Latent Correlation Analysis of HMM Parameters For Speech Recognition

Zhijian Ou, Jun Luo

ozj@tsinghua.edu.cn

Department of Electronic Engineering, Tsinghua University, Beijing 100084, China

Objective: Exploit correlation between HMM parameters, eigenspace estimation

Method: Treat supervector as a latent variable under HMM

Estimate the hidden supervector's cov matrix directly from the frames using EM

Advantage: theoretically sound, dealing well with speaker-specific data sparseness

Why study parameter correlation?

correlation between different sounds

as a consequence of the slowly changing characteristics of some underlying factors (e.g. the speaker, speaking style, emotional state)

correlation between model parameters (Gaussian means)

Supervector

For speaker adaptation

- As a priori information about the inter-speaker variation
- Used to derive constraints for rapid speaker adaptation

Eigenvoice approach review

clearly a good measure of parameter correlation

Attractive: based on the supervector's covariance matrix

estimated simply as the sample covariance matrix from a set of training speaker supervectors

PCA: obtain the dominant eigenvectors, i.e. eigenvoices $e_1, ..., e_R$

Constraint $x = \mu + \sum_{r=1}^{R} w_r \cdot e_r$

MAP eigenvoice adaptation: estimate weights $w_{1:R}$ $\hat{w}_{1:R} = \arg\max\left[p\left(y_{1:T} \mid w_{1:R}\right)p_0\left(w_{1:R}\right)\right]$

Assume: observable supervector

Assume: we have a set of well-trained speaker supervectors as its samples/observations

less sufficient speaker-specific data (may having unseen phones)?

resort to MLLR adaptation, EMAP, etc. to create the SD models

Latent Correlation Analysis of HMM Parameters

Bayesian network representation of the generative model of speech, incorporating the supervector variable *x*

Essentially translated to do parameter estimation with $p(y_t | x, q_t = i) = \mathcal{N}(y_t | x_i, C_i)$

E-step: compute the posterior $p\left(x^{(n)}\middle|\overline{\theta},y_{1:T_n}^{(n)},q_{1:T_n}^{(n)}\right) \sim N\left(\mu^{(n)\,post},\Sigma^{(n)\,post}\right)$

M-step: re-estimate

$$\hat{\mu} = \mu^{post}$$
 $\hat{\Sigma} = \sum^{post} + \frac{1}{N} \sum_{n} \sum^{(n) post}$

Discussion

- Makes clear the deficiency of traditional methods
- Compare with Cluster Adaptive Training, etc.
 - Assume that we know the desirable number of basis vectors beforehand
 - The resulting basis vectors are not guaranteed to be orthogonal
- No corresponding eigenvalues
- To conduct utterance-level correlation analysis, estimate utterance eigenvoices, and perform (unsupervised) utterance adaptation

Experiment Result

- OGI Numbers 30-word vocabulary
- Training: 6049 utterances spoken by 3059 speakers
- Test: 2061 utterances spoken by 1044 speakers
- 39-dim feature
 (12 MFCCs, Energy)+Δ+ΔΔ
- 26 monophone+sil+pause
- A speaker observes only 50.5% of the 26 phones
- An utterance observes fewer phones with 33.7%

EM+EV outperform MAP, MLLR and MLLR+EV consistently.

Utterance adaptation is useful.

Mixture num per state		1	2	4
Baseline		20.86	16.85	13.34
Speaker adaptation	MLLR	20.71	16.79	13.25
	MAP	20.75	16.83	13.32
	MLLR+EV	20.79	16.27	12.59
	EM+EV	18.42	15.76	12.44
Utterance adaptation	MLLR	20.71	16.80	13.29
	MAP	20.75	16.86	13.24
	MLLR+EV	20.81	16.62	13.20
	EM+EV	18.31	15.20	11.97