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Abstract 

 
Eigenspace estimation via principal component 

analysis (PCA) has been used in many applications, 
e.g., in eigenvoice modeling for speaker adaptation. 
Here the data of interest are the speaker supervectors, 
where each supervector is a concatenation of all the 
mean vectors in the speaker's speaker-dependent (SD) 
model. One problem is that we often do not have 
enough speaker-specific data to establish the 
individual SD models (having unseen phones). To 
address this issue, an approach to eigenspace 
estimation by expectation-maximization (EM) 
algorithm in situations where the training samples 
contain missing values is proposed, applied to 
eigenvoice adaptation, and experimentally evaluated in 
this paper.   

 
 

1. Introduction* 
 
Eigenvoice modeling has been shown to be 

effective in speaker adaptation for speech recognition 
[1], [2]. Speaker adaptation uses speech data from one 
speaker to adjust the parameters of a 
speaker-independent (SI) model towards the 
speaker-dependent (SD) values. The eigenvoice 
approach was proposed in [1] for rapid speaker 
adaptation. The idea is that for each speaker, we can 
concatenate all the mean vectors in the speaker’s SD 
model to form a supervector. The adapted supervector 
(representing the speaker-adapted model) is 
constrained to be a linear combination of a small 
number of (orthogonal) basis vectors, and thus greatly 
reduces the number of free parameters to be estimated 
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from adaptation data. In adaptation, the combination 
weights are estimated based on maximum likelihood 
(ML) criterion [1], or maximum a posteriori (MAP) 
criterion [2], [3]. For both cases, an important issue is 
how to reliably estimate the population covariance 
matrix ∑  of the supervectors, since once we 
obtain ∑ , we can perform principle component 
analysis (PCA), i.e., eigenvalue decomposition on ∑  
to yield the basis vectors. The set of eigenvectors 
associated with the largest eigenvalues are retained as 
the basis vectors, namely eigenvoices, which span the 
eigenspace. Projection to the eigenspace gives the 
optimal representation of the supervector in terms of 
the mean square error. 

Traditionally, we take the sample covariance matrix 
of the training speaker supervectors as an estimate of 
∑ . This assumes that we have a set of well-trained SD 
models, which can be separately generated for every 
speaker in the training data. One problem is that we 
often do not have enough speaker-specific data to 
establish the individual SD models. There are unseen 
phones for the training speakers, and different speakers 
may have different unseen phones. How to estimate the 
eigenvoices in situations where there are unseen 
phones for individual training speakers is the main 
issue addressed in this paper. 

There have been some methods to address this issue. 
A practical method is to use maximum likelihood 
linear regression (MLLR) [4] adaptation to establish 
SD models [2]. By sharing of the transformation 
parameters across different phones, the parameters for 
unseen phones can also be updated. Classical MAP 
adaptation is not suitable here to establish SD models 
for supervector covariance estimation, since it only 
transforms the observed parameters, which leaves 
unseen phone still unchanged. The method by 
iteratively interleaving eigenvoice adaptation and 
eigenspace estimation in [5] is a choice. However, it is 



required that we know the desirable number of 
eigenvoices beforehand and keep it fixed. In practice, 
the number of eigenvoices may be adjusted according 
to the amount of adaptation data. Additionally, the 
resulting basis vectors after iterative estimations are 
not guaranteed to be orthogonal, and so they are not 
strictly eigenvectors. Moreover, there are no 
corresponding eigenvalues which measure the 
importance of each basis vector. 

In this paper, a general approach to eigenspace 
estimation in situations where the training samples 
contain missing values is proposed. For such 
incomplete data, we cannot take the sample covariance 
matrix of the training data as an estimate of the 
population covariance matrix. Instead, we model the 
underlying population as a Gaussian distribution, and 
perform maximum-likelihood parameter estimation for 
the underlying Gaussian model by expectation 
maximization (EM) algorithm [6]. For eigenvoice 
modeling, a training sample is a speaker supervector, 
which may have missing subvectors for unseen phones. 
In this approach, the computationally intensive steps of 
covariance matrix estimation and PCA are carried out 
once, and then all eigenvectors of interest along with 
their corresponding eigenvalues are obtained.  

After a brief outline of MAP eigenvoice adaptation 
in Section 3，we present the experimental results, 
which demonstrate the effectiveness of the new 
approach to eigenspace estimation. 
 
2. Maximum likelihood Gaussian 
parameter estimation with missing values 
via EM 
 

Denote the Gaussian distribution of interest as 
( )~ ,x N μ Σ  with mean μ  and covariance matrix ∑ . 

1 2( , , , )T T T T
Dx x x x=  denotes the random vector with 

D subvectors ix , 1, ,i D= , where each ix  is in 
general a vector-valued random variable. Suppose that 
we have in hand a set of independent samples 

(1) (2) ( )={ }Nx ,x , ,xχ from the above Gaussian 
population. And the sample data χ  contain missing 
values, i.e., for each sample, some of its subvectors are 
unobserved/hidden. Let us divide the subvectors of 
each sample ( )nx  into two parts: the observed part 
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The EM algorithm is an iterative algorithm for 
maximum likelihood parameter estimation from 
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Using the above notation, we define 
             ( ) ( )

n

n nx x=              (3) 

 ( ) ( ) ( ) ( ) ( )T T

n nn

n n n n nB x x x x−      (4) 

We can regard each ( )nx  as a pseudo complete sample, 
in which the missing part is filled with the conditional 
expectation, namely 
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Regarding ( )nB  as a partitioned matrix, we can see 
that it has non-zero elements ( )n

ijB  only for 
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and substitute (6) in (1), we get: 
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where μ , ∑  are defined as the sample mean and 
sample covariance matrix for the pseudo samples 
respectively: 
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Now we obtain the re-estimation formula of the EM 
algorithm for ML parameter estimation of Gaussian 
distribution in (10) and (11). To this end, we need to 
compute ( )n

i n
x and ( )n

ijB for , ( )i j h n∈ . It can be 

shown that this actually reduces to compute the 
conditional mean and covariance matrix of the missing 
part ( )

( )
n

h nx , given the observed part ( )
( )
n

o nx  and the 

current parameters θ . These quantities can be easily 
obtained, since we have a conditional Gaussian 
distribution ( )( ) ( )
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3. MAP eigenvoice adaptation 
 

In eigenvoice modeling for speaker adaptation, we 
can directly apply the above EM algorithm to estimate 
the mean and covariance matrix of the supervectors, 
denoted as μ and ∑  respectively. In this case, a 
training sample above is a speaker supervector1, which 
may have missing subvectors for unseen phones. 
Performing PCA on ∑ , we obtain the desirable 
eigenvoices, say, 1 2, , , Re e e , and the corresponding 
eigenvalues 

1 2 ,, , Rλ λ λ , where R is the dimension of 

                                                           
1 The most common model for speech recognition is the 
hidden markov model (HMM) with guassian mixture 
state-output distributions. So the subvectors in a speaker 
supervector correspond to the means associated with the 
mixture components in the HMM, and will be indexed by the 
mixture components. 

the eigenspace. Suppose that every speaker supervector 
x can be written in the form: 

        ( )
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where ( )1, T

Rw w w=  is the combination weights. 
The speaker adaptation problem then reduces to the 
estimation of the combination weights from the 
speaker’s adaptation data.  

MAP estimation is a good choice for this purpose. 
Denote the adaptation data as 1 1, ,T

To o o=  , and 
suppose that each frame t, 1 t T≤ ≤ , has been aligned 
to mixture component m with the occupation 
probability ( )m tγ . The MAP estimate of the weights w 
is: 
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where ( )| ,tP o x m denotes the Gaussian distribution of 
frame to  associated with the mixture component m 
with mean mx  and variances mC . 0 ( )P w  is the a 
priori distribution, which can be easily derived from 
the result of eigen-analysis of the supervector 
covariance matrix as: 
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By taking derivative to w, the maximization 
problem in (14) can be solved as follows, for 
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where ,r me  is the subvector corresponding to mixture 

component m in the r-th eigenvoice re , and , 1k rδ =  
iff. k = r, otherwise it equals to zero. 

In theory, we can iterate the occupation probability 
computation and the weight estimation. In the first 
iteration, the occupation probabilities are computed 
using an SI model. In subsequent iterations, they are 
computed using the adapted model. In the experiments, 
we perform only one iteration, since further iterations 
are observed to give minor differences. 

 
 



4. Experimental results 
 

Experiments are carried out on the OGI Numbers 
database [7], which is an English telephone speech 
corpus consisting of naturally spoken numbers with 
30-word vocabulary2. We use 6049 utterances spoken 
by 3059 speakers for training and 2061 utterances by 
1044 speakers for testing.  

The acoustic feature is 39-dimensional, formed by 
12 MFCCs with normalized log-energy and their first 
and second order differentials. Cepstral mean 
subtraction is applied to the feature vector. There are 
26 monophone models, a silence model, and a 
short-pause model. The silence and all monophones are 
modeled with three emitting states each, and the 
short-pause has only one state which is tied to the 
middle state of the silence model. Gaussian Mixture 
Density (GMD) with diagonal covariance matrices are 
used for state-output distributions.  

We first train an SI model using all the training 
sentences. Then for each training speaker, the 
speaker’s training data are viterbi aligned to state and 
then soft aligned to mixture components with 
occupation probabilities ( )m tγ  using the SI model. 

For the supervector sample ( )nx from training speaker n, 
its m-th subvector is constructed as follows:  
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To alleviate computation cost, we split the acoustic 
feature vector into 1-dimension streams. And for each 
stream separately, we use the algorithm in section 2 to 
estimate the mean and covariance matrix of the 
supervectors3, and perform PCA to obtain the desirable 
eigenvoices. 5 eigenvoices per stream are used in the 
experiments. Then we conduct unsupervised MAP 
eigenvoice adaptation for the 1044 test speakers.  

Before giving the recognition results, we show 
some statistics in Fig. 1, which is the average phone 
occupancy over all training speakers. “Phone 
occupancy” for a speaker is defined as the number of 
phones occurred in the speaker’s data for each of the 
26 phones. To sum up over all phones (i.e. along the 
horizontal axis), we can see that on average, the total 
number of phones observed for a speaker is 12.46, 

                                                           
2 This is a relatively simple task. It will be shown below how 
sparse the data is in this task, and thus is suitable for 
investigating the problem of eigenspace estimation with 
missing values. 
3 For EM initialization, we copy the means and variances of 
the Gaussian components in the SI model to construct μ  
and (diagonal) ∑  respectively. 

which indicates that the percentage ratio of missing 
values in a speaker supervector is about 
13.54 / 26 52%≈ . Using GMD-4 model, we do force 
alignment to obtain the state occupancy, which is 
displayed in Fig. 2, and again shows the data 
sparseness. 
 
 

 
Fig. 1. Average phone occupancy over all training 

speakers. 
 
 

 
Fig. 2. Average state occupancy over all training 

speakers. 
 
 

 
Fig. 3. WER results as a function of the iteration steps 

(using GMD-2). 
 
 
 
 



 
The word error rate (WER) results for the baseline 

and various adaptation methods are listed in Table 1. 
“MLLR+EV” refers to using MLLR adaptation to 
establish SD models for eigenspace estimation. 
“EM+EV” refers to using the proposed EM algorithm 
for eigenspace estimation. For both cases, MAP 
eigenvoice speaker adaptation is used. We experiment 
with varying number of Gaussian mixture components 
for HMM states. The results show that the EM+EV 
system outperform the MAP, MLLR and MLLR+EV 
systems consistently. Fig. 3 plots the WER results as a 
function of the iteration steps for the proposed EM+EV 
method (using GMD-2). That is, we conduct a test for 
the eigenvoices obtained after each EM iteration. It can 
be seen that the WER is gradually reduced with the 
iterations, which demonstrate the benefit of the 
iterative EM algorithm for supervector covariance 
estimation. 
 
5. Conclusions 
 
In this paper, a general approach to eigenspace 
estimation in situations where the training samples 
contain missing values is proposed and applied to 
eigenvoice adaptation for speech recognition. We 
model the underlying population as a Gaussian 
distribution, and perform maximum-likelihood 
parameter estimation for the underlying Gaussian 
model via EM algorithm. Experimental results show  
that the eigenvoice adaptation using the eigenvoices 
estimated by the proposed approach consistently 
outperforms that using MLLR adaptation to establish 
SD models for eigenspace estimation, and also 
performs better than the MLLR and MAP adaptation. 
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     Table 1. WER results for the baseline, MLLR, MAP, MLLR+EV, EM+EV. 

 Baseline MLLR MAP MLLR+EV EM+EV 

GMD-1 20.86% 20.71% 20.75% 20.79% 19.82% 
GMD-2 16.85% 16.79% 16.83% 16.27% 15.34% 
GMD-4 13.34% 13.25% 13.32% 12.59% 12.20% 

 


