

Tsinghua University

NEURAL CRF TRANSDUCERS FOR SEQUENCE LABELING

Kai Hu[†], Zhijian Ou[†], Min Hu[‡], Junlan Feng[‡]

†Speech Processing and Machine Intelligence (SPMI) Lab, Tsinghua University, China. ‡China Mobile Research Institute.

huk17@mails.tsinghua.edu.cn, ozj@tsinghua.edu.cn

Motivation

- ◆ To capture long-range dependencies in the label sequence;
- ◆ Globally normalized models overcome label bias and exposure bias problems.

Label bias:

"successors of wrong histories receive the same mass as do the successors of the correct history" [1]

Exposure bias:

"Only exposed to the training data, instead of its own predictions" [1]

Training data:

Tom likes tea
John likes tea
Alice like tea

Locally normalized model

Globally normalized model

Model Definition

Potential Design: two choices

$$\phi_{i}(y_{i} = k, x; \theta) = f_{i}^{k}$$

$$\psi_{i}(y_{0:i-1}, y_{i} = k; \theta) = g_{i}^{k}$$

$$\phi_{i}(y_{i} = k, x; \theta) = [logsoftmax(f_{i})]^{k}$$

$$\psi_{i}(y_{0:i-1}, y_{i} = k; \theta) = [logsoftmax(g_{i})]^{k}$$

Training and Decoding

$$L(y^*; \theta) = -u(y^*, x; \theta) + \log Z(x; \theta)$$

Monte Carlo Method

$$\left| \nabla_{\theta} log Z(x; \theta) = \frac{E_{p(y'|x;\theta)}}{[\nabla_{\theta} u(y', x; \theta)]} \right|$$

Beam search with early updates [2] $L(y_{1:i}^*; \theta)$

$$= -u(y_{1:j}^*; \theta) + log \sum_{\mathbf{y'} \in \beta_j} \exp\{u(y_{1:j}'; \theta)\}$$

Decoding with beam search

Evaluation

	POS (Accuracy)	Chunking (F1 score)	English NER (F1 score)	Dutch NER (F1 score)	Globally normalized	Long-range dependencies
Linear-chain NCRF	97.52	95.01	91.11	81.53	٧	×
RNN Transducer [3]	97.50	95.02	91.02	81.59	×	٧
NCRF Transducer	97.52	95.14	91.40	81.84	٧	٧

Reference:

- [1] Wiseman and Rush, "Sequence-to-sequence Learning as Beam-Search Optimization", EMNLP 2016.
- [2] Andor, Alberti, et al., "Globally Normalized Transition-Based Neural Networks", ACL 2016.
- [3] Graves, "Sequence Transduction with Recurrent Neural Networks", ICML workshop 2012.