
Abstract

• Helmholtz machines : models with a pair of generative 
and inference models 𝑝𝜃 𝑥, ℎ and 𝑞𝜑 ℎ|𝑥 .

• JSA : directly optimize marginal log-likelihood
& simultaneously optimize inclusive KL divergence,
in the framework of stochastic approximation (SA).

• To sample true posterior, treat inference network as 
proposal and construct two types of MCMC operators –
MIS and MTMIS.

• JSA outperforms RWS with better log-likelihoods on MNIST.
• MTMIS enables larger move and improves mixing.
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JSA Learning of Helmholtz Machines

Simultaneous equations to be solve by SA
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SA recursion for updating parameters
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Results for SBN and categorical SBN(C) on MNIST dataset

Convergence curves of JSA-MIS, JSA-MTMIS and RWS for SBN 200-200

MCMC operators used in JSA

Given the current state 𝑥 𝑡 , target distribution 𝜋 𝑥 ;

Importance sampling weight  𝜔 𝑥 =
𝜋 𝑥

𝑔 𝑥

Metropolis Independence 
Sampler

Multiple-trial Metropolis
Independence Sampler

• Draw 𝑦~𝑔 𝑦

• Set 𝑥 𝑡+1 = 𝑦 with 

probability𝑚𝑖𝑛 1,
𝜔 𝑦

𝜔 𝑥 𝑡 ,

• Generate 𝐾 I.I.D samples 

𝑦𝑗~𝑔 𝑦 ,W =  𝑗=1
𝐾 𝜔 𝑦𝑗

• Draw 𝑦 from 𝑦1, … , 𝑦𝐾
with the probability 

proportional to 𝜔 𝑦𝑗
• Set 𝑥 𝑡+1 = 𝑦 with 
probability

𝑚𝑖𝑛 1,
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