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ABSTRACT 
In this paper, new analyses are provided for the problems of 
applying linear prediction (LP) HMMs in speech recognition. 
It is shown that, apart from simply aggregating all predictors 
in one LP, which produces inconsistent results, ‘combination’ 
provides another useful way to implement complex 
dependencies. A method by discriminative combination of 
multiple LPs (DCoLP) is proposed, with a component-LP 
selection heuristic. The resulting DCoLP model was tested on 
a speaker-independent, large vocabulary continuous speech 
recognition task, and showed improved performance over the 
standard HMM with comparable computation cost. 

1. INTRODUCTION 
It has long been recognized that the state-conditional 
independence assumption for the observations in the standard 
HMM is inaccurate for modeling speech. It neglects the 
temporal dependencies inherent in the speech signal. 

Various methods have been proposed to incorporate 
temporal dependencies into the standard HMM. One way is to 
augment original static features with their differentials, and the 
acoustic model still uses the standard HMM. This method has 
been shown to be of practical benefit in improving 
recognition. But it makes a direct violation of the conditional 
independence assumption. On the other hand, more efforts 
have been made to study alternative statistical models to the 
standard HMM. Different degrees of success have been 
reported. However, the gain from these theoretical models is 
often limited, in contrast to the effectiveness of the differential 
feature technique, which is now widely used. 

Remarkably, the approach that directly conditions current 
observation on nearby observations with linear prediction (LP) 
[1-3] is attractive, since it maintains the efficient Viterbi 
alignment and decoding. The number of nearby observations 
used to predict current observation is called the order of the 
LP. Different selections of the (m-order) offset-array 

{ }1, , mL l l=  give different realizations of LPHMMs in 

practice. Using this notation, the standard HMM could be 
viewed as a zero-order LPHMM {}. 

In previous works [1-3], the selection of the predictor 
offsets was arbitrary. The gain from (arbitrarily) adding 
predictors (e.g. from {} {-1}, {-3} {-3,3}, etc) was small 
or even often negative. In [3], various 2-order LPHMMs 
{4,9}, {-4,4} and {3,4} were tested, which were all worse than 
the 1-order LPHMM {4}, both for the training and testing 
data (suggesting that insufficient training is not the problem). 
Moreover, in contrast to the standard HMM with differential 
features, LPHMMs using static features was less effective 
[1][4]. How to select and use LP dependencies between the 
observations effectively for speech recognition seems 

unresolved, which is the main issue addressed in this paper. 
First, new analyses of applying LP to exploit temporal 

dependencies for speech recognition are provided. The 
analyses are based on a concept of minimum a posterior 
entropy (MAPE), which in itself is not new and similar to 
maximum mutual information (MMI) [4], but is more helpful 
for the analyses here. It is shown that, apart from simply 
aggregating all predictors in one LP, which produces 
inconsistent results, ‘combination’ provides another useful 
way to implement complex dependencies. A method by 
discriminative combination of multiple LPs (DCoLP) is 
proposed. The resulting DCoLP model works with log-linear 
combined multiple component-LPs, which are selected and 
combined in a principled way guided by MAPE. 

After a brief outline of LPHMMs in section 2, we describe 
in detail the new modeling method in section 3, including the 
analyses, and comparisons with other works in improving 
LPHMMs such as discriminative training of LPHMMs [4], 
other forms of combination [5-7], and Buried Markov Models 
(BMM) [8]. Experimental results are given in section 4.  

2. LINEAR PREDICTION HMM 
The main characteristic of LPHMMs lies in their definition of 
the state-observation distributions. For an m-order LPHMM 
with offset-array { }1, , mL l l= , the probability density 

function (pdf) for state s  and observation to  is defined 
conditional on the context as: 
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= − +∑  is the prediction error, 

modeled by a single Gaussian distribution with zero mean and 
full covariance sΣ , independent between observations. The LP 

model predicts current observation to  using the predictors 

{ }|t t lZ o l L+= ∈ . Here il , DD
is R ×∈,β  are respectively the 

offset and the prediction matrix associated with the i-th 
predictor, 

sµ  accounts for a constant prediction term. 

3. DISCRIMINATIVE COMBINATION OF 
MULTIPLE LPs 

An illustrative analysis was given in [9] for the problems of 
applying LPHMMs in speech recognition. It was shown that a 
combined model achieved better recognition performance than 
both the standard HMM and LPHMMs [9][10]. In the 
following, this idea is extended more rigorously. 

3.1. Minimum a posteriori entropy (MAPE) 
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Examination of the effect of adding predictors in terms of 
some discriminative criterion helps us to gain the insight into 
the property of LPHMMs in speech recognition.  

The a posteriori entropy is defined to measure the 
remaining uncertainty of the text-message W  given the 
acoustic-observation O  with the estimated a posteriori 
distribution ( )|p W Oλ

 (parameterized by λ ): 

( ) ( )| log |H W O E p W Oλ λ= −                                   (2) 

The expectation is taken over the true distribution ( ),p W O . 

In fact,  (2) is a conditional entropy-like quantity. Note that 
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This says that, the a posteriori entropy with the estimated 
( )|p W Oλ

 is always greater than that with the true ( )|p W O . 

Only when ( )|p W Oλ
 is accurately estimated, i.e. equals the 

true ( )|p W O , the a posteriori entropy ( )OWH |λ  attains its 

minimum. So ( )OWH |λ  measures how well the estimated 

( )|p W Oλ
 approximates the true ( )|p W O , and indicates the 

quality of the implemented plug-in MAP decoder. 
In practice, by assuming that the training data, say, N  

pairs of text-labels and acoustic-observations ( ),n nW O , 

Nn ,,1= , are representative and replacing the expectation 
by the sample average, ( )OWH |λ  is given by 
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Now different from recognizer design based on maximum 
likelihood (ML), we have a new approach of recognizer design 
based on MAPE, which aims to find the a posteriori 
distribution estimator ( )|p W Oλ

 directly so as to minimize 

( )OWH |λ . Note that ( )|p W Oλ
 could be obtained by  
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with acoustic model ( )WOf |λ  of any forms. The acoustic 
model ( )WOf |λ  is of interest only to the extent it is used in 
(5), and not necessarily to be a distribution. New acoustic 
models investigated below might not retain the properties of a 
distribution.  

For us, MAPE not only is a parameter estimation criterion 
(in this sense, similar to MMI), but also more importantly 
means a new recognizer design approach and is helpful for 
analyses of different model assumptions. 

3.2. Analyses in the MAPE framework 

Suppose that we have two LPHMMs with predictor offset-
array 

1L  (e.g. {-1}) and 
2L  (e.g. {-2,-3}) respectively. They 

exploit LP dependencies between current observation to  and 

nearby observations { }, |t k t l kZ o l L+= ∈ respectively for 

1, 2k = . Each LPHMM has its own estimated a posteriori 
distributions 

( ) ( )|
kLp W Oλ

, parameterized by ( )kLλ , and the 

corresponding a posteriori entropy 
( ) ( )|

kLH W Oλ
. 

In previous studies, inclusion of more temporal 
dependencies is simply by ‘aggregation’, that is to aggregate 
all predictors in one LP. In this way, a new LP is built with the 
offset-array 

1 2 1 2L L L∪ = ∪  (i.e. {-1,-2,-3} in this example). 
When the parameters of the new LP, ( )1 2Lλ ∪

 are obtained via 

ML estimation as in most studies, the a posteriori entropy with 
the new LP model 

( ) ( )
1 2
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 is not guaranteed to be 

reduced. Note that 

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2

1 2

1 2 1 2

1 2 1 2

|

log |

log , log

log , log ,

L

L

L L

L L
W

H W O

E p W O

E p W O E p O

E p W O E p W O

λ

λ

λ λ

λ λ

∪

∪

∪ ∪

∪ ∪
′

 = − 
   = − +   

   ′= − +     
∑

 

ML estimation only guarantees to increase the first term, the 
log-likelihood of the assumed model. A potential problem is 
that the implemented dependencies might also increase the 
likelihood in the context of a different and competing class 
W ′ . The a posteriori entropy is thus penalized from the 
second opposite-changing term, which may render the overall 
change being increased. Hence the recognition performance of 
the aggregated model 

1 2L ∪
 might become worse than before 

‘aggregation’ (i.e. 1L , 2L ). This agrees with the knowledge 
that a ML-trained model does not necessarily give better 
discrimination since the model is not the true model. 

Here we propose an alternative method to ‘aggregation’ 
for adding more predictors. We define a discriminant function 
by ‘combination’ of the two LPs as follows ( 0, 21 ≥γγ ): 

( ) ( ) ( )1 2

,1 2 ,1 ,2| , | , | ,t t t t t t t t tf o Z q p o Z q p o Z q
γ γ

⊕ =       (6) 

where the symbol ⊕  denotes the ‘combination’ operation, 
different from the conventional ‘aggregation’ operation ∪ . 
The offset-array structure of the new combined model is 
denoted as 1 2 1 2L L L⊕ = ⊕  (i.e. {-1}{-2,-3} in this example). 
Using (5) and (6), we could obtain the new a posteriori 
distribution estimator 

( ) ( )
1 2

|Lp W Oλ ⊕
, parameterized by 

( )1 2Lλ ⊕
. Notably, it can be shown that the a posteriori 

entropy 
( ) ( )

1 2
|LH W Oλ ⊕

 is a convex function of the 

combination weights ( )1 2, 0γ γ γ= ≥ . Hence there exists one 

and only one optimum point *γ . In this setting, we have 

( ) ( ) ( ) ( ) ( ) ( ){ }*
1 21 2

| min | , |L LL
H W O H W O H W Oλ λλ ⊕

≤ (7) 

since the right hands are special cases of 
( ) ( )

1 2
|LH W Oλ ⊕

 with 

( )1,0γ = / ( )0,1γ = . Therefore, the a posteriori entropy with 

the optimal-weighted combined model is smaller than that 
with either LP model before ‘combination’. The recognition 
performance of the combined model 

1 2L ⊕
 is most probable to 

be improved. 

3.3. Formulation 

Consider an acoustic model where the discriminant function 



concerning the observations TooO 1=  given the state 
sequence TqqQ 1=  is defined as: 

( ) ( )
1

| | ,
T
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where ( )| ,t t tf o Z q  is the state-observation discriminant 

function for the state tq  and observation to , depending on 

tZ ; { }11 +−⊂ ttt ooZ  is a subset of to ’s surrounding 
context to be used as predictors. Introducing discriminative 
combination of multiple LPs (DCoLP), we define 

( ) ( ) ,
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1

| ; | ; s k
K

t t t t t k t
k

f o Z q p o Z q
γ

=

= ∏                         (9) 

where ( )tktt qZop ;| ,
 is the conditional pdf computed by the 

k-th component-LP with offset-array kL , which captures the 
LP dependency between to  and the predictors 

{ }, |t k t l kZ o l L+= ∈ . 0, ≥ksγ  are the state-specific weights, or 

as kγ  when tied globally across all states ( Kk ≤≤1 ). Denote 
the combination weights by γ  as  a whole. 

The important property is that, the a posteriori entropy  

( ) ( )
1

|
KLH W Oλ ⊕ ⊕

 is a convex function of the combination 

weights γ . Thus, similar to the arguments in section 3.2, the a 
posteriori entropy with the optimal-weighted DCoLP model 
will be smaller than that with each component-LP model: 

( ) ( ) ( ) ( )*
1 1

| min |
kK LL k K

H W O H W Oλλ ⊕ ⊕ ≤ ≤
≤                      (10) 

There are two parts of parameters in a DCoLP model. 1) 
The combination weights are trained under MAPE criterion. 
Gradient descent method with line search using interval bi-
partition performs efficiently to reach the global minimum for 
this convex optimization. 2) The LP parameters are currently 
subject to ML training. Once statistics are gathered, model 
parameters of the K  component-LPs are re-estimated 
separately. The overall alternate training procedure is 
analogous to [10]. 

The resulting DCoLP model is characterized and will be 
denoted by its particular offset-array structure, 

1 1K KL L L⊕ ⊕ = ⊕ ⊕ . Through reasonable ‘aggregation’ 
and ‘combination’, the resulting DCoLP model will try to 
produce the best (measured by the MAPE criterion) 
dependency structure from the predictor pool, providing the 
best discrimination. Intuitively, when ‘combination’ is more 
beneficial than ‘aggregation’ for increasing the discrimination, 
one should use ‘combination’. Otherwise, it is reasonable to 
use ‘aggregation’. It is clear that we need some structure 
learning method, rather than by crude search or arbitrary 
choose. This is achieved by a component-LP selection 
heuristic. 

The MAPE-trained combination weights reflect the 
discrimination ability of the corresponding component-LPs. 
They could be used to guide the selection of which LPs to use. 
We could start from an initial DCoLP model, which includes 
the predictors of interest simply as 1-order LPs (e.g. {-2}{2}{-
4}{4}{-6}{6}). Then step-by-step, we could cancel small-
weighted LPs and aggregate predictors when beneficial. 
Finally, a compact and discriminative offset-array structure 
will be found. In section 4, this method is experimentally 
studied and works well. 

3.4. Discussion 

In view of the shortcoming of ML estimation, it has been tried 
to train the LP parameters under some discriminative criterion 
[4]. If the parameters ( )1 2Lλ ∪

 are obtained by MAPE 

training, initialized from ( )1Lλ  or ( )2Lλ , theoretically 

( ) ( )
1 2

|LH W Oλ ∪
 will become smaller than 

( ) ( )
1

|LH W Oλ
 or 

( ) ( )
2

|LH W Oλ
. However, for discriminative (MMI or MAPE) 

training, the objective function is not a convex function of the 
LP parameters. There does not exist any optimization method 
guaranteed with fast and reliable convergence. Therefore in 
practice the improvement is usually limited by the hard and 
complex optimization procedure. In [4], when applying MMI 
training, LPHMM {-7,-5,-3} did slightly better than {-5}, and 
was still worse than the standard HMM with differential 
features. In contrast, the proposed DCoLP approach is simpler, 
and as we’ll see in the experiments, is more effective. 

Different from the log-linear combination (LLC) used in 
(9), there exist other forms of combination of multiple 
conditional pdf’s from LPs, including linear opinion pool 
(LiOP) [5-6] and logarithmic opinion pool (LgOP) [7]. 
However, when considering both-sided dependencies [6], the 
two LiOP-derived one-sided pdf’s were still combined using 
LLC; and the offset-array, originally to be optimized, was 
fixed for practical reasons. In [7], LLC was also introduced to 
improve the discrimination. Furthermore remarkably, MAPE 
training of the combination weights in LLC is a kind of convex 
optimization, while this property is not observed in any other 
forms of combination (LiOP, LgOP). 

Finally, DCoLP essentially says that, apart from simple 
‘aggregation’ of all parent variables in one LP, ‘combination’ 
provides another useful way to implement complex 
dependencies. In this sense, it is orthogonal to the BMM 
approach [8], which is mainly to find which dependencies are 
to be included (helpful for discrimination), using a heuristic, 
pairwise selection algorithm. Given the selected dependency 
structure, there might have various ways to implement the 
dependencies between the variables, including DCoLP, etc. 
Furthermore, the DCoLP approach itself may provide a way to 
find the discriminative dependency structure, with the 
component-LP selection heuristic describe above. 

4. EXPERIMENTAL RESULTS 
Experiments were carried on a speaker-independent Chinese 
LVCSR task using the male speech database for “China 
National 863 Assessment”. Utterances from 76 speakers were 
used for training and those from the other 7 speakers for 
testing (with about 600 sentences for each speaker), of all the 
models described below. The system used 100 consonant units 
each with 2 states, 164 vowel units each with 4 states, plus one 
single-state silence model. Here we focus on the acoustic part 
of the recognition system [10], and report the first-candidate 
syllable error rate (SER). 

The speech was parameterized into 14 MFCCs along with 
the normalized log-energy, and their first and second order 
differentials. Results using full-predictors were reported here. 
The corresponding diagonal-predictor versions were also 
trained and used as seeds. 

Table 1-4 shows our study to build a high-performance 
DCoLP model using only the 15-dimention static features. The 



Table 1. %SER for optimal-global-weighted DCoLP models, using 
only the 15-dim static features in the process of the component-LP 
selection. The superscripts are the resulting optimized weights, 
displayed as kkk ′∑= γγγ / . 

 Table 3. Comparison (%SER) of various 2-order 
LPHMMs and their counterpart DCoLP models 
(combination of two 1-order LPs), using two frames 
chosen at offsets -2, -4, -6, 2, 4, 6. 

{-2}0.32{2}0.25{-4}0.06{4}0.10{-6}0.13{6}0.14 27.83% cancel {-4}  {-2,2} {-2}{2} {-4,4} {-4}{4} 
 62.83% 31.58% 35.76% 30.35% {-2}0.35{2}0.26{4}0.09{-6}0.17{6}0.13 27.86% aggregation  

{-6,6}  {-2,4} {-2}{4} {-4,6} {-4}{6} 
{-2}0.32{2}0.21{4}0.00{-6,6}0.47 26.65% cancel {4}  43.54% 29.19% 32.34% 31.68% 
{-2}0.30{2}0.23{-6,6}0.47 26.61%   {-2,6} {-2}{6} {-4,-6} {-4}{-6} 
    37.50% 29.72% 35.41% 34.27% 
Table 2. %SER for related LPHMMs   {-2,-4} {-2}{-4} {-6,6} {-6}{6} 
{-2,-6,6} 35.64%   39.14% 34.08% 32.90% 33.67% 
{-6,-4,-2} 37.82%   {-2,-6} {-2}{-6}   
{-2,2,-6,6} 62.39%   38.11% 33.32%   

 
component-LP selection heuristic was taken. The initial 
DCoLP model was built as {-2}{2}{-4}{4}{-6}{6}. 
Dependencies were allowed to span a maximum of 60ms (6 
frames) on either side of t. In view of the frame overlap in the 
front-end feature extraction, the predictors of interest were 
selected with one frame apart to avoid redundant modeling.  

Table 1 shows how the dependency structure was 
discriminatively optimized step by step. By canceling small-
weighted {-4}, beneficial aggregation of {-6,6} and canceling 
{4}, the resulting DCoLP model {-2}{2}{-6,6} was more 
compact and discriminative, with the error rate of 26.61%. 
Simply aggregation of the four predictors to use {-2,2,-6,6} 
gave the error rate of 62.39%, which was much larger. The 
error rates for related LPHMMs are given in Table 2 for 
comparison. Through learning reasonable ‘aggregation’ and 
‘combination’, the resulting DCoLP model was the best 
among those models to discriminatively exploit the temporal 
dependencies for speech recognition. 

We experimented with different models using two frames 
chosen at offsets -2, -4, -6, 2, 4, 6. Various 2-order LPs and 
their counterpart DCoLP models (combination of two 1-order 
LPs) were compared in Table 3. In all test cases, the DCoLP 
model outperformed the corresponding 2-order LP, except that 
{-6,6} was better than {-6}{6}. Thus {-6,6} replaced {-6}{6} 
as a component-LP. Note that further adding predictors to {-
6,6} by aggregation failed, as can be seen from Table 2. But 
by combination, we could still utilize more predictors. 

Starting from the optimal-global-weighted model {-
2}{2}{-6,6}, the corresponding state-specific-weighted model 
was built, which is shown in Table 4 to further reduce the 
error rate. The optimal-state-specific-weighted DCoLP model 
{-2}{2}{-6,6} using only the 15-dimention static features 
outperformed the standard HMM using 45-dimention features 
(+∆+∆∆), with comparable computation cost. The error rate 
reduction was 6% (from 26.30% to 24.74%). 

Here for comparison with the standard HMM, the sum of 
the state-specific weights, 

,s kk
γ∑  was constrained to the same 

for all states, being equal to 
kk

γ∑ , the sum of the previously 

trained optimal global-weights. 

5. CONCLUSIONS 
In this paper, a new method by discriminative combination of 
multiple LPs (DCoLP) is introduced, which provides another 
useful way to implement complex LP dependencies, in view of 
the inconsistent results of ‘aggregation’. The convexity  

Table 4. Comparison of  the DCoLP model {-2}{2}{-6,6} 
using only the 15-dim static features  and the standard HMM 
using 45-dim features (+∆+∆∆) in terms of %SER and Number 
of multiplicaiton(*)/addition(+) per state-observation model 
computation. 
 %SER Num of */+

global-weighted 26.61 15-dim 
{-2}{2}{-6,6} state-specific-weighted 24.74 1347/1353 

HMM, 45-dim (+∆+∆∆) 26.30 1124/1126 

property herein ensures that the combination weights are 
efficiently optimized, and the a posteriori entropy is effectively 
reduced compared with each component-LP model. Using a 
component-LP selection heuristic, the resulting DCoLP model 
was tested on a speaker-independent LVCSR task and showed 
improved performance over the standard HMM with 
comparable computation cost. 
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