

# LEARNING NEURAL TRANS-DIMENSIONAL RANDOM FIELD LANGUAGE MODELS WITH NOISE-CONTRASTIVE ESTIMATION



Bin Wang, Zhijian Ou Speech Processing and Machine Intelligence (SPMI) Lab, Tsinghua University, Beijing, China. wangbin12@mails.Tsinghua.edu.cn, ozj@Tsinghua.edu.cn

Tsinghua University
Department of Electronic Engineering

#### Introduction

Trans-dimensional random field (TRF) LMs

- lack To fit the joint probability  $p(x_1, ..., x_l)$  directly
- ◆ Support both discrete features and neural network features
- ◆ Inference is fast but training is slow

To improve the **training efficiency** and the **performance** of neural TRF LMs:

- ✓ Define the TRF in the form of exponential tilting of a reference distribution
- ✓ Introduce the noise-contrastive estimation (NCE) to train TRF LM.
- ✓ Marry the deep CNN and the bi-directional LSTM

#### Model Definition

$$p_m(x^l; \theta, \zeta) = \pi_l q(x^l) e^{\phi(x^l; \theta) - \zeta_l}$$
 $x^l = (x_1, ..., x_l)$  a word sequence of length  $l$ 

| $\mathcal{X} = (\mathcal{X}_1, \dots, \mathcal{X}_l)$ | a word sequence or length t                                                |  |  |  |
|-------------------------------------------------------|----------------------------------------------------------------------------|--|--|--|
| $\pi_l$                                               | the prior length probability                                               |  |  |  |
| $q(x^l)$                                              | a LSTM language model                                                      |  |  |  |
| $\zeta_l$                                             | the normalization constant of length $\boldsymbol{l}$ need to be estimated |  |  |  |
| $\phi(x^l; \theta)$                                   | potential function with parameter $	heta$                                  |  |  |  |



### Noise-contrastive Estimation (NCE)



## **Experiments**

Speech recognition WERs on CHiME-4 Challenge data.



#### Conclusion:

- ✓ On a 40x larger training set use only 1/3 training time
- ✓ Achieve a 4.7% relative WER reduction on the top of a strong LSTM LM baseline.

| model                 | Dev  |      | Test |      |
|-----------------------|------|------|------|------|
|                       | real | simu | real | simu |
| KN5                   | 5.03 | 4.79 | 7.38 | 5.78 |
| LSTM (i.e. $q(x^l)$ ) | 3.63 | 3.24 | 5.70 | 4.53 |
| TRF                   | 3.53 | 3.20 | 5.68 | 4.36 |
| KN5+LSTM              | 3.56 | 3.29 | 5.71 | 4.18 |
| KN5+TRF               | 3.53 | 3.22 | 5.54 | 4.20 |
| KN5+LSTM+TRF          | 3.42 | 3.10 | 5.44 | 4.13 |

- ◆ KN5: 5gram LM with modified Kneser-Ney smoothing
- ◆ LSTM: 2 hidden layers, 512 hidden units per layer
- "Dev" denotes the development set and "Test" denotes the test set.
- "+" denotes the log-linear interpolation with equal weights