
all noisy frames are used to estimate the single environ-
ment model for additive noise and channel distortion. In
order to accommodate the non-stationary nature of the
time-varying environment within one utterance, unsuper-
vised clustering technique is combined with VTS in this
paper. Noisy speech frames are clustered according to
their a posteriori distribution. Frames of similar statistical
properties are clustered together. And separate environ-
mental models are constructed and estimated for each class
respectively. When doing recognition, different sets of
HMM models compensated for different classes are applied
to frames belonging to different environmental classes to
do Viterbi match.

For each noisy frame, the a posteriori distribution of

the environmental noise given observation y; is assumed to
be Gaussian. Its mean, p, ;, and correlation matrix,

Z..;» are calculated by
= E[TLC I yi’Ax’An]
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The distance measure used in the clustering proce-
dure is Kullback-Leibler ( K-L) measurel® . For two
Gaussian distribution, p;(x) ~ N(p,, 2, ) and pz( %)
~ N(p5,2,), their K-L distance is defined to be

JP1 . logﬂdx +Jpz
P2

-D+ %tr(Ef‘Zz + 37130 +

(1 - #z)T(El_l + 30 - p2)
(19)

Dy (p1,sp2) 'logz—?dx

where D is the dimension of variable «x .
The clustering algorithm uses a hierarchical, incre-
90 The VTS algorithm incorpo-

rating noise clustering proceeds as follows:

mental refinement pmcess(

1. Initialization: all noisy frames are assigned to one
class.

2. EM algorithm is applied to each class to iterative-
ly estimate their corresponding environmental model until
convergence (in our experiments, we judge convergence
by the criterion that the relative increase of log-likelihood
between adjacent EM iterations is less than 1%). For
each class ¢, use the following formulae (similar to Egs.
(10)-(12)) 1o 1terat1vely update its parameters, A}
A (/j<”l‘ 72;1:‘0 ,#(t+l))
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where i € ¢ means the i-th frame y; is assigned to envi-
ronmental class ¢, other parameters are defined the same
as in Egs. (10)-(16) .

3. For each class, a distance matrix, D., is con-
structed. Each element, D,(i,j), of the distance matrix
is the K-L distance of the a posteriori noise distributions
for the i-th frame and j-th frame assigned to class ¢, i.
€.

Dirj) = = D agtr(S7 - S0y + 27 50 +
(ptn,i = #n.j)T(Eﬁfi + 220 (i = )

(23)
4. Define the dispersion measure, S,, of class to be
S, = mngc(i,j) (24)

ihjEc

5. Mark all classes as being able to be split.

6. Decide if there are classes being able to be split.
If not, go to step 11.

7. Among all classes being able to be split, choose
the class ¢, with the largest dispersion measure to do
split, i.e.

Crmax = ar§€rrclaxsc (25)

8. Split class ¢y, into two sub-classes, ¢, and
Crmax,2- Choose the ig-th and jo-th frame of c,,,, which
have the largest K-L distance between all frames of class
Cmax» as the centers of the two new sub-classes, i.e.

(i0sjo) = arg maxD), (i,j) (26)
YA max

9. Other frames of class ¢, are re-assigned to
Crmax,1 and €,y 2 according to their distances to the two
new centers,

{” e Cmax, 1 lchmx("”‘O) < Dcm(ivj())

(27)
i € Cpax,2> Otherwise
10. Decide if the two new created classes have e-
nough frames (above a threshold, in our experiments this
threshold is set to be 20) for reliable parameter estima-
tion. If so, go to step 2 to use EM algorithm to re-esti-
mate the environmental parameters for each class. If not,
mark current class ¢, as not being able to be split, go to
step 6 to choose another class.
11. Output recognition results.

3 Experiments and results

A baseline speech recognition system is constructed
to recognize continuous digits. The continuous digits cor-
pus consists of 2937 sentences from 20 speakers for the
training purpose, while 220 sentences from other two
speakers (not appeared in the training set) are used as
the test set. Each sentence contains 4, 5 or 8 digits.
Speech is digitized with 8 kHz sampling and 16 bit preci-
sion. This baseline system consists of 10 HMM’s to mod-

el Chinese digits from zero to nine, each HMM has six
emitting states and 14-mixture GMM is used for each
state. An additional state is used to model the silence.
The feature vector is formed by 14 MFCC’s, energy plus
their first and second order differentials. The speech
frame length is 20ms and there exists 10ms overlap be-
tween adjacent frames.

3.1 Noise clustering experiments

In the first set of experiments, we analyze the effects
of the unsupervised noise clustering technique on the VTS
algorithm. Figs.3 and 4 show two segments of noise. The

5000 - : ;
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I L . I
3000 4000 5000 6000 OO0 8000 9000

Fig.3 Stationary noise

L s L . : L L 1
o 1000 2000 3000 4000  S000 6000 7000 EODO 9000

Fig.4 Non-stationary noise

noise segment shown in Fig.3 represents the stationary
Gaussian white noise. In Fig.4, the noise segment is not
stationary, which consists of two different types of noise.
The first half is a kind of destroy engine noise, and the
second half is machine gun noise. A speech segment is
shown in Fig.5. In one experiment, this speech segment
is corrupted by the stationary Gaussian white noise seg-
ment. Then in Fig.6, we show the log-likelihood of the
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noisy utterance during the EM iteration procedure of the
conventional VIS. From this figure, it can be seen that
the log-likelihood increases significantly after several iter-
ations with the EM algorithm to identify the statistical

characteristics of the corruption noise.

L I L L L L 1 1 ]

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Fig.5 Speech segment
2200 - Stationary noise environment
—e— VTS
-2300 -
5.2400 1
'0
= |
=, ~2500
2
-2600 -
-2700 ; . ; —
1 2 3 4 5
iteration count

Fig.6 EM iteration for stationary noise

A similar experiment is conducted with the speech
segment corrupted by the non-stationary noise as shown in
Fig.4. The log-likelihood during EM iteration is shown in
Fig.7. But in this case, it can be seen that the log-likeli-
hood converges quickly to a plateau. Thus the models in
the conventional VTS are not compensated effectively un-
der non-stationary environments like the case shown in
Fig.4. This indicates that the use of only one noise model
is not sufficient in this case. After the conventional VTS
is extended by incorporating noise clustering into its EM
iteration procedure, Fig.7 also shows the log-likelihood
during this new algorithm’ s EM iteration procedure. It
starts with one noise model. The first three steps are i-
Yentical to the conventional VTS. Later, unsupervised
noise clustering is carried out to split the original noise
model into two sub-models. With the addition of another

class of noise model, it is clear form Fig.7 that the log-
likelihood is increased significantly in the subsequent iter-
ation steps. In Fig.8 we show how the noisy frames are
clustered into the two classes. It can be seen that this
clustering approximately reflects the non-stationary nature
of the noise segment in Fig.4 (one half destroy engine
and one half machine gun) . It is shown that the proposed
unsupervised clustering algorithm can identify the under-
lying non-stationary nature successfully, and with this
clustering and the split of noise model the effectiveness of
model compensation can be improved.

non-stationary noise environment

2980 1 _u_ VTS with noise clustering
—&— conventional VTS
-3080 -
% 180 |
=
g -3280 -+
)
2
3380 - / 4 * .
3480 - ¥ : —
1 2 3 4 5
iteration count
Fig.7 EM iteration for non-stationary noise
class-2 [’
class-1

s T TR
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Fig.8 Class information after clustering

In the VTS algorithm, the computation complexity is
dominated by the calculation of various a posteriori proba-
bilities. So the incorporation of noise clustering does not
increase the computation complexity of VTS significantly.

3.2 Speech recognition experiments

In the second set of experiments, the speech recog-
nition performance of the new algorithm is analyzed and
compared with some existing algorithms. These recogni-
tion experiments are carried out under babble and exhibi-
tion noise environments. Both types of noise were extract-
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ed from AURORA noise database provided by European
Telecommunications Standard Institute ( ETSI)!U®. In
these experiments, only the effect of additive noise was
considered, while leaving the effect of channel distortion
for future investigation. The results are presented as word

error rates ( WER). WER results under different noise
types and Signal-Noise-Ratio (SNR) settings are summa-
rized in Table 1, in which VTS-CLS stands for VTS algo-
rithm with noise clustering as proposed in this paper.

Table 1  Speech recognition WER results under noisy environments
Word Error Rate (%)
SNR (dB) Babble Exhibition
Baseline VTS VTS-CLS Baseline VTS VTS-CLS
20 3 2.04 1.72 5.49 2.86 2.34
15 5.17 2.34 1.76 11.08 3.87 2.28
10 12.39 4.41 2.94 29.77 6.34 3.1
5 30.17 12.49 7.48 60.13 14.42 7.39
0 59.47 32.65 24.81 83.26 39.51 18.54

From these results, it can be seen that when SNR
drops, the performance of the baseline system degrades
seriously. After VTS algorithm is used to adapt the acous-
tic models, performance improvements are obtained a-
gainst the baseline. Through using noise clustering in
VTS, the system’ s environmental robustness is further
improved in these non-stationary environments. The error
rate reduction compared with the conventional VIS is
35% , averaging over different noise types and SNR set-

tings.
4 Conclusion

In this paper, we investigate the use of unsupervised
noise clustering to improve the environmental robustness of
VTS algorithm in time-varying non-stationary environ-
ments. Noisy speech frames in one utterance are clustered
into several environmental classes based on their a poste-
riori distribution and Kullback-Leibler distance measure.
Instead of using only one environmental model to compen-
sate/adapt acoustic model as in the conventional VIS, re-
fined environmental models are constructed respectively
for each class and EM algorithm is used to iteratively esti-
mate parameters of these models. Recognition experiments
under AURORA babble and exhibition environments show
that the proposed method achieves better results compared
with the conventional VTS algorithm. The system robust-
ness is improved significantly under non-stationary envi-
ronments with the new method.
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