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ABSTRACT

Linear prediction (LP) HMM does not make the independent and

identical distribution (IID) assumption in traditional HMM;

however it often produces unsatisfactory results. In this paper, a

new combined model of statics-dynamics of speech is proposed,

based on a new analysis of both HMM’s modeling strengths and

weaknesses. The new model works with LPHMM as the dynamic

part and traditional IID-based HMM as the static part; in addition,

easy implementation and low cost are preserved. A new effective

re-estimation solution is suggested for parameter tying to achieve

better discrimination. Our experiments on speaker-independent

continuous speech recognition demonstrated that the combined

model achieved 7.5% error rate reduction from traditional HMM.

1.  INTRODUCTION

Further improvement of HMM-based speech recognition system

has been of great interest and challenge. Traditional HMM

assumes the observations within a state are independently and

identically distributed (IID); therefore neglects the dynamical

spectral information inherent in speech, which is known to be

important for accurate acoustic modeling. Augmenting original

features with high-order differentials as dynamical information is

in common use for this reason. Furthermore, various alternative

models are proposed [1] to incorporate dynamics of speech into

traditional HMM. However, they suffer from high computation

cost and therefore practically have to rely on sub-optimal multi-

pass rescoring, which limits their performance on large

vocabulary continuous speech recognition (LVCSR).

Remarkably, the approach [2-6] that directly conditions

current output on nearby observations with linear prediction (LP)

is more attractive than other modeling assumptions, since it is

less expensive. In LPHMM, Viterbi decoding and alignment,

even the forward-backward algorithm are still applicable with

least modification by just low-costly substituting output

probability ( )top  with a correlated one ( )�,|
1−tt oop . Early

works appeared in [2] where no experimental results were

reported and [3] where it produced poor results. In [4], it was

found “surprisingly” that LPHMM was beneficial for simple

cepstral features but not for features augmented with differentials,

and “paradoxically” that LPHMM produced poor recognition rate

although the likelihood obtained was much higher than

traditional HMM. Our experience with LPHMM for LVCSR also

indicated that LPHMM alone is insufficient to describe speech

trajectory and often produces undesirable results, in contrast to its

theoretic elegance. When combined with discriminant output

distributions, LPHMM could reduce the error rate, which was

limited to E-set recognition [5]. A marginal dropping of word

error rate from 11.8% to 11.4% was reported in [6].

The unsatisfactory and inconsistent performance of LPHMM

in practice has not been well understood in the literature. In this

paper, a new analysis of LPHMM is provided together with

experimental results. The correlated output probability

( )�,|
1−tt oop only reflects “dynamics of speech”, modeling the

dynamic variation of each output around some function of nearby

observations. On the other hand, IID-based HMM only
characterizes the “statics of speech”, modeling the static location

of each output (with the state mean vector) in the feature space.

Therefore a natural approach to more accurate acoustic modeling

is to integrate these two complementary sources of information

together in a combined model.

This paper is organized as follows. In section 2, LPHMM is

described; it is further analyzed together with IID-based HMM in

section 3, which leads us to propose a new combined model.

Experimental results are provided in section 4. Finally the

conclusions are made in section 5.

2.  LINEAR PREDICTION HMM

Generally suppose the D -dimension observation 
to  within a

state s  is described as
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where 
il  is the “offset” associated with the 

thi  predictor,

DDs
i R ×∈β  is the 

thi  prediction matrix, D
s R∈µ  explicitly

accounts for a non-zero mean of the observations, and

( )st �Ν ,0~ν  is zero mean full covariance gaussian noise which

is un-correlated between frames. The output probability density

function (pdf) for the state s  and observation 
to  then becomes

correlated and is given by
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where � = +−= m

i lt
s

it
s

t i
oow

1
β . The probability evaluation in

LPHMM is the same as in traditional HMM except that the

standard output pdf ( )ts ob , now as gaussian with full covariance

( )ssm ΛΝ , , is replaced by a correlated one ( )ts ob
~

. The re-

estimation of model parameters specific to LPHMM in Viterbi

training is derived as follows.
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2.1. Parameter Re-estimation in LP-HMM

After Viterbi alignment of the training data 
ToooO �

21
=

against the labels 
Nss �

1
, we obtain the most likely state

sequence λQ  under current model parameters

{ }mis
iss ,,1,,, �=�= βµλ  and thus a frame-set 

sΓ  for each

state-label s  that specifies which frames are assigned to s  after

segmentation. The log-likelihood to be maximized is

( )λ̂L = )ˆ,|(log λλQOP = ( )� � Γ∈s t ts
s

ob λ̂|~
log .         (3)

A straightforward maximization by differentiating ( )λ̂L  with

respect to all model parameters gives the following re-estimation

formulae.
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where �
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mji ≤≤ ,0  are gathered statistics specific to state s .

3.  A COMBINED MODEL

3.1. Analysis of LPHMM and IID-based HMM

Another different approach to maximize (3) helps us to gain some

insight into the property of LPHMM. For convenience, let
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then
ts

s
t xw θ= , and ( )λ̂L  can be re-written as
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where 
s

xη ,
s

xC  are the sample mean and covariance

respectively calculated on the data set { }st tx Γ∈| , i.e. the

extended-frames assigned to s . First, we can obtain the mean

and covariance estimates, 
s

xss ηθµ ˆˆ = ,
T

s
s

xss C θθ ˆˆˆ =� , that

maximize the likelihood ( )λ̂L  in terms of fixed prediction

matrices 
sθ̂ . Then substituting 

sµ̂  and 
s�̂  into (7), we have the

log-likelihood in terms of only 
sθ̂ ,

{ }( ) ( ){ }� ++
Γ

−=
s

T
s

s
xs

s
s DDCL πθθθ 2logˆˆlog

2

ˆ .        (8)

To estimate prediction matrices, the likelihood function (8) is

maximized, or equivalently T
s

s
xsC θθ ˆˆ  is minimized, which is

the determinant of the sample covariance of � = +− m

i lt
s

it i
oo

1
β .

Since the determinant of the sample covariance of a random

variable provides a good measure of how compact it is

distributed, to minimize T
s

s
xsC θθ ˆˆ  is to find such 

s
iβ ’s that

to  is most compactly distributed conditional on the context (or

say, around the value of � = +
m

i lt
s

i i
o

1
β ). In this way, the dynamics

of outputs of state s  is well captured in LPHMM embodied by

the correlated output pdf ( )ts ob
~

. On the other hand, IID-based

HMM is still effective in practical speech recognition, maybe due

to its good ability at modeling the statics of speech. All the

observations in each state are well statically (unconditionally)

distributed in a cluster represented by the mean of the standard

output pdf ( )ts ob , regardless of any nearby observations.

The weak points are that, to decide which state the feature

to  most probably comes from, the matching score computed by

( )ts ob
~

 alone is insufficient, if the matching score by ( )ts ob  is

not taken into account, and vice versa. Regarding 
to  as one-

dimensional, Fig. 1(2) illustrates the former (later) case with two

states. Each ellipse is the contour line of ( )soop tt |,
1− ,

characterizing the output features of the state s =1,2. The

gaussian pdf curves along the 
to  axis and the sloping line 

1
l

(perpendicular to 
1

1

−= tt oo β ) respectively represent

( ) ( ){ }tt obob
21

, , and ( ) ( ){ }tt obob
21

~
,

~
 that are put together along

1
l  for clear view. The overlapping area of two gaussian pdf

curves gives the classification error. To make statistical decisions,

using ( )ts ob  and ( )ts ob
~

 yields 
s

Err  and 
d

Err  respectively.

When 
s

Err >
d

Err , the distribution of statics represented by

( )ts ob  is more discriminative than the distribution of dynamics

represented by ( )ts ob
~

, and vice versa.

3.2. Combine LPHMM and IID-based HMM

It is beneficial to utilize the complementary modeling powers on

statics and dynamics of speech of these two kinds of HMM’s to

yield a combined model, since quasi-stationary statics and

transitional dynamics are actually mixed in any segment of

speech. The new “combined output pdf” is defined as

( ) ( ) ( )αα
tststs obobob

~~~ 1 ⋅= −
,                     (9)

where α  is the combination weight. When α =0, 1, the

combined model (CM) becomes the traditional HMM and

LPHMM respectively.

The CM inherits directly from LPHMM the desirable

property that just by replacing ( )ts ob  with ( )ts ob
~~

, one can

apply to CM as well the decoding and iterative training

techniques already developed with low computation cost. In

addition, once statistics are obtained, model parameters

{ }ssm Λ,  and { }mis
iss ,,1,,, �=� βµ  are actually re-

estimated separately. Thus the implementation of CM requires

least changes in the trainer’s and decoder’s design.

3.3. Parameter tying for better discrimination

When applying maximum likelihood estimation (MLE) to
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Fig.1 An illustration of how LPHMM fails to discriminate

between two states, where 
s

Err <
d

Err .

Fig.2 An illustration of how IID-based HMM fails to

discriminate between two states, where 
d

Err <
s

Err .

prediction matrices, the predictors are only trained on positive

instances, receiving features in only a small region of the input

feature space. When any other features outside are shown, the

predictors take it for granted to compute an output as usual,

maybe overlapping with the outputs of others, which makes the

states fairly confusable. If prediction matrices are tied, this

shortcoming can be somehow alleviated, since estimates of

parameters are obtained not solely on the features from each state.

So it is expected that the performance of LPHMM with tied

prediction matrices may be better than the one without tying,

which is verified by following experiments. There was similar

finding in [7], where constrained MLE with parameter sharing

across classes leads to better discrimination.

However, the establishment of (6) requires that the states use

state-specific prediction matrices. If prediction matrices are tied

across a cluster of states, then (6) holds plus additional common

covariance constraint among these states (similar conclusion in

[4]) otherwise no analytical solution exists, since
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Simply pooling the statistics [5] belonging to a state-cluster

required in (6) for computing tied ( )c
m

c ββ ˆ,,ˆ
1

�  as defining

� �
∈

Γ∈ ++=
clusters

t

T
ltlt

c
ij

s ji
ooR ,                        (10)
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t

T
ltst

c
i

s i
ooB µ  ,                    (11)

ignores the effect of covariances. Since correlation between

components of the feature vector is mostly modeled by the full

covariances of gaussians (i.e. 
ss �Λ , ), diagonal prediction

matrices are preferred in practice. In this case, for tied diagonal

prediction matrices, we suggest extending (6) with

( )[ ]� �
∈

Γ∈ ++

−
�=

clusters
t

T
ltlts

c
ij

s ji
oodiagR

1
ˆ ,               (12)
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T
ltsts
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oodiagB µ

1
ˆ ,           (13)

thereafter still applying (4)(5). If diagonal gaussian mixtures are

used, the above solution moreover stands analytically, and

increases likelihood by each step, since

{ }( )ss
s

iL �,, µβ { }( )ss
s

iL �≤ ,,ˆ µβ { }( )ss
s

iL �≤ ˆ,ˆ,ˆ µβ .

3.4. Discussions

Examples of the above log-linear combination for fusing several

sources of information can be found in the use of “language

model factor” when multiplying the acoustic model score with

the language model score, and the use of “codebook exponent”

when combing multiple codebooks on different parameter sets.

The bigram-constrained (BC) HMM [9] falls as a special case of

the above CM, when forcing 5.0=α , 1=m , 11 −=l  and all the

prediction matrices are tied to be a global state-independent one.

Similar to our CM, a priori-posteriori combination of probability

distributions (PD) appeared in [10]. It was found and

heuristically explained that the a posteriori PD, analogous to

( )ts ob
~

 but based on extended logarithmic pool (ELP), is

insufficient alone for recognition. If so, the previous complicated

step to obtain the a posteriori PD based on ELP seems redundant.

Experiments only on discrete HMM were reported. The proposed

CM is more flexible, efficient and theoretically sound.

4. EXPERIMENTAL RESULTS

To assess the effectiveness of CM and to demonstrate the points

made previously, experiments were carried on a speaker-

independent LVCSR task using the male speech database for

“National 863 Assessment”. Utterances from 76 speakers were

used as training data and those from the other 7 speakers formed

the test data, with each speaker about 600 sentences. In the front-

end the speech was parameterized into 14 MFCCs along with

normalized log-energy, and their first and second order

differentials. The system employed the semi-syllable units,

including 100 Initial units each with 2 states, 164 Final units each

with 4 states, plus one single-state silence model. Recognition

experiments below gave acoustic recognition results in the form

of tone-syllable. The (syllable) error rate is defined as the

percentage of the sum of numbers of syllables decoded as

deletions, insertions and substitutions. The baseline system gave

26.30% error rate. When combined with language model, the

recognition system yielded 4% character error rate. All the

following experiments used diagonal prediction matrices.

The average error rates of LPHMM and the CM with

different configurations of the predictors are listed in Table 1.

The “Offsets” column implicitly specifies m . Here prediction
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Baseline: 26.30%

Offsets LPHMM CM

–1 43.77 25.75

–2 32.67 25.50

–3 27.26 25.18

–4 25.24 24.32
+4 25.82 24.92

–3, –1 44.46 25.15

–4, –2 32.74 25.02

18

23

28

33

38

1 2 3 4 5 6 7

Speaker

%
 E

rr
o

r 
ra

te

baseline
CM

Fig.3: The error rate of the baseline and CM on

test speakers with a global –4 predictor,α =0.3
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The combination weight

%
 E

rr
o

r 
ra

te

Fig.4 The error rate of CM as a function of

α  with a global –4 predictor

–4, +4 25.57 24.76 MBest search , =MDifferent search-space

pruning methods

Nearly full search

constrained by s
max

τ 1 2 3

State boundaries

constraint 1±

Computation cost ≈ 15 (averaged s
max

τ ) 2 3 4 3

poly-fitting with order 1 25.65 26.09 25.77 25.68 26.02

poly-fitting with order 2 25.42 25.95 25.63 25.49 25.71

Table 1: Average error rate

of LPHMM and CM

(α =0.3) as a function of

predictor offsets with

prediction matrices tied

across all states Table 2: The error rate of polynomial-fitting trajectory model [11]. The second row shows how

many times the cost of the baseline the models have. s
max

τ  is the maximum state duration.

matrices were tied across all states, and α =0.3. These results

demonstrate unsatisfactory recognition performance by using

LPHMM alone, which is hardly better than the baseline. The CM

was consistently much better than both the baseline and LPHMM

in all cases, which clearly indicates its superiority over the other

two models. The complementary modeling of the statics and

dynamics of speech indeed improves recognition performance in

practice, which agrees with our previous analysis. The best result

was obtained using a single diagonal predictor at an offset of –4,

and the relative error rate reduction from the baseline was 7.5%.

It should be emphasized that the error rates with CM for all test

speakers were uniformly cut down as shown in Fig 3.

Next we assessed how the weight α  affects the performance

of CM. Fig. 4 shows the error rate of CM with a global –4

predictor as a function of α . It can be seen that gains achieved

by CM were not sensitive to varying α  in some range, which

implies that the coupling in CM is stable.

The above all experiments used the re-estimation solution

suggested in (12,13). Ignoring the covariance to use (10,11), the

CM under a global –4 predictor with α =0.3 yielded the error

rate of 25.17% > 24.32%, which shows the advantage of the

suggested methods.

Experiment using separate prediction matrices for each state

was also taken under a single –4 predictor with α =0.3. Not

surprisingly, CM produced the error rate of 26.14% greater than

24.32% achieved with tied prediction matrices as above. This is

another supporting evidence that parameter sharing may alleviate

the shortcoming of MLE and lead to good discrimination.

Finally comparison was made between CM and the known

polynomial-fitting trajectory model as in [11]. The results are

summarized in Table 2. It is clear that CM has advantage over the

polynomial-fitting trajectory model, not only by greater error rate

reduction but also by less computation cost with only about two

times the baseline.

5. CONCLUSIONS

Motivated by an analysis of LPHMM, a new combined model of

statics-dynamics of speech is proposed, which overcomes the

weakness of IID assumption in traditional HMM, with easy

implementation and low cost. Experiments on a speaker-

independent LVCSR task showed its advantages over both

LPHMM and IID-based HMM, with great error rate reduction.

Furthermore, different degree of tying of prediction matrices may

be beneficial, not just tied globally or separately for each state.

The combination weight α  can be state-dependent and

optimized with MMI training. Further works on the above issues

are promising.
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