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ABSTRACT

Two important sequence tasks are sequence modeling and label-
ing. Sequence modeling involves determining the probabilities of
sequences, e.g. language modeling. It is still difficult to improve
language modeling with additional relevant tags, e.g. part-of-speech
(POS) tags. For sequence labeling, it is worthwhile to explore task-
dependent semi-supervised learning to leverage a mix of labeled and
unlabeled data, besides pre-training. In this paper, we propose to up-
grade condtional random fields (CRFs) and obtain a joint generative
model of observation and label sequences, called joint random fields
(JRFs). Specifically, we propose to use the potential function in the
original CRF as the potential function that defines the joint distribu-
tion. This development from CRFs to JRFs benefits both modeling
and labeling of sequence data, as shown in our experiments. For ex-
ample, the JRF model (using POS tags) outperforms traditional lan-
guage models and avoids the need to produce hypothesized labels
by a standalone POS tagger. For sequence labeling, task-dependent
semi-supervised learning by JRFs consistently outperform the CRF
baseline and self-training, on POS tagging, chunking and NER.

Index Terms— conditional random fields, joint random fields,
sequence modeling, sequence labeling

1. INTRODUCTION

Probabilistic generative modeling is a principled methodology that
promisingly can learn from data of various forms (whether labeled
or unlabeled) to benefit downstream tasks, which, however, is partic-
ularly challenging for sequence data. Two important sequence tasks
are sequence modeling and labeling.

A basic problem of sequence modeling is to determine the prob-
abilities of sequences, e.g. language modeling [1] which is a cru-
cial component in speech recognition. For sequences of length [,
' 2 2,1, ..., 2, this amounts to calculate p(l, '), where we
make explicit the role of the length [. Ideally, this density modeling
can be improved with additional relevant labels. e.g. incorporating
part-of-speech (POS) tags for language modeling. There are some
previous studies in [2, 3]. The difficulty is that the labels (e.g. POS)
usually are not available in testing, so a standalone POS tagger is
needed to provide hypothesized labels in testing.

The task of sequence labeling is, given observation sequence
z', to predict the label sequence ' £ y1,yo, ..., yi, with one label
for one observation at each position. Sequence labeling has been
widely applied in various tasks, e.g. POS labeling [4, 5], named en-
tity recognition (NER) [6, 7, 8], and chunking [6, 9]. It is desirable
for the labeling model to leverage both labeled data (namely pairs
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of ! and yl) and unlabeled data (namely z! without labels). Pre-
training has proved to be effective [4, 10], which, however, is task-
independent followed by task-dependent fine-tuning. Besides pre-
training, it is worthwhile to explore task-dependent semi-supervised
learning (SSL), which learns for a task on a mix of labeled and unla-
beled data. Self-training is such a method with limited success [11].

Conditional random fields (CRFs) [12] have been shown to be
one of the most successful approaches to sequence labeling. A CRF
is a discriminative model, which directly defines a conditional dis-
tribution p(y' \xl), and thus mainly depends on supervised learning
with abundant labeled data. In this paper, we propose to upgrade
CRFs and obtain a joint generative model of z' and ¢/, p(l, ', y),
called joint random fields (JRFs). Specifically, we propose to use
the potential function u(z",y") in the original CRF p(y'|z') as the
potential function that defines a joint distribution p(a:l, yl). The re-
sulting p(ml, yl) defines a random field [13], also known as energy-
based model [14]. And interestingly, the conditional distribution of
y' given z! induced from this joint distribution is exactly the origi-
nal CRF p(y'|z')"; and the marginal distribution of p(I, z') induced
from the joint distribution is a trans-dimensional random field (TRF)
language model [15, 16].

This development from CRFs to JRFs benefits both modeling
and labeling of sequence data. For sequence modeling, the marginal
likelihood p(I,z') can be efficiently calculated by JRFs, without
the step of producing hypothesized labels by a standalone POS tag-
ger. For sequence labeling, JRFs admit not only supervised learning
from labeled data by maximizing the conditional likelihood p(y'|z")
(which is like the training of a CRF), but also unsupervised learning
from unlabeled data by maximizing the marginal likelihood p(1, z*)
(which is like the training of a TRF LM), thereby achieving task-
dependent semi-supervised learning.

The benefits of JRFs to sequence modeling and labeling are
demonstrated through two sets of experiments. First, various tradi-
tional language models (LMs) such as Kneser-Ney (KN) smoothed
n-gram LM [1], LSTM LM [17] and TRF LM [16] are trained on
Wall Street Journal (WSJ) portion of Penn Treebank (PTB) English
dataset (without using POS tags). JRF LMs are trained by using POS
tags. These models are then used to rescore the 1000-best list gener-
ated from the WSJ’92 test set, with similar experimental setup as in
[16]. The JRF model is effective in incorporating POS tags and per-
forms the best with the lowest rescoring word error rate (WER). Sec-
ond, we conduct experiments on three sequence labeling tasks - POS
tagging, chunking and NER, with Google one-billion-word dataset
[18] as the unlabeled data resource. It is found that the JRF based
SSL consistently outperform the CRF basline and self-training.

1So writing the JRF as p(l, z!, y') and the CRF as p(y'|x!) is correct,
not an abuse of notation.



2. JOINT RANDOM FIELDS

2.1. Background

We first briefly review CRFs, especially linear-chain CRFs, which
define a conditional distribution with parameters 6 for label sequence
y' given observation sequence ' of length I:

1
pQ(yl|xl) = Zg(.rl) exp(UQ(xlvyl)) ey

Here the potential function
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is defined as a sum of node potentials and edge potentials, and

Zo(z!) = >yt exp(ug (z',4")) is the normalizing constant. ¢ (y;, ')

is the node potential defined at position ¢, which, in recently devel-
oped neural CRFs [4, 6, 7, 8] is implemented by using features
generated from a neural network (NN) of different network ar-
chitectures. )i (yi—1,¥:,x') is the edge potential defined on the
edge connecting y;—1 and y;, often implemented as a matrix A,
Yi(yi—1 = j,yi = k,x') = Aj 1, thereby defines a linear-chain
CREF. In linear-chain CRFs, there are efficient algorithms for train-
ing (the forward-backward algorithm) and decoding (the Viterbi
algorithm).

2.2. Model

Inspired from the idea of jointly modeling fixed-dimensional obser-
vations (e.g. images) and labels via a neural random field in [19],
we propose to upgrade CRFs and obtain a joint distribution over se-
quential observations and labels, called JRFs. The keypoint is that
we can use ug(z',y') in Eq. (2) from the original CRF to define a
joint distribution pe (2, 3'):

po(l,z',y') = mpe(a',y's1) = exp(ug(z',y)  (3)

T
Zo(1)
where 7 is the empirical prior probability for length [. Notably, a
CREF is a conditional distribution, normalizing over label sequences.
In contrast, a JRF is a joint distribution, normalizing over both obser-
vation and label sequences, with the normalizing constant for length
I defined as Zp (1) = >_ 1 exp(ug (2!, y)).

Interestingly, it can be easily seen that the conditional distribu-
tion of ' given z' induced from the JRF’s joint distribution Eq. (3)
is exactly the original CRF Eq. (1). Further, by marginalizing out
y', the marginal distribution of p(I, ') induced from the joint distri-
bution is:

polla) = 7 gexpwe(wl,yl)) = Zo (i P o)

which acts like a trans-dimensional random field (TRF) language
model [15, 16], with the potential defined by

Up (:vl) = log Z exp(ug (xl, yl)).

Notably wug(x'), which is log Zg(z') from the CRF, can be cal-
culated via the forward algorithm from the linear-chain potential

ug(',y").
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Fig. 1. Overview of the JRF model. The node and edge potentials
define a JRF (a joint distribution over ' and ). Inducing the con-
ditional and the marginal from the joint yields a CRF and a TRF
respectively. A JRF can be trained from labeled data (acting like a
CRF) and also from unlabeled data (acting like a TRF). In practice,
the node potentials are calculated from the logits 0;,7 = 1,--- 1
from the NN, and the edge potential follows linear-chain definition.

2.3. Learning

Given different data resources (labeled or unlabeled), JRF can be
trained under different settings (supervised, unsupervised, or semi-
supervised) and applied in different downstream tasks (sequence
modeling or labeling), as illustrated in Fig. 1. Note that the em-
bedded CRF and TRF inside a JRF share all parameters 6, which is
different from multi-task learning where only bottom-level parame-
ters are shared [20].

Supervised learning of JRFs amounts to training of the embed-
ded CRF with the following supervised objective, given labeled data
in the form of empirical distribution py, (z', y'),

max L.(0) = E(zz#z)NPL(zz,yz)[logpg (yl|xl)} “)

which can be solved by applying minibatch-based stochastic gradi-
ent descent (SGD). At each iteration, a minibatch of sentences and
labels is sampled from py, (2!, 3'), denoted by Dy, and the stochastic
gradients are:
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Unsupervised learning of JRFs amounts to training the em-
bedded TRF, by applying the dynamic noise-contrastive estimation
(DNCE) algorithm developed in [16]. Given unlabeled data (e.g.
sentences) in the form of empirical distribution pU(l,xl), DNCE
jointly optimizes over a JRF and a noise distribution pg (I, ") (gen-



Table 1. Speech recognition results of different models, trained on
WSIJ portion of PTB dataset. “WER” is the rescoring word error rate
on WSJ’92 test data.

Method | KN5
WER (%) | 8.78

LSTM TRF
7.36 6.99

JRF
6.77

erally a LSTM language model) parameterized by ¢:

pg(l,l‘l)
E , 1
e (l,zl)ww [log po(l, zh) +p¢(l,ml)]+
!
p l7x ) 5
E(,at)py (1.2t 108 o 12L,0) ©

po(l, ') + pe(l, x')
minK L(po (1, 2" Ips (1. 2")

Thanks to optimization of DNCE, the annoying normalizing con-
stants Zy (1) in JRFs can be jointly estimated along with the parame-
ter estimation. Specifically, we introduce parameters (; for log Zy (1)
and ¢ = (1, (2, ..., Cr) where L is a pre-defined maximum length.
At the rest of this paper, we denote by £ = (6, ¢) all the parameters
in the JRF and rewrite po(-) as pe ().

At each iteration, a minibatch of sentences are sampled from
pu(l, xl), denoted by Dy, two minibatches of sentences sampled
from p, (1, z'), denoted by By, B2 (|B2| = 2|Bi1| = 2|Dy|), and
the stochastic gradients are:
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BL. (&) 1
OLu(§) _ Z (1 xlg)

36 l 1 g bl El

| Ba| tanes, pe(l, @) +po (L, 2t)
1 p¢(l7xl) l

+ . ~g(l, x5 8)

|Dul| + |Bi| (alyeDe UB, pe(l,zh) +py(l, 2t)
KL(pullpg) _ 1 5 dlogps(l, ')

¢ - D
Dol ey ¢

where g(I,z';€) denotes the gradient of log pe(l, ') wrt. & =
(6, ¢), and the two gradient components w.r.t. 6 and ¢ are dug(x") /00
and —(6(I = 1),...,6(l = L)) respectively.

Semi-supervised learning of JRFs over a mix of labeled and
unlabeled data amounts to combining the above supervised and un-
supervised training with the following semi-supervised objective:

mng(g) = Ls(&) + aLu(§)

. . , (6)
minK L(pu (I, 2)llpe (1, 7))

where « is the trade-off weight between supervised and unsuper-
vised learning, and & = (0, ¢) is defined before.

3. EXPERIMENTS

3.1. Benefits to sequence modeling

Here we evaluate the performance of various models for sequence
modeling, particularly language modeling, through rescoring exper-
iments in speech recognition.

Setup. The WSIJ portion of PTB dataset is used for language
model training. The trained models are applied to rescore the 1000-
best lists from recognizing WSJ’92 test data (330 utterances). The

WER (%)

2 4 6 8 10 12
Training iterations (+103)
Fig. 2. Rescoring WERSs on the WSJ’92 1000-best lists for TRF LM
and JRFE.

oracle WER of the 1000-best lists is 0.93%. This setting is the same
as that used in [16].

For comparison, traditional LMs - Kneser-Ney smoothed n-
gram LM [1], LSTM LM [17] and TRF LM [16] are trained without
using POS tags, and JRF trained using POS tags, by optimizing
L + L. During testing with JRF, log p(l, z') can be efficiently ob-
tained as the LM score for rescoring, with us(2') calculated by the
forward algorithm and the estimated ¢; for log Zy(l). In this way,
JRFs avoid the need to produce hypothesized labels by a standalone
POS tagger in testing, different from [2, 3].

Training configuration. The network structure of JRF is simi-
lar to LSTM-CNNs-CREF in [8]. For character embeddings, we use
50-dim embeddings (randomly initialized) and CNNs consisting of
100 filters for 2, 3,4 character width respectively. For word em-
beddings, 300-dim Glove word embeddings [22] are used for ini-
tialization. The embedding representations are fed to a single-layer
bi-LSTM with 512 hidden size and 512 projection size. The noise
distribution is defined by a simple LSTM LM with 1 hidden layer
and 200 hidden units. For TRF LM, the neural network structure is
similar except that the definition of the potential function is differ-
ent. TRF LM uses the sum of inner product of the hidden vector and
the embedding vector, as detailed in [16].

For optimizers, Adam is used with learning rate decaying as
0.001/(1 + 0.005t°-%), where ¢ is the number of iterations so far.
No dropout is applied in this experiment. For JRF, the labeled mini-
batch size | Dy | is 64. For each iteration in JRF and TRF LM, the
minibatch size of Dy is 50 (|Bi| = 50,|Bz| = 100, see Section
2.3). The trade-off weight o in Eq. (6) is gradually increased to 1
during training.

Results. Table 1 shows the WER results. “KN5” denotes the
Kneser-Ney 5-gram LM [1] and the LSTM LM consists of two hid-
den layers with 1500 hidden units (correspond to the large LM in
[17]), which contains more parameters than the TRF LM [16] and
the JRF. Particularly, Fig. 2 plots the WER results for TRF LM
and JRF during training. It can be seen from Table 1 that in this
LM rescoring task, JRF using POS tags outperforms traditional LMs
without using POS tags, including TRF LM, n-gram LM, and LSTM
LM. This reveals the benefit of JRFs to sequence modeling by suc-
cessfully incorporating additional relevant labels.

3.2. Benefits to sequence labeling

In this experiment, we evaluate the performance of various models
for sequence labeling, through three tasks - POS tagging, chunking



Table 2. Sequence labeling results averaged over 5 independent runs with different random seeds. The evaluation metric is accuracy for POS
and [ for NER and chunking. “10%” and “100%” represent the percentage of the labeled data used in training out of all the available labeled
data. Note that in both settings, 50 times as much as the used labeled sentences from the Google one-billion-word dataset is additionally used

as unlabeled data in training.

Method | POS (10%) POS (100%) | NER (10%) NER (100%) | Chunking (10%) Chunking (100%)
CRF 96.83 97.45 86.85 90.87 89.98 94.76
Self-training | 96.91 97.46 86.92 90.88 90.64 94.84
JRF 96.96 97.47 86.99 90.90 91.12 95.10

and NER, which are widely used for evaluation of sequence label-
ing methods. During pre-processing step, we replace all digits with
zeros, which is a common setting in previous works.

Datasets. The following benchmark datasets are used - PTB
POS tagging, CoNLL-2000 chunking and CoNLL-2003 English
NER. For the task of POS tagging, we follow the previous work
[8] to split the dataset and report accuracy. For the NER task, we
follow the previous work [8] to use the BIOES tagging scheme and
report I score. For the chunking task, no standard development
set is provided, thus 1500 sentences are randomly sampled from the
training set to be the development set, as in [23]. BIOES tagging
scheme and F1 score are used.

We use the Google one-billion-word dataset [18] as a pool of un-
labeled sentences for semi-supervised learning. Specifically, we ex-
amine two settings - 10% (low-resource, randomly drawn) or 100%
(rich-resource) out of all the available labeled sentences are used in
training. In both settings, we use unlabeled sentences 50 times as
much as the used labeled sentences for semi-supervised learning.
Thus in the mix of labeled and unlabeled data in training, the label-
ing percentage is kept as 2% in two settings, while using different
amounts of labeled data.

Baselines. To evaluate the benefits of JRFs to sequence label-
ing, CRFs and self-training are used as baselines. For CRFs, only
labeled data is used in training. For self-training, after the super-
vised CRF is well-trained, it predicts labels for unlabeled data and
adds the predicted examples to the training set to fine-tune the CRF,
which is a common semi-supervised baseline. Note that all methods
employ the same network structures for each task.

Training configuration. The network structures are the same
as in Section 3.1. For optimizers, SGD with momentum 0.9 is used
in all tasks. During training, the learning rate decays as 0.1/(1 +
0.005t°5). For all methods, we apply 0.5 dropout during training.
The labeled minibatch size is always 64. For self-training, the unla-
beled or predicted minibatch size is 64. For each iteration in JRFs,
the minibatch size of Dy is 32.

In experiments of sequence labeling, self-training and JRFs are
initialized with the weights from pretrained CRFs, which is empir-
ically found to yield better and faster learning in our experiments.
The trade-off weight o in Eq. (6) is gradually increased to 0.1 dur-
ing training. All methods are trained with 50,000 iterations and the
best model according to performance on development set is reloaded
to obtain the final results.

Results for all sequence labeling methods and tasks are list in
Table 2. The main observations are as follows: 1) With the help of
generative modeling over unlabeled data, the performance of JRFs
consistently improve over CRFs across all sequence labeling tasks.
2) JRFs outperform self-training in leveraging the same amounts of
labeled and unlabeled data. 3) When the amount of labeled sentences
is limited (e.g. 10%), the performance superiority of JRFs over to
CRFs is more significant.

4. RELATED WORK

For sequence modeling, particularly language modeling, there are
directed graphical models (e.g. n-gram [1] and RNN LMs [24, 17])
and undirected graphical models (TRF LMs [21, 15, 16, 25]). Inter-
estingly, marginalizing over 4’ in JRF yields a TRE. There are previ-
ous efforts to improve LMs with additional relevant linguistic labels
but with limited success. Class-based LMs employ automatically-
induced word classes [26], POS tag classes [27] or combination of
multiple types of tags [3]. Notably most previous methods need a
standalone tagger in testing.

For sequence labeling, one of the earliest approaches to semi-
supervised learning is self-training [11], which has been success-
fully applied to NLP tasks such as word-sense disambiguation [28]
and parsing [29]. In each round of training, the model predicts la-
bels for unlabeled data to construct labeled examples and then learns
from them. Cross-View Training (CVT) is proposed in [23], which is
trained by minimizing the distance between a clean prediction distri-
bution and noised prediction distributions for unlabeled data. How-
ever, CVT is not based on CRF for sequence labeling, thus can not
benefit from the power of CRF modeling (e.g. dependency modeling
between labels by edges).

Outside of the area of natural language processing (NLP), a neu-
ral random field (NRF) model is presented in [19], which also jointly
models observations and labels via a random field. NRFs have been
successfully applied to image modeling and semi-supervised learn-
ing for image classification. The difference between NRFs and JRFs
is that NRFs are for fix-dimensional modeling and classification (e.g.
for images), while JRFs are for sequence modeling and labeling and
applied to sequence tasks. Interestingly, the implied classifier from
NRFs is multi-class logistic regression in the fixed-dimensional set-
ting, while the implied sequential classifier from JRFs is CRFs in the
trans-dimensional setting.

5. CONCLUSION

In this paper, we propose to upgrade CRFs to JRFs, obtained as a
joint generative model of observation and label sequences. Specif-
ically, we propose to use the potential function in the original CRF
to define a joint distribution. This development from CRFs to JRFs
enables semi-supervised learning and benefits both sequence mod-
eling and labeling tasks. In language modeling rescoring task, the
JRF model outperforms traditional language models and avoids the
need to produce hypothesized labels by a standalone POS tagger.
For sequence labeling, JRFs achieve consistent improvements over
the CRF baseline and self-training on POS tagging, chunking and
NER tasks. JRFs are expected to be of broad interest to the commu-
nity, and can be improved and applied to a wider range of domains
for sequence modeling and labeling.
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