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Background

End-to-end Speech Recognition

 a single system that directly transcribes speech signal to words

 usually based on NN structures and can be trained from scratch

End-to-end
Model

Hello 
world!
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Background——Model Structure

End-to-end Speech Recognition

 a single system that directly transcribes speech signal to words

 usually based on NN structures and can be trained from scratch

CTC based
 makes a strong independent 

assumption between labels
 estimates alignment with 

forward-backward algorithm

Attention based
 attention decoder  emits labels 

depending on previous ones
 hard to train due to its 

excessively flexible attention 
alignments 
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Background——modeling units

End-to-end Speech Recognition

 a single system that directly transcribes speech signal to words

 usually based on NN structures and can be trained from scratch

phonemes
“AA,AE,...”

characters
“a,b,c,d,...”

subwords
“abs,ing,...”

words
“hello,hi,...”
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Hybrid CTC-Attention end-to-end ASR

CTC based model:

 makes a strong independent assumption between labels

𝑝 𝑦 𝑥 =  

𝜋∈𝜙(𝑦)

𝑝 𝜋 𝑥 =  

𝜋∈𝜙(𝑦)

 

𝑙=1

𝐿

𝑞𝑙
𝜋𝑙

can not perform well without language model

 estimates alignment with forward-backward algorithm

easy to train and converge

A. Graves, S. Fernandez, F. Gomez, and J. Schmidhuber, “Connectionist temporal classification: 
labelling unsegmented sequence data with recurrent neural networks”, ICML, 2006.
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Hybrid CTC-Attention end-to-end ASR

Attention based model:

 the attention decoder  emits labels depending on previous ones

𝑝 𝑦 𝑥 = 

𝑢

𝑝(𝑦𝑢|ℎ, 𝑦1:𝑢)

can model label dependencies

 excessively flexible attention alignments 

hard to train and converge

D. Bahdanau, J. Chorowski, D. Serdyuk, P. Brakel, and Y. Bengio, “End-to-end attention-based 
large vocabulary speech recognition,” ICASSP, 2016. 
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Hybrid CTC-Attention end-to-end ASR

Hybrid CTC-Attention:

 Pyramidal BLSTM based 
RNN Encoder

 CTC and Attention 
Decoder share the same 
RNN Encoder

𝐿ℎ𝑦𝑏𝑟𝑖𝑑 = 𝜆𝐿𝐶𝑇𝐶 + (1 − 𝜆)𝐿𝐴𝑡𝑡

CTC Attention

alignment

dependency

S. Kim, T. Hori, and S. Watanabe, “Joint ctc-attention based endto-end speech recognition 
using multi-task learning,” ICASSP, 2017. 
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Hybrid CTC-Attention end-to-end ASR

Model 𝝀
Word Error Rate/%

test-clean test-other dev-clean dev-other

CTC 1.0 20.9 39.8 21.4 38.6

Attention 0.0 10.5 30.9 9.9 28.6

CTC+Attention 0.2 7.8 21.9 7.7 21.3

Table: Results of different e2e model structures on Librispeech

 different 𝝀 determine different model structures
 CTC cannot perform well without a LM
 The hybrid CTC-Attention model outperforms both of CTC and 

Attention based models!
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Subword Units

Basic Units Segmented Sequence

word
that neither of them had crossed the threshold 

since the dark day

phoneme
DH AE1 T N IY1 DH ER0 AH1 V DH EH1 M HH AE1 

D K R AO1 S T DH AH0 TH R EH1 SH OW2 L D S IH1 
N S DH AH0 D AA1 R K D EY1

character
t h a t _ n e i t h e r _ o f _ t h e m _ h a d _ c r o s 

s e d _ t h e _ t h r e s h o l d _ s i n c e _ t h e _ d a r 
k _ d a y _

subword
that_ ne i ther_ of_ them_ had_ cro s sed_ the_ 

th re sh old_ sin ce_ the_ d ar k_ day_

Table: Examples of different modeling units

 phoneme based on CMUDICT
 special symbol “_” denotes word boundary
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Subword Units

Basic Units Total Number
Length of 

sequence
Ability of 

handling OOV

word 𝑁 ∗ 104~5 shortest/12 NO

phoneme 𝑁 ∗ 10 Long/41 NO

character 𝑁 ∗ 10 Longest/66 YES

subword 𝑁 ∗ 102~3 Short/22 YES

Table: Comparison of different modeling units

Numbers in length of sequence:
takes the utterance of the former page as example

Large total number
 heavy computation 

cost due to softmax
 label spareness

Long output seq
 difficult to capture 

word-level dependency
 easy to generate 

substitution error

Fixed dictionay
 unable to handle the 

Out-Of-Vocabulary 
problem
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Subword Units
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Subword Units: Generation & Segmentation

Subword Generation Algorithm: Byte-Pair Encoding(BPE)

BPE Algorithm

Step 1. Initialize subword set S with 26 charaters and word 
boundary symbol “_”:   S = {a,b,c,…,z,_}

Step 2. Count all symbol pairs, and find the most frequent pair 
(c1,c2)

Step 3. Merge the most frequent pair  to a new symbol “c1c2”, 
and add it to S

Step 4. If |S| < N (a predefined number), go to Step 2. 
Else, go to Step 5.

Step 5. Output the final subword set S of size N.
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Subword Units: Experiment Results

Table: Experiments on Librispeech 1000h Dataset 

Model
Basic
unit

𝝀
Word Error Rate/%

test-
clean

test-
other

dev-
clean

dev-
other

CTC char 1.0 20.9 39.8 21.4 38.6

Att char 0.0 10.5 30.9 9.9 28.6

CTC+Att char 0.2 7.8 21.9 7.7 21.3

CTC+Att subword 0.2 6.8 19.5 6.7 18.8

• significant improvement from 
character to subword:
 relatively 12.8% WER reduction
 Mostly from substitution error

Basic
Unit

WER Sub Del Ins

char 7.8 6.4 0.6 0.8

subword 6.8 5.4 0.5 0.9
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Subword Units: Experiment Results

Figure 1: Influence of 𝝀

 CTC should form a small 
proportion in the hybrid loss
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Figure 2: Influence of subword number
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 Number of subword units 
should not be too large nor 
too small.



Thank you!
Any Questions?


