

Abstract

- Helmholtz machines : models with a pair of generative and inference models $p_{\theta}(x, h)$ and $q_{\varphi}(h|x)$.
- JSA : directly optimize marginal log-likelihood < & simultaneously optimize inclusive KL divergence, in the framework of stochastic approximation (SA).
- To sample true posterior, treat inference network as proposal and construct two types of MCMC operators – MIS and MTMIS.
- JSA outperforms RWS with better log-likelihoods on MNIST.
- MTMIS enables larger move and improves mixing.

Algorithm		$p_{oldsymbol{ heta}}(oldsymbol{x},oldsymbol{h})$			$q_{\phi}(I)$	RV type				
		ML	V-LB	IS-LB	KL(q p)	KL(p q)	C	D		
1	VAE [1]				\checkmark					
	NVIL [2]				\checkmark					
	MuProp [3]									
2	WS [4]		\checkmark			\checkmark	\checkmark	$\overline{\checkmark}$		
	RWS $[5]$			\checkmark		\checkmark				
3	IWAE [6]			\checkmark	\checkmark		\checkmark			
JSA		\checkmark				\checkmark	\checkmark	\checkmark		

Related Work

References

- [1] Kingma, Diederik P and Welling, Max, Auto-Encoding Variational Bayes, ICLR, 2014.
- [2] A. Mnih and K. Gregor, Neural variational inference and learning in belief networks, ICML, 2014.
- [3] S. Gu, S. Levine, I. Sutskever, and A. Mnih, Muprop : unbiased back-propagation for stochastic neural networks, ICLR, 2016.
- [4] G. E. Hinton, P. Dayan, B. J. Frey, and R. M. Neal, The wake-sleep algorithm for unsupervised neural networks, Science, 1995.
- [5] J. Bornschein and Y. Bengio, Reweighted wake-sleep, ICLR, 2015.
- [6] Y. Burda, R. Grosse, and R. Salakhutdinov, Importance weighted auto-encoders, ICLR, 2016.

Joint Stochastic Approximation Learning of Helmholtz Machines

Department of Electronic Engineering, Tsinghua University

JSA Learning of Helmholtz Machines

Simultaneous equations to be solve by SA

$$\frac{\partial}{\partial \theta} \log p_{\theta}(x) = E_{p_{\theta}(x|h)} \left[\frac{\partial}{\partial \theta} \log p_{\theta}(x, h) \right]$$

$$KL \left(p_{\theta}(h|x) \right) = -E_{p_{\theta}(x|h)} \left[\frac{\partial}{\partial \theta} \right]$$

$$\frac{\partial}{\partial \varphi} KL\left(p_{\theta}(h|x)||q_{\varphi}(h|x)\right) = -E_{p_{\theta}(x|h)}\left[\frac{\partial}{\partial \varphi}\log q_{\varphi}(h|x)\right] = 0$$

SA recursion for updating parameters

$$\begin{cases} \theta^{(t)} = \theta^{(t-1)} + \alpha_t \frac{\partial}{\partial \theta} \log p_\theta(x) \\ \varphi^{(t)} = \varphi^{(t-1)} + \beta_t \frac{\partial}{\partial \varphi} \log q_\varphi(x) \end{cases}$$

MCMC operators used in JSA

Given the current state $x^{(t)}$, target distribution $\pi(x)$; Importance sampling weight $\omega(x) = \frac{\pi(x)}{g(x)}$

Metropolis Independence Sampler	Multiple-trial Metropo Independence Sample
• Draw $y \sim g(y)$ 1 vs K samples • Set $x^{(t+1)} = y$ with probability $min\left\{1, \frac{\omega(y)}{\omega(x^{(t)})}\right\}$,	• Generate <i>K</i> I.I.D samp $y_j \sim g(y), W = \sum_{j=1}^{K} \omega(y)$ • Draw <i>y</i> from $\{y_1, \dots, y_k\}$ with the probability proportional to $\omega(y_j)$ • Set $x^{(t+1)} = y$ with probability $min\left\{1, \frac{W}{W - \omega(y) + \omega(x^{(t)})}\right\}$

Haotian Xu, Zhijian Ou

$$h)\bigg] = 0$$

$$h^{(t)}$$

$$(t)|x\rangle$$

al Metropolis
nce Sampler
I.I.D samples
=
$$\sum_{j=1}^{K} \omega(y_j)$$

n { y_1, \dots, y_K }
oability
to $\omega(y_j)$
= y with

Results for SBN and categorical SBN(C) on MNIST dataset

	200	200-200	200-200-200	200-10(C)	200-200-10(C)	200-200-200-10(C)			
Model	100,000 samples								
	Negative log-likelihood estimated by importance sampling.								
(Negative log-likelihood variational bound)									
TAIC	$116.3^{[5]}$	$106.9^{[5]}$	$101.3^{[5]}$						
WS	$(120.7^{[5]})$	$(109.4^{[5]})$	$(104.4^{[5]})$						
DWC	$103.1^{[5]}$	$93.4^{[5]}$	$90.1^{[5]}$	97.65	90.35	88.43			
RWS				(109.41)	(99.71)	(96.09)			
JSA-MIS	103.5	93.33	89.85	97.8	91.60	88.43			
JOA-IVIIO	(112.7)	(101.00)	(97.04)	(106.83)	(98.04)	(96.09)			
JSA-MTMIS	102.3	92.11	88.92	97.05	89.84	87.82			
J24-1/1 1 1/112	(116.37)	(101.88)	(98.20)	(110.39)	(98.93)	(96.58)			
NIX/II									
NVIL	$(113.1^{[2]})$	$(99.8^{[2]})$	$(96.7^{[2]})$						
MuDron									
MuProp	$(113.1^{[3]})$	$(100.4^{[3]})$	$(98.6^{[3]})$	$(107.8^{[3]})$					

Convergence curves of JSA-MIS, JSA-MTMIS and RWS for SBN 200-200



