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Experiment Results
(1) Synthetic dataset

(3) Year 1994 China daily corpus (raw)

Motivation to propose TWC-LDA

Propose: TWC-LDA for topic modeling, which constrains different topics to be weak-correlated.
This is technically achieved by placing a special prior over the topic-word distributions.

Superiority: in semantically meaningful topic discovery and document classification.
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The prior over the topic proportion, p(θd) The prior over the topic-word distribution, p(β)
In the basic LDA, both priors are assumed to be dirichlet.

Use the logistic normal prior [2][3] or the 
Dirichlet tree prior [4] to develop 

correlated topic models.

------ exploring new priors ------

few works 
the main issue addressed in this paper

Not merely for smoothing in estimating the topic-word probabilities.
Have practical effects, e.g. [5] using nested CRP, [6] using Gaussian Markov random fields.
The topic term in the LDA is more a metaphor. 
Topics are expected to be distinct in order to convey information. 
Reduce the overlapping between the topic-word distributions.

Why we care about the priors over the topic-word distributions, p(β)

Compare TWC-LDA with some related LDA researches

TWC-LDA
focuses on incorporating the weak 
correlation between the topics themselves

Correlated topic model [2] 
aims at capturing the correlation between 
the occurrences of latent topics

The seeming consequence of [7] and TWC-
LDA is similar - being robustness to stop-
words, their modeling motivation are 
different. 
uses efficient variational inference.

LDA using asymmetric dirichlet prior over 
document-topic distributions [7]
employs computational-intensive Gibbs 
sampling.

[2] Blei, Lafferty. A correlated topic model of Science. Annals of Applied Statistics, 2007.
[3] Mimno, et al. Gibbs Sampling for Logistic Normal Topic Models with Graph-Based Priors. NIPS 2008.
[4] Tam, Schultz. Correlated latent semantic model for unsupervised LM adaptation. ICASSP 2007.
[5] Blei, et al. Hierarchical topic models and the nested Chinese restaurant process. NIPS 2003.
[6] Wang, Thiesson, Meek, Blei. Markov topic models. AISTATS 2009.
[7] Wallach, et al. Rethinking lda: Why priors matter. NIPS 2009.
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TWC-LDA: placing a special prior over β

This prior incorporates the interaction of 
different topics and forces them to have 
weak correlations.

Variational Inference

Basic Idea: minimize the Kullback-Leibler distance KL(q|p)
( ) ( ) ( ) ( )1: ,1:, , | | |d N d Np z d q q z qθ β θ γ φ β≈

• 400 words equally divided into 4 topics
• hyperparameter α1=5, α2=α3=α4=0.5
• 6000 documents (30 words per document)
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Four topics by TWC-LDAFour topics by LDA

(2) TREC AP corpus (stop-words removed)
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Reuters-21578 dataset - “EARN”, “GRAIN”

(4)

(5)

(6) Document classification


