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ABSTRACT

Correlation between HMM parameters has been utilized for 

various rapid speaker adaptation, e.g. eigenvoice adaptation. The 

covariance matrix of the supervector which is a concatenation of 

all the Gaussian means in HMM, is clearly a good measure of such 

parameter correlation. In this paper, we propose to treat the 

supervector as a latent variable under HMM, and perform 

estimation of the hidden supervector’s covariance matrix directly 

from the acoustic frames using EM algorithm. In contrast to 

traditional methods which depend on using well-trained/adapted 

supervector samples, the proposed method is more theoretically 

sound and capable of dealing well with speaker-specific data 

sparseness. Moreover, the idea of conducting utterance-level 

correlation analysis, estimating utterance eigenvoices, and 

performing (unsupervised) utterance adaptation is explored. 

Experiments on the OGI Numbers database show that the proposed 

approach achieves better adaptation performance than the 

traditional methods, and the utterance-level correlation analysis is 

found to be useful. 

Index Terms— correlation analysis, HMM, eigenvoice

1. INTRODUCTION 

The most common acoustic model in current speech recognition 

systems is hidden Markov model (HMM). However, some 

independence assumptions associated with HMMs as they are used 

in speech recognition have been known to ignore certain types of 

correlation that exist in the speech signal. A well-known type is 

the temporal correlation between successive feature frames 

(ignored by the HMMs’ state-conditional independence 

assumption). Another type, which has received much attention 

recently, is the correlation between different sounds, as a 

consequence of the constant or slowly changing characteristics of 

some underlying factors (e.g. the speaker, acoustic environment, 

speaking style, emotional state, etc.) [1]. In HMM-based acoustic 

modeling, such correlation is actually the correlation between the 

model parameters representing different sounds, which we refer to 

as parameter correlation in this paper. It is usually assumed that the 

parameters are independent in both model training and decoding. 

One example of the non-realistic result of such independence 

assumption is that the speech recognition system may assign 

models from different speakers or emotional states to different 

parts of an utterance.

1  This work was supported by National Natural Science 

Foundation of China (No. 60402029) 

Note that directly incorporating correlation between HMM 

parameters at the decoding phase is computationally intractable. 

Currently, people usually utilize such parameter correlation in 

speaker adaptation. By first analyzing the training corpus with 

various speakers, we can obtain the desirable parameter correlation. 

Then such a priori information about the inter-speaker variation 

can be used to derive constraints for rapid speaker adaptation. 

Various methods have been proposed with different ways to 

represent the parameter correlation, e.g. RMP [2], and eigenvoice 

[3], etc. Among them, the eigenvoice approach is more attractive, 

since it is based on the covariance matrix of the parameters, which 

is clearly a good measure of the parameter correlation. 

In eigenvoice modeling for speaker adaptation, the parameters 

(usually the Gaussian means) in any speaker-dependent (SD) 

model are concatenated to form a (speaker) supervector. The 

supervector’s covariance matrix is estimated simply as the sample 

covariance matrix from a set of training speaker supervectors, and 

then sent to principle component analysis (PCA) to obtain the 

dominant eigenvectors, namely eigenvoices. A basic assumption 

here is that we consider the parameters jointly to be an observable 

supervector and we have a set of well-trained speaker supervectors 

as its samples/observations (that can be separately obtained for 

every training speaker). In practice, people often resort to MLLR 

[4] adaptation to create the SD models [5], when there are less 

sufficient speaker-specific data (may having unseen phones). 

In this paper, we first provide a new and more theoretically 

sound method to conduct correlation analysis of HMM parameters, 

capable of dealing well with speaker-specific data sparseness. 

Specifically, we consider the parameters jointly to be a latent 

(Gaussian) supervector under HMM, and perform estimation of the 

hidden supervector's covariance matrix directly from the acoustic 

feature frames using EM algorithm [6]. There is no need to have 

supervector samples explicitly. This results in a general latent 

correlation analysis of HMM parameters. Second, note that, as we 

know, parameter correlation arises from certain underlying factors 

that are consistent throughout an utterance [1]. In speaker 

adaptation, we solely consider the underlying factor to be speaker-

related, conduct speaker-level correlation analysis of parameters, 

and obtain speaker eigenvoices. In this case, we in fact pool 

together all utterances of each speaker, as if there were just one 

utterance per speaker. A further idea is that we can conduct 

utterance-level correlation analysis, use PCA similarly to obtain 

utterance eigenvoices, and then perform (unsupervised) utterance 

adaptation. With the above general analysis procedure, it is 

straightforward to implement this idea.  

Experiments are carried out on the OGI Numbers database [7], 

which is an English telephone speech corpus consisting of 

continuously spoken numbers. We provide figures that show how 

sparse the data is. The results show the effectiveness of the 
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proposed latent correlation analysis approach, and the utterance-

level correlation analysis is found to be useful. 

The paper is organized as follows. In section II, we describe the 

proposed latent correlation analysis of HMM parameters. In 

section III, we outline the maximum a posteriori (MAP) 

eigenvoice adaptation, which is used to exploit the estimated 

parameter correlation. Section IV presents experimental results, 

followed by conclusions in the last section. 

2. LATENT CORRELATION ANALYSIS OF HMM 

PARAMETERS

For the study of correlation between HMM parameters in this 

paper, we only consider the Gaussian means and concatenate them 

to form a supervector x , supposed to be randomly distributed with 

mean  and covariance matrix , and generally represent the 

underlying factors consistent throughout an utterance.  

1 , ,
T

T T

Dx x x  has D  subvectors 
ix , 1, ,i D , where D

denotes the total number of Gaussian components in the speaker-

independent HMM. The generative model of an utterance 

incorporating the supervector variable x  is shown in Fig.1, plotted 

as a Bayesian network [8]. Here 
tq ,

ty  are respectively the state 

variable and the acoustic feature variable at frame t . To simplify 

notation, we assume that the value of 
tq  represents a combination 

of the HMM state index and Gaussian component index, and is 

used as the global index to the subvector in the supervector (i.e. the 

Gaussian pool). The conditional distributions at node x  and 
ty

are respectively: 

| ,p x xN                                     (1)

| , | ,t t t i ip y x q i y x CN                         (2)

where
iC , 1, ,i D , is the (diagonal) covariance matrix for 

the i-th Gaussian component. (Note that 
iC  is not the speaker-

independent covariance matrix in the usual sense.) It turns out that 

to conduct correlation analysis for supervector x  (i.e. obtain the 

covariance matrix ) is essentially translated to perform 

parameter estimation for the above generative model of speech, 

including ,  and 
1:DC . (Here and also in the following, we 

use a set of subscripts to denote the corresponding set of variables, 

and 1: D  represents the set 1, , D .)

2.1. Parameter estimation using EM algorithm 

The EM algorithm [6] provides a general approach to the problem 

of maximum likelihood parameter estimation in statistical models 

with hidden variables. In the EM algorithm, we need to compute 

the conditional distribution of all hidden variables in the model (i.e. 

x  and 
tq ’s here), given observations (i.e. 

ty ’s). This inference 

problem is intractable, if we consider the Bayesian network 

representation of the model shown in Fig.1. After moralization, the 

hidden supervector x  will be connected with all hidden state 

variables
tq ’s to form one big clique [8]. Thus we assume that we 

have observed 
tq ’s. That is, each frame in the training data is 

supposed to have been aligned to a mixture component, using 

Viterbi alignment (though a forward-backward alignment can also 

be used) with the speaker-independent HMM.  Denote the aligned 

training data by N  utterances, ( ) ( )

1: 1:,
n n

n n

T Tq y , each with the length 

of
nT , 1, ,n N . Denote the current parameter estimate as 

1:, , DC . The auxiliary function ,Q  is defined as 

follows:

( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

1: 1: 1: 1:

1

( , ) | , , log , , |
n n n n

n

N
n n n n n n n

T T T T

n x

Q p x q y p x q y dx

Let o n , ( ) {1: } \h n D o n  denote the mixture 

components appearing and missing in ( )

1: n

n

Tq  respectively. For 

i o n , let 
n

iL  be the number of frames aligned to mixture 

component i  in the n -th utterance, and 
n

im ,
n

iB  be the 

corresponding sample mean and sample covariance matrix of these 

frames. Let 
( )n

L , C  be the block diagonal matrix, with n

iL I and

iC  as the F F  diagonal blocks respectively for 1, ,i D ,

where F  is the dimension of the acoustic frame, and I  is the 

identity matrix. For i h n  (i.e. unseen phones), we set 
n

im =0.

With the above accumulated statistics, it can be shown that the 

posterior distribution of 
( )nx  given ( ) ( )

1: 1:,
n n

n n

T Ty q  is Gaussian with 

mean and covariance matrix as follows: 
( ) ( ) ( ) 1 ( ) 1

1:

n post n post n n

DmL C                        (3) 

( ) ( ) 1 1 1( )n post n
L C                                              (4) 

So the auxiliary function ,Q  can be rewritten as: 

( )

( ) ( ) ( )

1: 1:

, log |

log | , , constant
n n

n

n
n

n n n

T T
n

n

Q p x

p y x q

    (5) 

where we use the notation ( )n

n
f x  to denote the expectation 

for arbitrary function ( )nf x  of 
( )nx , under the posterior 

distribution ( ) ( ) ( )

1: 1:, ,
n n

n n n

T Tp x y q .

To maximize the auxiliary function (5) with respect to  and 

, only the first term in the right-hand side of (5) is involved. By 

setting the corresponding derivatives to zero, we can obtain the re-

estimate of  and  as: 

ˆ post , ( )1ˆ post n post

nN
                 (6) 
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Fig.1: Bayesian network representation of the generative model of 

speech, incorporating the supervector variable x.
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where post ,
post

 are computed respectively as the sample mean 

and sample covariance matrix over the data ( )n post , 1, ,n N .

To maximize the auxiliary function (5) with respect to 
1:DC ,

only the second term in the right-hand side of (5) is involved. By 

setting the corresponding derivative to zero, we can obtain the re-

estimate of 
1:DC  as: 

( ) ( ) ( ) ( ) ( ) ( ) ( )

: ( )

( )

: ( )

ˆ

T
n n n post n n post n n post

i i i i i i i

n i o n

i n

i

n i o n

L B m m

C
L

where ( )n post

i
 is the covariance block at the diagonal of ( )n post

corresponding to subvector 
ix .

2.2. Discussions 

There have been some methods to address the issue of how to 

estimate the eigenvoices when there are less sufficient speaker-

specific data (may having unseen phones). A practical method is to 

use MLLR adaptation to establish SD supervectors. Classical MAP 

adaptation is not suitable for this purpose, since it only transforms 

the observed parameters, which leaves unseen phones still 

unchanged. EMAP adaptation may be used [9]. Note that the step 

of computing (3) is essentially to perform EMAP adaptation to 

obtain the posterior mean ( )n post . However, the re-estimate 

formula (6) tells us that simply using the sample covariance matrix 

of the adapted supervectors, like 
post

, as the estimate of  is 

insufficient, which ignores the posterior covariance ( )n post . Thus, 

the traditional methods (treating supervector as observed and using 

sample covariance matrix alone) seem to be more heuristic 

motivated and not theoretically sound. 

The method by iteratively interleaving eigenvoice adaptation 

and eigenspace estimation in [10] also introduces latent variable 

for analysis. However, it is required that we know the desirable 

number of eigenvoices beforehand and keep it fixed. In practice, 

the number of eigenvoices may be adjusted according to the 

amount of adaptation data. Additionally, the resulting basis vectors 

after iterative estimations are not guaranteed to be orthogonal, and 

so they are not strictly eigenvectors. Moreover, there are no 

corresponding eigenvalues which measure the importance of each 

basis vector. In our approach, the computationally intensive steps 

of supervector covariance matrix estimation and PCA are carried 

out once, and then all eigenvectors of interest along with their 

corresponding eigenvalues are obtained.

Remarkably, the idea of conducting utterance-level correlation 

analysis, estimating utterance eigenvoices, and performing 

(unsupervised) utterance adaptation is proposed and 

experimentally evaluated, showing its usefulness. 

3. MAP EIGENVOICE ADAPTATION 

Currently, parameter correlation is mainly used in (speaker) 

adaptation. Once we obtain the supervector covariance matrix ,

we can perform PCA to get the desirable eigenvoices, say, 

1, , Re e , and the corresponding eigenvalues 
1, , R

, where 

R  is the dimension of the eigenspace. Suppose that every 

supervector x can be written in the form: 

1

R

r r

r

x w e                                             (7) 

where
1:Rw  is the combination weights. The adaptation problem 

then reduces to the estimation of the combination weights from the 

adaptation data. 

MAP estimation is a good choice for this purpose [5][11]. 

Denote the adaptation data as 
1:Ty , and suppose that each frame 

has been aligned to mixture component i with the occupation 

probability 
i t . The MAP estimate of the weights 

1:Rw  is: 

1:

1: 1: 1: 0 1:
ˆ arg max |

R

R T R R
w

w p y w p w                   (8) 

Here
0 1:Rp w is the a priori distribution, which can be easily 

derived from the result of eigen-analysis of the supervector 

covariance matrix as [11]: 
2

0 1:

1

1
log

2

R
r

R

r r

w
p w                                        (9) 

By taking derivative to 
1:Rw , the maximization problem in (8) 

can be solved as follows, for 1, ,r R :

1

,

1

, , ,

1

1

T

i r i i t i

i t

R
T

k i r i i k i k r

k i t r

t e C y

w t e C e

             (10) 

where
,r ie  is the subvector corresponding to mixture component i

in the r-th eigenvoice 
re , and 

, 1k r
 iff. k r , otherwise it 

equals to zero. 

In theory, we can iterate the occupation probability 

computation and the weight estimation. In the first iteration, the 

occupation probabilities are computed using an SI model. In 

subsequent iterations, they are computed using the adapted model. 

In the experiment, we perform only one iteration, since further 

iterations are observed to give minor differences. 

4. EXPERIMENTAL RESULTS 

Experiments are carried out on the OGI Numbers database [7], 

which is an English telephone speech corpus consisting of 

naturally spoken numbers with 30-word vocabulary2. We use 6049 

utterances spoken by 3059 speakers for training and 2061 

utterances by 1044 speakers for testing.  

The acoustic feature is 39-dimensional, formed by 12 MFCCs 

with normalized log-energy and their first and second order 

differentials. Cepstral mean subtraction (CMS) is applied to the 

feature vector. There are 26 monophone models, a silence model, 

and a short-pause model. The silence and all monophones are 

modeled with three emitting states each, and the short-pause has 

only one state which is tied to the middle state of the silence model. 

Gaussian mixture model (GMM) with diagonal covariance 

matrices is used for state-output distributions. 

2 This is a relatively simple task. It will be shown below how 

sparse the data is in this task, and thus is suitable for our study. 
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To alleviate computation cost, we split the acoustic feature 

vector into 1-dimension streams. And for each stream separately, 

we use the algorithm in section II to estimate the set of parameters 

1:, , DC , and then perform PCA on  to obtain the 

desirable eigenvoices. For EM initialization, we copy the means 

and variances of the Gaussian components in the SI model to 

construct  and (diagonal)  respectively.  

There are two cases. One is that we treat all utterances from a 

speaker as just one utterance, conduct speaker-level correlation 

analysis of parameters, and obtain speaker eigenvoices, in the 

traditional sense. Another case is that we process each utterance 

individually, conduct utterance-level correlation analysis, and 

obtain utterance eigenvoices. For both cases, 5 eigenvoices per 

stream are used in the experiments. Then we conduct unsupervised 

MAP eigenvoice adaptation for the 1044 test speakers (speaker 

adaptation) and 2061 test utterances (utterance adaptation) 

separately. 

Before giving the recognition results, we show some statistics 

in Fig.2. A phone’s occurring ratio over speakers is defined as the 

ratio of the total counts of the phone to the number of speakers, 

where we use binary counting of the occurrence of the phone for 

each speaker. A phone’s occurring ratio over utterances is 

similarly defined. To sum up over all phones, we can see that on 

average, a speaker observes only 13.14/26 50.5% of the 26 phones, 

and an utterance observes fewer phones with 8.76/26 33.7%.

The word error rate (WER) results of the baseline and various 

adaptation methods are listed in Table 1, for both cases of speaker 

adaptation and utterance adaptation. “MLLR+EV” refers to using 

MLLR adaptation to establish speaker/utterance-specific models 

for eigenspace estimation. “EM+EV” refers to using the proposed 

latent correlation analysis via EM algorithm for eigenspace 

estimation. We experiment with varying number of Gaussian 

mixture components for HMM states. The results show that for 

both cases of speaker adaptation and utterance adaptation, the 

EM+EV system outperform the MAP, MLLR and MLLR+EV 

systems consistently. Moreover, utterance adaptation using 

“EM+EV” seems to be more effective than speaker adaptation 

using “EM+EV”, though we have sparser phone occurrence in 

utterance-level analysis. This may be explained by the fact that 

there exist certain consistent underlying factors throughout an 

utterance, besides speaker information. 

5. DISCUSSIONS AND CONCLUSIONS 

In this paper, we first provide a new method to conduct correlation 

analysis of HMM parameters (i.e. estimate the supervector 

covariance matrix), capable of dealing well with speaker-specific 

data sparseness. Examination of the estimation formula in the 

proposed method makes clear the deficiency of the traditional 

methods which depend on using well-trained/adapted supervector 

samples. Second, the idea of utterance supervector (in contrast to 

speaker supervector) is proposed, and applied in estimating 

utterance eigenvoices and performing (unsupervised) utterance 

adaptation. Furthermore, we can consider a new way of speaker 

modeling, which is to use a speaker-specific distribution of the 

latent utterance supervector to model the utterances from a speaker. 

The result here is an encouraging step toward this end. In future, 

we also plan to apply the proposed method in large vocabulary 

experiments.
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Fig.2: The occurring ratio for each of the 26 phones over all training 

speakers and all training utterances separately. 

Table 1: %WER results for various methods 

Mixture num per state 1 2 4 

Baseline 20.86 16.85 13.34 

MLLR 20.71 16.79 13.25 

MAP 20.75 16.83 13.32 

MLLR+EV 20.79 16.27 12.59 

Speaker 

adaptation

EM+EV 18.42 15.76 12.44 

MLLR 20.71 16.80 13.29 

MAP 20.75 16.86 13.24 

MLLR+EV 20.81 16.62 13.20 

Utterance

adaptation

EM+EV 18.31 15.20 11.97 
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