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ABSTRACT
The linear prediction (LP) HMM does not make the independent
and identical distribution (IID) assumption in the traditional HMM;
however it often produces unsatisfactory results. In our previous
paper [7], both HMMs’ modeling strengths and weaknesses were
analyzed and a new combined model of statics-dynamics of
speech was proposed. It works with LPHMM as the dynamic part
and with the traditional IID-based HMM as the static part; in
addition, easy implementation and low cost are preserved. In this
paper, an optimal combination using maximum mutual
information (MMI) is introduced. Our experiments on speaker-
independent continuous speech recognition demonstrated that the
combined model achieved better performance than both models.

1.  INTRODUCTION
It has been well known that a major limitation to the traditional
HMM in speech modeling is that the observations within a state
are assumed to be independently and identically distributed (IID),
which neglects the useful dynamic spectral information inherent in
speech. Various alternative models are proposed [1] to incorporate
dynamics of speech into the traditional HMM. However, they
suffer from high computation cost and therefore practically have
to rely on sub-optimal multi-pass rescoring and pruning, which
limits their performance on large vocabulary continuous speech
recognition (LVCSR).

Remarkably, the approach [2-6] that directly conditions
current output on nearby observations with linear prediction (LP)
is more attractive than other modeling assumptions, since it is less
expensive. Early works appeared in [2] where no experimental
results were reported and [3] where it produced poor results. In [4],
it was found “surprisingly” that LPHMM was beneficial for
simple cepstral features but not for features augmented with
differentials, and “paradoxically” that LPHMM produced poor
recognition rate although the likelihood obtained was much higher
than the traditional HMM. When combined with discriminant
output distributions, LPHMM could reduce the error rate, which
was limited to E-set recognition [5]. A marginal dropping of word
error rate from 11.8% to 11.4% was reported in [6].

The unsatisfactory and inconsistent performance of LPHMM
in practice has not been well understood in the literature. In [7], we
proposed a new combined model of statics-dynamics of speech.
The correlated output probability ( )L,| 1−tt oop  only reflects
“dynamics of speech”, modeling the dynamic variation of each
output around some function of nearby observations. On the other
hand, IID-based HMM only characterizes the “statics of speech”,
modeling the static location of each output (with the state mean
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 in the feature space. Thus it is beneficial to integrate these
plementary sources of information together in a combined

 Preliminary experimental results were very encouraging
this paper, we introduce an optimal combination, which
aximum mutual information (MMI) to estimate the
ation weight. Recent experimental results using the
ed model with and without such optimization technique are
d.
s paper is organized as follows. In section 2, LPHMM is
described. We present the combined model in section 3,
roduce the optimal combination using MMI in section 4.

ental results are provided in section 5. Finally the
ions are made in section 6.

2.  LINEAR PREDICTION HMM
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il  is the “offset” associated with the thi  predictor,
DD×  is the thi  prediction matrix, D

s R∈µ  explicitly
ts for a non-zero mean of the observations, and
( )s∑,0  is zero mean full covariance gaussian noise which is
elated between frames. For state s , the output probability
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3.  THE COMBINED MODEL
alysis and motivation
derstanding of how observations to ’s are modeled
ively in IID-based (i.e., traditional) HMM and LPHMM is
ted in Fig. 1. There to  is regarded as one-dimensional and

11 −=l . Each ellipse is the contour line of ( )soop tt |, 1−
,

tually characterizing the output features of each state s .
hout the paper, we define the 99% distributed area (or, for
distributed area) of a random variable as the smallest
al region where the random variable falls with 99%



probability (e.g., for a 1-dimension gaussian variable ( )2,σmΝ , it
is the interval [ ]σσ 58.2,58.2 +− mm ).

The distributed area of 
to  assumed in LPHMM is the shaded

band perpendicular to line 
11 −= t

s
t oo β . The classification error is

determined by the extent of the overlapping of the distributed
areas for different states’ outputs, which is in turn closely related
to both the positions and the widths of the distributed areas
belonging to different states. It is now clear that LPHMM does not
necessarily perform better than IID-based HMM, since the higher
likelihood in LPHMM only indicates its distributed areas are
narrower, not necessarily well separated. More rigorously,
examining how parameters of LPHMM are chosen helps us gain
further insight into its property. The parameters specific to state s
are estimated by maximizing the likelihood of the frames assigned
to s . Denote { }sqt ts ==Γ | , ( )TT
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xC  as the sample covariance
calculated on the data set { }st tx Γ∈| . The problem was shown in
[7] to be reduced to a maximization of a new likelihood function,
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Since the determinant of the sample covariance of a random
variable provides a good measure of how compactly it is
distributed, to minimize T

s
s

xsC θθ  is to find such s
iβ ’s that to  is

most compactly distributed conditional on its context (or say,
around the value of ∑ = +

m
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β ). In this way, the dynamics of

outputs of state s  is well captured in LPHMM embodied by the
correlated output pdf ( )sog t | .

On the other hand, the distributed area of 
to  assumed in IID-

based HMM is the shaded band parallel to 1−to -axis, no matter
what nearby 

1−to  is. All the observations in each state are well
statically (unconditionally) distributed in a cluster represented by
the mean of the standard output pdf ( )sof t | , i.e., gaussian with
full covariance ( )ssm ΛΝ , , regardless of any nearby observations.
The traditional HMM is still effective in practical speech
recognition, maybe due to its good ability at modeling the statics
of speech.

3.2 Formulation
Neither LPHMM nor IID-based HMM alone is sufficient.
Combination of them provides a more accurate way to model how

to ’s are distributed. Our proposed model [7] is to utilize the
complementary modeling powers on statics and dynamics of
speech of these two kinds of HMMs to yield a combined model.
The new “combined output pdf” is defined as

( ) ( ) ( )αα sogsofsop ttt ||| 1 ⋅= − ,                                     (4)
where α  is the combination weight. When α =0, 1, the combined
model (CM) becomes the traditional HMM and LPHMM
respectively.

4. COMBINATION OPTIMIZED USING MMI
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 The distributed areas of 
to  assumed in LPHMM for state

 2 are heavily overlapped, thus it fails to discriminate
en these two states, while IID-based HMM will work well
 case. Consider state 1 and 3 for the counterpart.

( )sot |  and ( )sog t |  contribute to the total combined output
t in different degrees. Previous work [7] used an empirically

ined combination weight α . MMI [8] is a good criterion
timating the combination weight automatically and
inatively. For lack of discrimination, maximum likelihood
stimation fails here, as it will choose α =1 since the
od obtained by LPHMM is generally higher than that by
ed HMM. More fundamentally, MMI allows us to put (4),

 strictly not a pdf, into a statistical maximum a posterior
 decision framework.
oretically with least probability of error, the MAP decoder
 by ( ) )()|(maxarg|maxargˆ WPWOpOWPW
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ally, a parametric model (e.g., HMMs) ( )WOp |λ
 is

d as an “estimate” of the true ( )WOp | . And recognition is
ed in an approximated MAP sense as,
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ssuming a language model is available. Arguably, this is an
t approach. On the other hand, MMI modeling directly
ts to approximate ( )OWP | , the probability used in the
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ction ( )WOp |λ
 is of interest only to the extent it is used in

 in fact not necessarily to be distributions. For N  training
tions ( ) ( ){ }NOO ,,1 L  with corresponding transcriptions
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 summation is efficiently computed by use of word-lattice.
e that the recognition result for ( )nO  is organized as a
ttice as in Fig. 2, where ( )n
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 the thm  candidate word at the position l , and M  is the
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Fig.2: Illustration of a word lattice (Here a word is in fact a
Chinese syllable and we use M =100).

number of candidate words at each position.
( ) ( ) ( ) ( )( )n
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n
L
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The simplifying assumption is that a uniform unigram is used,
which is indeed the case in the acoustic part of our system.

Now it is ready to compute the gradient. Suppose 1=N , drop
the variable n  for the moment. For multiple training observations,
we only need to sum up the gradients computed separately with all
observations. For the observation O  of length T ,
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W , using the combined pdf. Now we have
( )
( )

( )
( )

( )
( )∑∑∑

′
′

−=
∂
∂

l m ml
l

ml
l

m
ml

l
ml

l

wOf
wOg

wOp
wOp

WOf
WOgI

,

,

,

,

|
|

log
|

|
|
|log

λ

λλ

α
.

It is interesting to compute the second derivative. Abbreviating
( )ml

l
ml wOff ,, |= , ( )ml

l
ml wOgg ,, |= , then

( ) αα
λ mlmlml

l gfwOp ,
1
,,| −= , and using Cauchy Inequality we have,

0log

log

2

,
1
,

2

,

,
,

1
,

,

,2
,

1
,,

1
,2

2

≤































−





























−=
∂
∂

∑∑

∑ ∑∑

−−

−−

m
mlml

m ml

ml
mlml

l m ml

ml
mlml

m
mlml

gf
f
g

gf

f
g

gfgf
I

αααα

ααααλ

α

Thus 
λI  is a concave∩  function of α  over [ ]1,0  and will achieve

its unique maximum over [ ]1,0 . So instead of using gradient ascent
method, where the step size is hard to adjust to balance between
oscillation and fast convergence, we iteratively bipartition the
interval and then select a smaller interval according to the gradient
at the midpoint. It in the above case guarantees a convergence
precision of 0.01 after only 7 steps.

4.1 Training procedure
There are three parts of parameters { }αλλλ ,, gf= , where

{ }ssf m Λ= ,λ , { }mis
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M as the static part. Here Viterbi decoding and alignment,
dily applicable with least modification by just low-costly
ng the standard ( )sof t |  with the combined ( )sop t | . The
g training procedure of the combined model is as follows.

s initialized with ( ) 5.00 =α  with interval ( ) ( )[ ]1,0 00 == RL ,

( )0, =s
igf βλ  being set with the parameters of available

nal HMM. Subsequently, each iteration is a two-step
. The first step is, leaving α  fixed, an alternation of a
 alignment using the combined pdf and an update of 

gf λλ , ,

are actually re-estimated separately once statistics are
d (See [7] for formula). Second, recognition is performed
raining set. The resulting word lattices are used to compute
dient ( )kI ′  at current ( )kα . Then ( )kI ′  is used to direct the
as follows.
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ns are ended when the combination weight converges to a
ined precision (e.g., 0.01).

5. EXPERIMENTAL RESULTS
onstrate the points made previously, experiments were

 on a speaker-independent Chinese LVCSR task using the
peech database for “China 863 Assessment”. Utterances
 speakers were used for training and those from the other 7

rs formed the test data, with about 600 sentences for each
r.
 Chinese characters are pronounced as one of the total 1254
hinese syllables in CV structure, which are combinations

 consonant units and 164 vowel units. A HMM syllable
was used, with 2 states for the consonant part and 4 states
vowel part.
he front-end, the speech was parameterized into 14 MFCCs
ith the normalized log-energy, and their first and second

ifferentials. Since correlation between components of the
 vector is mostly modeled by the full covariances of
ns (i.e., 

ss ∑Λ , ), diagonal prediction matrices were used.
diction matrices were state-specific and not tied.
 overall recognition system was composed of two parts.

oustic part decoded the input speech into syllable strings,
ed as syllable-lattices, without use of any language model.
bsequent language part decoded the syllable strings into
e characters. The baseline acoustic model was also an IID-
MM. Here we focus on the acoustic part, and only report

t-candidate syllable error rate.

ults with fixed 5.0=α
wn in Table 1 and Fig. 3,4, a series of experiments were
ted as a function of different experimental factors: 1)
ion of the features, ( ) ( )∆∆+∆+= 45,30,15D ; 2) configuration
predictors, { }mll ,,1 L . In fact, a different selection of

}m
 means a different LPHMM or CM model. For example,

 stands for such kind of LPHMM (or the dynamic part of
at 2=m , 4,4 21 =−= ll .
HMMs had inconsistent performance, heavily depending
selection of { }mll ,,1 L . The performance of LPHMMs with

}1  under 15 dimension, { }2− , { }1− , { }1+  and { }2+  under 30



dimension were really worse. Due to the frame overlap in the
front-end feature extraction, “pseudo” correlation between frames
was introduced and captured, but indiscriminatively, in the above
LPHMMs. Moreover, as the inclusion of differentials, the
superiority of some LPHMMs with carefully selected { }mll ,,1 L

over the traditional HMM diminished, as reported elsewhere in [4].
The dynamics of differentials for different states seemed to be
similar to each other and thus less discirminated in LPHMMs,
while their statics seemed to be more useful.

The CM was consistently much better than both the baseline
and LPHMM in almost all cases, which clearly indicates its
superiority over the other two models. The exception that the CMs
with { }5− , { }4− , { }4+  and { }5+  under 15 dimension were slightly
worse than the corresponding LPHMM may be attributed to the
use of fixed 5.0=α . It should be emphasized that the 30-
dimension CM with { }4,4 +−  was better than the 45-dimension
traditional HMM (25.86% vs 26.30%), while both the memory and
computation cost were reduced about %1191 ≈ .

5.2 Effect of MMI-optimized α
We chose to experiment with the 15-dim CM using { }3,3 +− , which
was the best one under 15 dimension in Table 1. Fig. 5 plots the
typical changes of the MMI value (6) and the error rate for each
iteration, as described in 4.1. The result clearly demonstrates the
effectiveness of the new training procedure. Although the interval
bipartition method does not necessarily increase the MMI value
for each iteration, it converges quickly, and at the same time the
error rate is also reduced to its smallest (38.48%).

6. CONCLUSIONS
This paper investigates a recently proposed [7] combined model of
statics-dynamics of speech. An optimal combination using MMI is
introduced. Experiments on a speaker-independent LVCSR task
showed its advantages over both models, with consistent reduction
in error rate. Furthermore, the combination weight can be state-
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ssues are promising.
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dim model type {-5} {-4} {-3} {-2} {-1} {+1} {+2} {+3} {+4} {+5} { }2,2 +− { }3,3 +− { }4,4 +− { }5,5 +−

IID-HMM 59.20
LPHMM 46.97 45.5 45.28 49.10 63.44 65.15 53.92 45.87 43.51 43.67 86.87 61.43 48.08 44.4515
CM 49.17 47.24 45.01 43.48 43.75 45.13 43.37 44.06 45.04 46.86 41.87 39.67 39.92 41.40
IID-HMM 29.59
LPHMM 28.21 28.21 29.85 33.90 44.11 43.43 34.11 29.70 28.20 28.11 58.88 35.42 29.81 28.8730
CM 27.54 27.21 27.49 27.86 28.59 28.61 27.74 27.27 27.19 27.50 28.51 26.83 25.86 26.16

45 IID-HMM 26.30
Table 1: % Average error rates for various models, each with specific feature dimension, model type and { }mll ,,1 L .
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Fig.3: How average error rates varied with the selection of
different { }mll ,,1 L  for 15-dimension models.

Fig.4: How average error rates varied with the selection of
different { }mll ,,1 L  for 30-dimension models.
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