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Abstract

This paper investigates the problem of incorporating auxiliary 
information (e.g. pitch) for speech recognition using dynamic 
Bayesian networks (DBNs). Previous works usually model acoustic 
features conditional on the pitch auxiliary variable for both voiced 
and unvoiced phonetic states, and therefore ignore the fact that 
pitch (frequency) information is meaningful only for voiced states.. 
In this paper we propose a switching two auxiliary chain model 
tailored to voiced/unvoiced states for exploiting pitch information, 
which is essentially built on the switching parent functionality of 
Bayesian multinets. Experiments on the OGI Numbers database 
show that significant performance improvements are achieved 
from switching auxiliary chain modeling, compared with regular 
auxiliary chain modeling and the standard HMM. 

1. Introduction 

For automatic speech recognition, HMMs consist of two sets of 
random variables, the hidden phonetic state variable and the 
acoustic feature variable at each time. One important deficiency is 
that the single phonetic state variable is burdened to contain all 
relevant contextual information. There are clearly some contextual 
cues that are not explicitly represented by the phonetic states (e.g. 
pitch, rate of speech, the state of articulators, noise condition, etc.), 
which we could call auxiliary information.  

Various methods have been proposed to incorporate auxiliary 
information to increase the representational capacity of the 
standard HMM. One method is to encode the auxiliary information 
in continuous observable variables (for both training and 
recognition) [1][2]. To have tractable (exact) inference in using 
hidden continuous variables, this method only considers 
dependencies within a given time frame as done in [1][2].  

On the other hand, the auxiliary information could also be 
incorporated in the form of discrete variables [3][4][5], which can 
be temporally linked and directly complement the phonetic state 
variables to model long-term acoustic context. The works in [3][4]
show the advantage to include a discrete 'context' variable, which 
forms an auxiliary chain along time. The context variable is always 
hidden during both training and recognition, thus it is not clear 
what auxiliary information it may represent. In [5], pitch 
information is explicitly related to a discrete auxiliary variable, 
which takes the quantized values of the pitch estimates. However,  
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Fig.1: When s=1, v is x’s parent, when s=2, w is x’s parent. 

this work ignores the fact that pitch information is meaningful only 
for some particular phonetic states. While it is reasonable to 
augment a voice phonetic state like /a/ with an auxiliary variable 
representing pitch, it is less appropriate to associate such auxiliary 
variable to an unvoiced phonetic state like /s/. Given this 
observation, in this paper we propose switching auxiliary chains 
for modeling different auxiliary information tailored to different 
phonetic states. In addition, we investigate the broader case of 
using continuous acoustic features, instead of the discrete ones as 
in [3][4][5]. 

The switching auxiliary chains are fully implemented in the 
framework of dynamic Bayesian networks (DBNs), and essentially 
built on the switching parent functionality of Bayesian multinets 
[6][7]. Normally in Bayesian networks, a variable has only one set 
of parents. However, Bayesian multinets allow a variable’s parents 
to change (or switch) depending on the current values of other 
parents. The parents that may change are called conditional parents, 
and the parents which control the switching are called switching 
parents. Fig. 1 shows the case where variable s switches the 
parents of x between v and w, corresponding to the probability 
distribution:

| , | , 1 1 | , 2 2p x v w p x v s p s p x w s p s

The use of switching auxiliary chains are motivated in two 
ways. First, we may need multiple auxiliary chains for 
representing different possible auxiliary information, and each 
chain may be meaningful only for some particular phonetic states. 
For example, exploiting pitch information is reasonable only for 
voiced phones. Lip rounding is more relevant for vowel phones, 
but not for consonantal phones [8], while manner of articulation 
(lateral, nasal, fricative, approximant) is more relevant for 
consonantal phones, but not for vowel phones. Switching chain 
representation can specify dependencies only when necessary, and 
thus reduce computation and parameter size. Second, although we 
could increase the cardinality of an auxiliary variable (e.g. by 
forced including the value of 'nil' or other less relevant values [8]) 
to make it play the role of conditional parents for all phonetic 
states, this will potentially increase confusion and hurt 
performance.  For switching chain representation, each chain only 
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Fig. 2: DBN representation of different models. Round/square nodes show continuous/discrete variables. The arcs entering/leaving the box represent links to the 
previous/next time frame. (a) The standard HMM; (b) Regular one auxiliary chain model; (c) Regular two auxiliary chain model; (d) Switching two auxiliary chain 

model, where  is both a switching parent (dotted arc) and a conditional parent (solid arc). 
tq

needs to distinguish between a small number of relevant phonetic 
states, thus could be trained with more discriminative (conditional) 
distributions.

We intend to take advantage of the switching chain 
representation to exploit as much auxiliary information as possible. 
For preliminary study in this paper, we focus on implementing a 
switching two auxiliary chain model tailored to voiced/unvoiced 
states for exploiting pitch information. The Graphical Model 
Toolkit (GMTK) [9] is utilized for such implementation. 

Experiments were carried out on the OGI Numbers database 
[10], which is an English telephone speech corpus consisting of 
continuously spoken numbers. We found significant improvements 
resulting from switching auxiliary chain modeling, compared with 
the regular auxiliary chain modeling which does not distinguish 
between voiced/unvoiced phones regarding the pitch information. 

This paper is organized as follows. In Section 2, the regular 
and switching auxiliary chain models are described in the 
framework of DBNs. Section 3 presents experimental results, 
followed by discussion in the last section.

2. Model formulation based on DBNs 

2.1. The Standard HMM 

Fig. 2(a) shows DBN representation of the standard HMM. ,
tq tx

are respectively the (discrete) phonetic state variable and the 
(continuous) acoustic feature variable at time t . The HMM is 
parameterized by the state transition probabilities 

1|t tp q q  and 

the state output distributions |t tp x q , which is often 

implemented as Gaussian mixture density: 

1

| | |
M

t t t t t t t
i

p x q p m i q p x q m i,

Here  denotes the hidden Gaussian component variable, which 

is not explicitly plotted in Fig. 2 for simplicity. The conditional 
independent assumptions implied by HMM burden the single  to 

contain all relevant contextual information. One method is to 
augment  with additional (auxiliary) variables that represent 

contextual auxiliary information (e.g. pitch, rate of speech, etc.). 

tm

tq

tq

2.2. Regular Auxiliary Chain Model 

In [3][4], an auxiliary chain is formed by linking a conceptual  
‘context’ variable at each time, which is always hidden during both 

training and recognition. An auxiliary chain directly related to 
pitch information is studied in [5], where during training, the 
auxiliary variable is observed as the quantized pitch values for 
learning pitch-related temporal correlation. Regardless of whether 
the auxiliary chain is hidden or observable during 
training/recognition, the regular auxiliary chain model is 
essentially the DBN shown in Fig. 2(b).  denotes the discrete 

auxiliary variable at time t . The (time-independent) local 
conditional probability distribution (CPD) associated with node ,

tv

tq

tx  and  are respectively 
tv 1|t tp q q , , and | ,t t tp x q v

1|t tp v v , which are used to define the joint probability 

distribution:

1: 1: 1: 1 1
1

, , | | , |
T

T T T t t t t t t t
t

p q x v p q q p x q v p v v

Instead of assuming a discrete 
tx  as in [3][4][5], here we use a 

continuous
tx  and implement Gaussian mixture densities for the 

local CPD | ,t t tp x q v . That is, a Gaussian mixture density is 

used for each combination of the values of  and .
tq tv

Multiple auxiliary chains could be used to represent different 
possible auxiliary information. Fig. 2(c) shows the DBN using two 
auxiliary chains. And if the auxiliary information (e.g.  the state of 
articulators) is correlated with phones, we can make the auxiliary 
variable dependent on the phonetic states. For current work, we  
consider pitch information, which does not have a direct 
dependency on the phones. From this viewpoint, it is appropriate 
to use a state-independent auxiliary chain, as done in [5]. 

However, to have the pitch auxiliary variable condition the 
acoustic feature sequence across the whole utterance ignores the 
fact that pitch information is meaningful only for voiced regions. 
While it is reasonable to augment a voiced phonetic state like /a/ 
with an auxiliary variable representing pitch, it is less appropriate 
to associate such auxiliary variable to an unvoiced phonetic state 
like /s/. To parsimoniously account for such selective effect of 
auxiliary information on different phonetic states, we propose the 
following switching auxiliary chain model. 

2.3. Switching Auxiliary Chain Model 

The switching auxiliary chains are essentially built on the 
switching parent functionality of Bayesian multinets. Suppose that 
there are L auxiliary variables (1) ( ), , L

tv vt
, representing different 
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auxiliary information, then we could have the probability 
distribution:

( )
1: 1: 1: 1, ,

( ) ( )
1 1

1 1

, ,

| | , |

l
T T T l L

T L
l l

t t t t t t t t
t l

p q x v

p q q p x q v q p v v

where (1) ( ), , L
t t t tv q v v  is the selective parents of 

tx

according to different values of . The switching function 
tq t tv q

is intended to be a (deterministically) mapping from a 
classification of the possible values of  to the set of auxiliary 

variables, where each class is suited to some particular auxiliary 
information. The classification may be determined using a data-
driven approach, or as adopted below, could be specified by a-
priori knowledge. 

tq

Fig. 2(d) shows the switching two auxiliary chain model (L=2)
for exploiting pitch information. For now, we use an observed 

trained with the quantized pitch values for voiced states, and a 
hidden  trained to encode contextual information other than 

pitch for unvoiced states. The parents of 

(1)
tv

(2)
tv

tx  switches to include 

either  or  according to a classification of  to 

voiced/unvoiced states. That is, 

(1)
tv (2)

tv tq

t tv q  equals /  if 

takes on a voiced/unvoiced state. This effect is illustrated in Fig. 3 
with an instantiation example of the phonetic state variables. 

(1)
tv (2)

tv tq

A multinet occurs since 
t tv q  is a function of . If the 

underlying phonetic state chain changes, so will the set of 
dependencies. In general, the statistical dependencies in a multinet 
could be represented by a regular Bayesian network via specific 
values of the parameters 

tq

[6]. However in practice, switching parent 
functionality could reduce computation and parameter size, and  
may improve discrimination through implementing dependencies 
only when necessary and relevant. For example, if we want to 
exploit one more auxiliary information complementary to an 
existing one, using two (binary) auxiliary chains in a regular way 
will double the model complexity, while using switching two 
chains will remain almost the same complexity. 

3. Experimental Results 

Experiments were carried out on the OGI Numbers database [10], 
which is an English telephone speech corpus consisting of 
naturally spoken numbers with 30-word vocabulary. We used 6049 
utterances from the corpus for training and 2061 utterances for 
testing, as configured by MONC [11]. All utterances were framed 
with 25ms length and 10ms shift. From each frame, 12 mel-
frequency cepstral coefficients (MFCCs) plus normalized log-
energy were extracted along with their first and second derivatives, 
giving a feature vector of 39 dimension. Cepstral mean subtraction 
was then applied to the feature vector. The Graphical Model 
Toolkit (GMTK) [9] was utilized for DBN implementation. 

There were 26 monophone models, a silence model, and a 
short-pause model. The silence and all monophones were modeled  

T

(2)
tv

(1)
tv

T

tx
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Fig. 3: A switching two auxiliary chain model. An instantiation example of the 
phonetic state variables for the word ‘two’ /T/-/UW/ is shown. 

with three emitting states each, and the short-pause had only one 
state which was tied to the middle state of the silence model. 

A baseline DBN was first built to emulate the standard HMM. 
There is an upper layer including position, transition variables as 
introduced in [3]. The various DBNs  replace the lower layer with 
different structures from Fig. 2. 

For current work, we consider pitch as auxiliary information. 
The ESPS tool ‘get_f0’ was used for pitch extraction. The pitch 
estimated were then quantized to binary in two ways: one is to 
reflect high-low pitch (low: below 140hz including unvoiced 
frame), and the other is to reflect voiced/unvoiced. Two types of 
DBN based auxiliary chain models were trained: 

1) A regular one auxiliary chain model in which the single 
binary variable  was trained with the quantized high-low pitch 

values.
tv

2) A switching two auxiliary chain model. The 27*3=81 states 
were classified into two classes of 60 voiced states and 21 
unvoiced states according to phonetic knowledge. As described in 
Section 2.3, we used a binary observed  trained with the 

quantized pitch values for voiced states, and a binary hidden 

trained to encode contextual information other than pitch for 
unvoiced states. 

(1)
tv

(2)
tv

Both types of DBN chain models were then tested under two 
conditions. For the regular auxiliary chain model, the variable 

was observed (O) or hidden (H). For the switching chain model, 
the  was observed (O) or hidden (H), and the hidden 

during training was still hidden during recognition. WER results 
are shown in Table 1. For all the models, two series of experiments 
were taken, using 8 and 16 Gaussian mixtures respectively for the 
CPD with the acoustic feature variable 

tv

(1)
tv (2)

tv

tx .

The results in Table 1 indicate that exploiting pitch 
information with a binary auxiliary variable could reduce the WER 
from the baseline HMM. The performance improvements are more 
evident and consistent when using switching auxiliary chain 
models. Significant error rate reductions of 6% (from 10.99% to 
10.32%) and 7% (from 10.16% to 9.41%) are obtained for 8 and 
16 Gaussian mixture system respectively. 
For both chain models, it is also found, as reported in [2][5], that 
during recognition, it is better to hide the auxiliary variable (H) 
than to make it observed as the externally measured pitch values. 
Due to their blind treatment of pitch information, the regular 
auxiliary chain models performed worse than the switching ones 
under all conditions. The pitch (frequency) information is relevant 
only to voiced states; to have the pitch auxiliary variable condition 
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Fig. 4: The left and right picture show the Gaussian models along with the sample data for the second state of ‘OW’ (voiced) and the second state of ‘F’ (unvoiced) 
respectively. The Gaussian models, represented by their contours with 2 standard deviation, are taken from the trained regular one auxiliary chain model, which has 2 

Gaussian mixtures for each possible value of the binary auxiliary variable . The black and green correspond to =0 (low pitch including unvoiced) and =1 

(high pitch) respectively. The sample data were obtained via force alignment, where blue and red points correspond to low pitch (including unvoiced) and high pitch 
frames respectively. 

tv tv tv

Models Mix. # of param. H O
8 102K 11.20 11.25Regular

one aux. chain 16 204K 9.76 10.32
8 102K 10.32 10.87Switching

two aux. chains 16 204K 9.41 9.66
8 51K 10.99

HMM
16 102K 10.16

Table 1: Word Error Rates (%) for different models 

 the acoustic feature for the unvoiced states is superfluous and 
sometimes detrimental, as the results in Table 1 show. It is 
important and beneficial to selectively model the effects of 
different auxiliary information on different phonetic states, as 
successfully realized by the switching auxiliary chain 
representation.

Fig. 4 illustrate why such a selective modeling is necessary. 
For ease of observation, the 2 Gaussian mixtures are shown here, 
which were obtained during the process of increasing mixture 
number in training. It is clear that the conditional Gaussian mixture 
models for voiced state ‘OW’ changes systematically according to 
the values (low/high) of its conditioning pitch auxiliary variable, 
and cover the corresponding feature data properly. The variation 
due to pitch is well modeled for voiced states. However, for 
unvoiced state ‘F’, the feature data for different values of the pitch 
auxiliary variable are highly overlapped, and so are the learned 
conditional Gaussian mixture models. These suggest that pitch 
(frequency) information is of little use if any to account for the 
variation for unvoiced states. It is better to use a hidden auxiliary 
variable than to use an irrelevant pitch variable for unvoiced states. 

4. Conclusions and Future 

In this paper, we propose switching auxiliary chains for 
modeling different auxiliary information tailored to different 
phonetic states. In particular, we implement a switching two 
auxiliary chain model tailored to voiced/unvoiced states for 

exploiting pitch (frequency) information, and achieve significant 
performance improvements. In the future, we intend to take 
advantage of the switching chain representation to exploit as much 
auxiliary information as possible, and experiment with increasing 
cardinality of the auxiliary chains. 
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