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ABSTRACT

Current model-based speech analysis tends to be incomplete - only
a part of parameters of interest (e.g. only the pitch or vocal tract)
are modeled, while the rest that might as well be important are disre-
garded. The drawback is that without joint modeling of parameters
that are correlated, the analysis on speech parameters may be inac-
curate or even incorrect. Under this motivation, we have proposed
such a model called PAT (Probabilistic Acoustic Tube), where pitch,
vocal tract and energy are jointly modeled. This paper proposes an
improved version of PAT model, named PAT2, where both signal and
probabilistic modeling are tremendously renovated. Compared to re-
lated works, PAT2 is much more comprehensive, which incorporates
mixed excitation, glottal wave and phase modeling. Experimental
results show its ability in decomposing speech into desirable param-
eters and its potential for speech synthesis.

Index Terms— Probabilistic generative model, model-based
speech processing, speech modeling

1. INTRODUCTION

Most speech processing tasks (e.g. pitch estimation, speech recog-
nition, source separation and so on) require a probabilistic model of
speech. However, current model-based speech analysis tend to be
incomplete - they tend to model only a part of parameters of interest,
and disregard others that might also be important.

The drawback is that without jointly modeling parameters that
are correlated, the analysis on speech parameters may be inaccurate
or even incorrect. For example, Kameoka [1] noted that pitch and
spectral envelope have a “chicken and egg” relationship and should
be estimated jointly. Stephenson [2] pointed out that cepstral-based
features are sensitive to “auxiliary information” such as pitch and
energy. An extreme example would be that current vocal tract es-
timation, such as LPC and MFCC, is always corrupted by ‘spectral
tilt’ induced by glottal wave, and can be correctly estimated only
when both are jointly modeled.

Under this motivation, we have proposed a model called PAT
(Probabilistic Acoustic Tube)[3], where pitch, vocal tract and energy
are jointly modeled. Preliminary experiments show that PAT has
a good potential for various speech processing tasks, such as pitch
tracking, speech enhancement etc.

There is, however, room for improvement. This paper proposes
an improved version of the PAT model, named PAT2, where both sig-
nal and probabilistic modeling are tremendously renovated. Specif-
ically, there are several highlights. First, the model incorporates
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breathiness and glottal vibration, based on recent findings in the
study of speech production [4]. Second, instead of modeling the
magnitude spectrum only, PAT2 incorporates phase modeling and
so completely defines a probabilistic model for the complex spec-
trum of speech. Third, instead of setting different models for voiced
and unvoiced speech, as in many speech processing methods, PAT2
makes U/V states a continuum by introducing voiced amplitude and
unvoiced amplitude, which is closer to the nature of speech.

The rest of the paper is organized as follows. Section 2 and
3 describe signal modeling and probabilistic modeling of PAT2 re-
spectively. Section 4 gives experimental results which demonstrate
the effectiveness of PAT2. Finally, in section 5 we discuss related
work and point out future work.

Notations: We use lower-case letter with bracketed index n, e.g.
x[n], to denote time domain discrete signals; upper case letter with
parenthesized index ω, e.g. X(ω), to denote its DTFT; bold lower-
case letter, e.g. x, for column vectors and bold upper-case letter, e.g.
X , for matrices; IDTFT[·] for inverse DTFT operator; ~ for circular
convolution.

2. SIGNAL MODELING OF PAT2

2.1. The Source-Filter Model with Mixed Excitation

PAT2, essentially, is a source-filter model. Yet unlike the common
source-filter model, which switches between the voiced excitation
(glottal vibration) and unvoiced excitation (breath), PAT2 allows
mixed excitations. This is because even for voiced speech, there is a
significant amount of breathiness [5]. The unvoiced case in PAT2 is
thus reduced to a special case of voiced speech where the amplitude
of voiced excitation drops to zero.

Formally, suppose rectangular window is chosen for each speech
frame, the DTFT of speech, St (ω), can be represented as

St (ω) = [atVt (ω) + btUt (ω)]Ht (ω) ~Wt (ω) (1)

where t is the frame index; Vt (ω) is the DTFT of voiced excitation;
Ut (ω) is the DTFT of breath noise;Ht (ω) is the vocal tract transfer
function; Wt (ω) is the DTFT of rectangular window; at and bt are
the voiced amplitude and unvoiced amplitude respectively. Rectan-
gular window may seem an uncommon choice in speech processing
due to its high sidelobes, but in probabilistic modeling, all windows
are equivalent as long as the distribution is determined correctly. As
will be shown in the next section, rectangular window leads to the
simplest form of distribution.

The voiced excitation can be modeled as periodic repetition of
glottal wave, or say, glottal wave convolved with a pulse train. In the
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frequency domain, it is represented as

Vt (ω) = Gt (ω) e−jωτt
∑
k

δ (ω − kω0t) (2)

where Gt (ω) is the DTFT of glottal wave of one cycle; δ (ω) is the
dirac delta function; ω0t is the fundamental frequency in radians; τt,
is the group delay, namely the time relative to the beginning of the
frame when the first pulse appears.

The breath noise is simply white Gaussian noise with unit vari-
ance in the time domain:

ut [n] = IDTFT [Ut (ω)]
iid∼ N (0, 1) (3)

whose statistical behavior in the frequency domain will be discussed
in section 3.

With this framework, signal modeling of PAT2 is reduced to
modeling of Gt (ω) and Ht (ω), and they will be discussed in de-
tail in the following subsections respectively.

2.2. All-pole Model For Glottal Wave

We adopt the common practice that incorporates radiation effec-
t of speech by taking first-order finite difference of glottal wave [6].
Glottal derivative contains an open phase, a return phase and a closed
phase. The connection between open phase and return phase, where
short time energy of speech is usually greatest, is called GCI (glottal
closure instant) [4].

It has been shown in [7] that coarse structure of glottal flow can
be approximated by three poles: a pair of conjugate maximum-phase
poles (outside unit circle) and a real minimum-phase pole (inside
unit circle), which has a very close link to the famous LF model
[8]. If we assume an impulse input at GCI, the maximum-phase pole
pairs model the open phase, and the minimum-phase pole models
the return phase.

We apply the three-pole model to PAT2, namely

Gt (ω) =
1

(1 + 2g1t cosβte−jω + g21te
−2jω) (1 + g2te−jω)

(4)

where g1t, βt and g2t, are the magnitude and phase of the maximum-
phase pole pair, and the magnitude of the minimum-phase real pole.

2.3. Mel-Frequency Complex Cepstral Coefficient (MFC3)

MFCC is widely used by speech recognition systems to represent
the magnitude of vocal tract transfer function. However, complex
vocal tract transfer function is modeled in PAT2, and we obtain mel-
frequency complex cepstral coefficient, abbreviated as MFC3.

MFC3 is extracted from the mel-frequency complex cepstrum of
Ht (ω), defined as

ĥt [n̂] = IDTFT [log (Ht (ω̃))] (5)

where n̂ is quefrency; ω̃ is the mel-frequency:

ω̃ = m (ω) =

{
ω ω < 2000π
log
(

ω
1400π

+ 1
)
× 2254π otherwise

(6)
According to previous study [9], vocal tract can be well modeled

by a minimum phase system. Thus, it can be proved [10] that ĥt [n̂]
is right-sided, namely 0 when n̂ < 0, and if group delay and the sign
of gain of H (ω) are properly removed, ĥt [n̂] decays at the rate of
1/n̂. According to (1) and (2), the sign of gain is controlled by at

and group delay by τt. Therefore, we can use ĥt [n̂] , 0 < n̂ ≤ K
for small K, named MFC3, to represent Ht (ω):

Ht (ω) = exp

(
K∑
ñ=1

ĥt [n̂] exp (−jm (ω) n̂)

)
(7)

where K = 26 in our experiment. The 0-th coefficient is removed
because amplitude is already modeled by at and bt.

So far, the signal model has been completely established by (1),
(2), (3), (4) and (7). which is the basis of the probabilistic model
introduced in the next section. The parameter set Θ is

Θ =
⋃
t

(
{at, bt, ω0t, τt, g1t, βt, g2t} ∪

⋃
n̂

{
ĥt [n̂]

})
(8)

3. PROBABILISTIC MODELING OF PAT2

3.1. Compact Real DFT Representation

We will switch to DFT representation from DTFT. DFT of a real
speech signal is conjugate symmetric, and thus we only need to use
the first half of the DFT coefficients. Formally, denote N as frame
length. If N is even, define

st =

[
S

(r)
t

(
2π0

N

)
, ..., S

(r)
t

(
2π (N/2)

N

)
,

S
(i)
t

(
2π

N

)
, ..., S

(i)
t

(
2π (N/2− 1)

N

)]T (9)

where superscript (r) and (i) denotes real part and imaginary part
respectively. S

(i)
t (0) and S(i)

t (π) are not included because they
are constantly 0. This length N vector contains exactly the same
information as the time domain signal. We call it the compact real
DFT representation of St (ω).

3.2. Likelihood of Speech Complex Spectrum

Considering that there are unmodelled speech effects, such as jitter
and shimmer, and these effects tend to concentrate on high frequen-
cy, we switch to modeling a mel-scale representation of speech st to
minimize the error. According to (1), we have

s̃t ≡ Fst = atFξt + btFηt (10)

where F is a matrix containing rows of overlapping triangular win-
dows, whose end points are uniform in mel-scale; ξt and ηt are
compact real DFT representation of Vt (ω)Ht (ω) ~ Wt (ω) and
Ut (ω)Ht (ω) ~Wt (ω) respectively.

ηt is the only random variable, whose distribution will now be
derived. First, the rectangular window can be removed because it
has no impact on DFT. Therefore, ηt can be further represented as

ηt = Htut (11)

where ut is the compact real DFT representation of Ut (ω) and Ht

is the 4-block (2 by 2) matrix that achieves complex multiplication
between Ut (ω) and Ht (ω).

DFT is an orthogonal transform. With some simple manipu-
lations and (3), it can be proved that ut is a standard multivariate
Gaussian variable, i.e. with zero mean and identity covariance ma-
trix. Therefore

s̃t ∼ N
(
atFξt, b

2
tFHtH

T
t F

T |Θ
)

(12)

which defines the likelihood of the observed speech frame.
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(b) Reconstructed voiced speech; dark blue represents −∞

Fig. 1. Comparison of log magnitude spectrogram of reconstructed
voiced speech and original speech.

3.3. Parameter Priors

To ensure parameters vary smoothly across frames, it is useful to set
smoothing priors for them. We assume conditional Gaussian priors

logPθt|θt−1
(u|v) ∝ − (u− v)2

σ2
θ

(13)

for all parameters θt ∈ Θ except for at and τt, where σ2
θ are, for

now, hand-tuned hyper-parameters1.
The voiced amplitude of frame t, at, is crucial for U/V decision,

because by assumption, at = 0 corresponds to unvoiced speech. In
actuality, however, the estimate of at is rarely exactly equal to 0 due
to corruption of noise. We set a ”bonus” in prior for at being equal
0:

logPat|at−1
(u|v) ∝ − (u− v)2

σ2
a

+B1 [u = 0]

−C1 [1 [u = 0] 6= 1 [v = 0]]

(14)

where 1 [·] is indicator function. The third term imposes extra cost
for constantly jumping between U/V states. B andC are hand-tuned
parameters2. Under MAP (maximum a posteriori) scheme, this prior
should attract small at’s to strict 0.

For τt of all frames and other speech parameters of the 0-th
frame, we assume noninformative priors. (12), (13) and (14) de-
fine the probabilistic model for PAT2. Parameters are estimated with
MAP using gradient ascent method.

4. EXPERIMENTS

In this section, a set of preliminary results are displayed to demon-
strate versatility and representation power of PAT2. These results
are obtained by running PAT2 on an utterance “Where can I park my
car” by a male speaker in the Edinburgh speech corpus [11]. The

1In this experiment, we set σ2
ω0

= 1, σ2
a = σ2

b = 0.01, σ2
ĥ
= σ2

g1 =

σ2
g2 = σ2

β = 0.1, σ2
τ = 1e− 5.

2In this experiment, we set B = 50, C = 10.
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Fig. 2. Comparison of real and imaginary spectrum for frame 35.

log spectrogram is displayed in fig.1(a). We will see that PAT2 does
well in speech modeling (especially for phase) and decomposing the
speech into desirable parameters.

4.1. Speech Reconstruction

As an illustration of general performance of PAT2, speech recon-
struction is performed, where all the speech parameter estimates are
assembled to reconstruct the voiced part of speech atFξt as in equa-
tion (10). If the reconstructed speech is close to the original speech
in voiced segments, we can say PAT2 generally models speech well.

Fig.1(b) displays the log spectrogram of voiced reconstruction.
As can be seen, there are segments where the voiced reconstruc-
tion is strictly zero. These segments correspond to unvoiced and
silent segments judged by PAT2, which demonstrates PAT2’s U/V
decision. In voiced segments, pitch harmonics and formant struc-
ture, especially in low frequencies, are very close to those in original
speech. In mid and high frequencies, voiced reconstruction has low-
er energy than the original speech. This is because PAT2 regards
the excluded energy as unvoiced, or breath excited; according to [5],
breath energy is likely to dominate mid and high frequencies.

To have a clearer view, reconstruction of frame 35 is compared
with the original speech in fig.2. Both real spectrum and imagi-
nary spectrum are compared, rather than only considering the mag-
nitudes. We can see that the reconstruction almost overlaps with the
original in low frequencies in both spectra, which shows that PAT2
models phase of speech very accurately. This result demonstrates
PAT2’s potential for speech synthesis and model-based separation.

4.2. ‘Glottal Free’ Vocal Tract Transfer Function

This result illustrates how PAT2 disentangles parameters. As dis-
cussed in section 1, MFCC essentially mixes glottal wave and vo-
cal tract transfer function, and their separation cannot be obtained
without a unified model like PAT2. Therefore, PAT2 provides some
insights of disentangled vocal tract.

Fig.3 compares the vocal tract transfer function estimated by
PAT2 with the spectral envelope estimated by MFCC. An immediate
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(a) Log magnitude of vocal tract transfer function estimated by PAT2
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(b) Log magnitude of spectral envelope estimated by MFCC

Fig. 3. Comparison of spectral envelope representation of PAT2 and
MFCC.

observation is that the spectral tilt induced by glottal wave is large-
ly removed in PAT2’s representation. Notice that the removal is not
heuristic, but based on phase information (maximum phase compo-
nent). MFC3 thus has the potential to be a better feature for speech
recognition because glottal variation and breathiness affect spectral
envelope, but do not change the vocal tract.

To further illustrate this point, we perform another experiment
where 2 extreme utterances of /ah/ are recorded, one uttered with
voiced excitation and the other whispered. The idea is that the vocal
tract shapes in both cases are similar, but one has spectral tilt and
the other doesn’t. It is expected that PAT2 model would give more
consistent estimates of vocal tract of the two cases than MFCC does.

Fig.4 compares the mean of the envelope estimates of both cas-
es by the two methods. It turns out that both MFCC and PAT2 have
almost the same envelope estimates for the whispered case, but very
different for voiced. PAT2 has much more consistent estimates for
both cases, especially in the mid frequency. The norm of the differ-
ences between the means of the estimates for the two cases is 10.93
for PAT2, as opposed to 13.15 for MFCC.

4.3. GCI Location

GCI estimation is a good indication of PAT2’s ability to model phase
and pitch tracking. According to section 2, τt is the delay of the
first GCI relative to the beginning of frame t. Also we know that
GCI are periodic at the fundamental frequency. Then, estimated GCI
locations of frame t are thus τt+2kπ/ω0t, where k is a nonnegative
integer. Since GCI’s of different frames are estimated separately, we
can judge the accuracy by checking: 1) if GCI’s of different frames
are consistent, i.e. if they form a quasi-periodic sequence; 2) if they
appear at energy bursts in the original speech.

Fig.5 plots GCI locations as impulses and the original speech
waveform. As can be seen, GCI’s, around 3 or 4 instances in each
frame, form a periodic signal with rare exceptions. What’s more,
they tend to appear consistently at the largest negative to positive
jump within a period in the original speech wave, where short-time
energy is generally greatest. This result shows that PAT2 can con-
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Fig. 4. The means of the estimated vocal tract frequency response /
spectral envelope for a voiced-excited and a whispered utterance of
/ah/
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Fig. 5. Estimation of GCI location of the utterance ‘park’.

trol for group delay and pitch well, and thus achieves similar perfor-
mance to pitch-synchronous analysis.

5. RELATED WORK AND CONCLUSION

Previous works on speech generative models include [12][13]. There
are other attempts to jointly model speech parameters, such as the S-
TRAIGHT model [14] and the compound model [1]. Compared to
these previous models, PAT2 is probabilistic and much more com-
prehensive, which incorporates mixed excitation, glottal wave and
phase modeling.

In conclusion, we proposed a comprehensive generative model
for speech, and showed its ability in decomposing the speech into
desirable parameters and its potential for speech synthesis. However,
there is still room for further improvement, the greatest being glottal
wave modeling. Although LF model is good for coarse structure of
glottal wave, it does not model fine structure, which may introduce
some errors in PAT2. Also, the priors of speech parameters are set
heuristically without a standard training procedure. Nonetheless, we
believe that with improvement, PAT2 will find its way into many
speech processing tasks and speech research applications.
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