Hybrid CTC-Attention based End-to-End Speech Recognition using Subword Units

Zhangyu Xiao¹, Zhijian Ou¹, Wei Chu², Hui Lin²

¹Speech Processing and Machine Intelligence (SPMI) Lab, Tsinghua University, Beijing, China.

> ²Liulishuo Information Technology Co., Ltd. Shanghai, China.

> > November 2018

Contents

- 1. Background
 - •Model structure
 - •Modeling Units
- 2. Hybrid CTC-Attention end-to-end ASR
 - CTC & Attention
 - Experiment Results
- 3. Subword Units
 - Definition & example
 - Experiment Results

- 1. Background
 - Model structure
 - Modeling Units
- 2. Hybrid CTC-Attention end-to-end ASR
- 3. Subword Units

End-to-end Speech Recognition

- > a single system that directly transcribes speech signal to words
- usually based on NN structures and can be trained from scratch

Background----Model Structure

End-to-end Speech Recognition

- a single system that directly transcribes speech signal to words
- usually based on NN structures and can be trained from scratch

CTC based

- makes a strong independent assumption between labels
- estimates alignment with forward-backward algorithm

Attention based

- attention decoder emits labels depending on previous ones
- hard to train due to its excessively flexible attention alignments

Background ---- modeling units

1. Background

2. Hybrid CTC-Attention end-to-end ASR

- CTC & Attention
- Experiment Results

3. Subword Units

A. Graves, S. Fernandez, F. Gomez, and J. Schmidhuber, "Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks", ICML, 2006.

Hybrid CTC-Attention end-to-end ASR

D. Bahdanau, J. Chorowski, D. Serdyuk, P. Brakel, and Y. Bengio, "End-to-end attention-based large vocabulary speech recognition," ICASSP, 2016.

Hybrid CTC-Attention end-to-end ASR

S. Kim, T. Hori, and S. Watanabe, "Joint ctc-attention based endto-end speech recognition using multi-task learning," ICASSP, 2017.

Table: Results of different e2e model structures on Librispeech

Model	2	Word Error Rate/%				
	N	test-clean	test-other	dev-clean	dev-other	
CTC	1.0	20.9	39.8	21.4	38.6	
Attention	0.0	10.5	30.9	9.9	28.6	
CTC+Attention	0.2	7.8	21.9	7.7	21.3	

- \succ different λ determine different model structures
- CTC cannot perform well without a LM
- The hybrid CTC-Attention model outperforms both of CTC and Attention based models!

1. Background

2. Hybrid CTC-Attention end-to-end ASR

- 3. Subword units
 - Definition & example
 - Experiment Results

Table: Examples of different modeling units

Basic Units	Segmented Sequence		
word	that neither of them had crossed the threshold		
	since the dark day		
phoneme	DH AE1 T N IY1 DH ER0 AH1 V DH EH1 M HH AE1		
	D K R AO1 S T DH AH0 TH R EH1 SH OW2 L D S IH1		
	N S DH AHO D AA1 R K D EY1		
character	that_neither_of_them_had_cros		
	<pre>sed_the_threshold_since_the_dar</pre>		
	k_day_		
subword	that_ ne i ther_ of_ them_ had_ cro s sed_ the_		
	th re sh old_ sin ce_ the_ d ar k_ day		

- phoneme based on CMUDICT
- special symbol "_" denotes word boundary

Subword Units

Table: Comparison of different modeling units

Basic Units	Total Number	Length of sequence	Ability of handling OOV	
word	$N * 10^{4 \sim 5}$	shortest/12	NO	
phoneme	N * 10	Long/41	NO	
character	N * 10	Longest/66	YES	
subword	$N * 10^{2 \sim 3}$	Short/22	YES	

Numbers in length of sequence:

takes the utterance of the former page as example

Large total number

- heavy computation cost due to softmax
- label spareness

🙁 Long output seq

- difficult to capture word-level dependency
- easy to generate substitution error

Fixed dictionay

 unable to handle the Out-Of-Vocabulary problem

Subword Units

Table: Comparison of different modeling units

Basic Units	Total Number	Length of sequence	Ability of handling OOV
word	$N*10^{4\sim 5}$	shortest/12	NO
phoneme	<i>N</i> * 10	Long/41	NO
character	<i>N</i> * 10	Longest/66	YES
subword	$N * 10^{2 \sim 3}$	🖒 Short/22	🖒 YES

Numbers in length of sequence:

takes the utterance of the former page as example

Large total number

- heavy computation cost due to softmax
- label sparness

Long output seq

- difficult to capture word-level dependency
- easy to generate substitution error

Sixed dictionay

 unable to handle the Out-Of-Vocabulary problem

Subword Generation Algorithm: Byte-Pair Encoding(BPE)

BPE Algorithm

- Step 1. Initialize subword set S with 26 charaters and word boundary symbol "_": S = {a,b,c,...,z,_}
- Step 2. Count all symbol pairs, and find the most frequent pair (c^1,c^2)
- Step 3. Merge the most frequent pair to a new symbol " c^1c^2 ", and add it to S

Step 4.If |S| < N (a predefined number), go to Step 2.Else, go to Step 5.

Step 5. Output the final subword set S of size N.

Table: Experiments on Librispeech 1000h Dataset

Model Basic unit	Basic		Word Error Rate/%			
	unit	λ	test-	test-	dev-	dev-
			clean	other	clean	other
CTC	char	1.0	20.9	39.8	21.4	38.6
Att	char	0.0	10.5	30.9	9.9	28.6
CTC+Att	char	0.2	7.8	21.9	7.7	21.3
CTC+Att	subword	0.2	6.8	19.5	6.7	18.8
				Significant in		from
Basic Unit WER Sub Del Ins • Significant Improvement from character to subword:			Irom			
char 7	.8 6.4 0	.6 0.8		relatively 12.8% WER reduction		
subword 6	.8 5.4 0	.5 0.9		Mostly from substitution error		

Subword Units: Experiment Results

Figure 1: Influence of λ

Figure 2: Influence of subword number

CTC should form a small proportion in the hybrid loss Number of subword units should not be too large nor too small.

Thank you! Any Questions?