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Abstract—The use of weighted finite-state transducers (WFSTs) 

has become an attractive technique for building large vocabulary 

continuous speech recognition decoders. Conventionally, the 

compiled search network is represented as a standard WFST, 

which is then directly fed into a Viterbi decoder. In this work, we 

use the standard WFST representations and operations during 

compiling the search network. The compiled WFST is then 

equivalently converted to a new graphical representation, which 

we call finite-state graph (FSG). The resulting FSG is more 

tailored to Viterbi decoding for speech recognition and more 

compact in memory. This paper presents our effort to build a 

state-of-the-art WFST-based speech recognition system, which 

we call GrpDecoder. Benchmarking of GrpDecoder is carried out 

separately on two languages - English and Mandarin. The test 

results show that GrpDecoder which uses the new FSG 

representation in searching is superior to HTK’s HDecode and 

IDIAP’s Juicer for both languages, achieving lower error rates 

for a given recognition speed. 
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I. INTRODUCTION
1 

Since the pioneering works at AT&T [1], the use of 
weighted finite-state transducers (WFST) has become an 
attractive technique for building large vocabulary continuous 
speech recognition (LVCSR) decoders. Basically, the task of 
decoding is to find the most likely state sequence in a search 
network constrained by various knowledge sources, such as 
language model, lexicon, phonetic context-dependency, and 
acoustic HMMs. Various decoding techniques mainly differ in 
two aspects - the search network expansion (static versus 
dynamic) and the search algorithm itself (time-synchronous 
versus asynchronous) [2]. The WFST approach has been 
shown to yield better performance when compared with 
traditional decoders using dynamic network expansion [3]. 
This is mainly attributed to (1) the separation of compiling the 
search network and doing the search itself, and (2) doing the 
compilation to fully optimize the search network to reduce its 
redundancy, through the powerful WFST operations of 
composition, determinization and minimization. The 
compilation, namely the static network expansion and 
optimization, is often executed offline before decoding. The 
final search network is represented as a single transducer that 
maps sequences of HMM states to sequences of words, which 
can be directly used in a Viterbi decoder. 

                                                           
1 This work is supported by NSFC (61075020) and 863 

(2006AA01Z149). 

As we know, running a WFST decoder consists of two 
stages, compiling the search network and performing the actual 
search. Previous works about the WFST approach are mainly 
concerned with the first stage. Mohri et al. [1] first introduces 
how to represent various knowledge sources as WFSTs and 
how to compile them through the standard WFST operations. 
Chen [4] proposes memory-efficient implementation of 
composition and determinization for using large-context 
phonetic decision trees. Recently, there are some studies that 
propose interaction between these two stages. Some algorithms 
that perform on-the-fly composition and optimization are 
studied [5][6]. These algorithms can be used either to reduce 
the memory burden during recognition, or to accommodate the 
use of dynamic knowledge sources. 

This paper is concerned with the second stage. 
Conventionally, the compiled search network is represented as 
a standard WFST, which is then directly fed into a Viterbi 
decoder. In this work, we use the standard WFST 
representations and operations during compiling the search 
network. The compiled WFST is then equivalently converted 
to a new graphical representation, which we call finite-state 
graph (FSG). The resulting FSG is more tailored to Viterbi 
decoding for speech recognition and more compact in memory. 
The advantage of memory efficiency is due to the fact that the 
FSG representation exploits a special property of the final 
compiled WFST used in speech recognition, when compared to 
general WFSTs. After a background introduction to the 
standard WFST-based speech recognition in section II, we will 
detail the new FSG representation in section III. 

In recent years, there have emerged a number of speech 
recognition systems that use the WFST approach, for example, 
those developed at AT&T [1], IBM [7], IDIAP (Juicer) [8], 
Titech (T3) [6], etc. This paper presents our effort to build a 
state-of-the-art WFST-based speech recognition system, which 
we call GrpDecoder (as the abbreviation of graphical decoder). 
Benchmarking of GrpDecoder is carried out separately on two 
languages - English and Mandarin. The comparison systems 
are HDecode as part of HTK [9] (an excellent decoder using 
dynamic network expansion) and Juicer [8] (a standard WFST-
based decoder), both of which are publicly available. The test 
results show that GrpDecoder which uses the new FSG 
representation in searching is superior to HDecode and Juicer 
for both languages, achieving lower error rates for a given 
recognition speed. The English and Mandarin benchmarking 
test are described in section IV. 
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II. REVIEW OF THE WFST APPROACH TO SPEECH 

RECOGNTION 

In this section, we give a background introduction to the 
standard WFST-based speech recognition. For a more in depth 
description, the reader is referred to [1]. 

A. Weighted finite-state transducers (WFSTs) 

Formally, a transducer T  is defined as the 8-tuple:  

 !, , , , , , ,T A X Q I F E " #$ , where 

%  A  is a finite input alphabet; 

%  X  is a finite output alphabet;  

%  Q  is a finite set of states; 

%  I  is the set of initial states; 

%  F  is the set of final states; 

%  & ' ! & ' !E Q A X Q( () * + * + * *K  is a finite set of 

transitions. Each transition is specified by a five-tuple - the 
source state, the input symbol, the output symbol, the weight 
from a semiring K  (e.g. the set of real numbers), and the 
destination state;  

%  : I" K  is the initial state weight assignment; 

%  : F# K  is the final state weight assignment. 

Theoretically, a WFST represents a weighted relation 
between sequences of input symbols and sequences of output 
symbols. The WFST can be easily understood by plotting it as 
a directed graph, where the nodes represent the states and the 
arcs represent the transitions. Fig.1 is a WFST example.  

B. Application to speech recognition 

The power of the WFST approach is that various 
knowledge sources used in speech recognition can all be 
consistently represented as WFSTs, and then can be combined 
and optimized, using the general WFST operations of 
composition, determinization, and minimization. 

Specifically, separate transducers are first constructed for 
the four main knowledge sources - the language model G , the 

lexicon L , the phonetic context-dependency C , and the 

acoustic HMMs H .  Using the composition operation (denoted 
as ! ), the determinization operation ( det ), and the 

minimization operation ( min ), the four transducers are then 

composed and optimized into a single integrated transducer, 

 ! ! ! !N min det H det C det L G$ ! ! !                        (1) 

that maps sequences of acoustic HMM states to sequences of 
words, and is known as the H-level transducer. As we can see 
in (1), the optimization operations are applied in intermediate 
steps in compiling the final transducer, which helps to improve 
the efficiency of composition and to reduce the intermediate 
transducer size. 

The final integrated transducer N  can be directly used in a 

Viterbi decoder. Note that the HMM state self-loops are not 

explicitly represented in N ,  they are simulated in the run-time 

decoder. 

III. FINITE-STATE GRAPH REPRESENTATION OF THE SEARCH 

NETWORK 

As described in section II-B, when applying the WFST 
approach to speech recognition, the final compiled search 
network is represented as a standard WFST, which is then 
directly fed into the Viterbi decoder. While it is justified to use 
the WFST representation during compilation due to the fact 
that the powerful composition and optimization operations are 
well developed for WFSTs, it seems to take it for granted in 
previous studies that the representation of the search network 
during Viterbi searching remains to be the standard WFST.  

In this work, we use the standard WFST representations 
and operations during compiling the search network. The 
compiled WFST is then equivalently converted to a new 
graphical representation, which we call finite-state graph (FSG) 
and is described as follows. The resulting FSG is more tailored 
to Viterbi searching for speech recognition and more compact 
in memory. The advantage of memory efficiency is due to the 
fact that the FSG representation exploits a special property of 
the final compiled WFST used in speech recognition, when 
compared to general WFSTs. 

A. Finite-state graphs (FSGs) 

One of the design considerations for FSGs is to make the 
representation of the search network in decoding more tailored 
to the Viterbi algorithm. The Viterbi algorithm is to find the 
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Figure 2.  A FSG example. Content-nodes and virtual nodes are plotted as 

squares and circles respectively. The node content symbol a and the link 

record symbol x are marked above the corresponding node by a:x. The 

weight 0.1 is marked on the corresponding arc. Zero weights can be 

omitted for plotting. 
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most likely state sequence for the given observation sequence 
in a HMM. Note that the recognition transducer N  essentially 

represents the state-space of a large flattened HMM, which is 
created by successive expanding the hierarchical knowledge 
sources - language model, lexicon, phonetic context-
dependency, and acoustic HMMs 2 . So compared with the 
WFST, the proposed FSG is designed to be closer to the classic 
state-transition graph used in HMM studies [10]. 

Formally, a finite-state graph R  is defined as the 6-tuple:  

 !, , , , ,R V NodeContentSet LinkRecordSet EntryNode ExitNode E$

, where 

%  V  is a finite set of nodes.  Each node has a node content 

symbol & 'a NodeContentSet () +  and a link record symbol 

& 'x LinkRecordSet () + .  

%  NodeContentSet  is a finite alphabet for node content; 

%  LinkRecordSet  is a finite alphabet for link record;  

%  EntryNode  is the unique entry node; 

%  ExitNode  is the unique exit node; 

% E V V) * *R  is a finite set of arcs. Each arc is specified 

by a triple - the source node, the weight in real numbers, and 
the destination node. 

It is straightforward to plot a FSG as a directed graph. Fig.2 
is a FSG example.  A node is called a content-node and plotted 
as a square node, if the node content symbol is not the null 
symbol ( , otherwise the node is called a virtual-node and 

plotted as a circle node.  

B. Conversions between WFSTs and FSGs 

It is worthwhile to compare the FSG and the WFST 
representations. First, there is a common property for both 
FSGs and WFSTs. Theoretically, a FSG also represents a 
weighted relation between two sequences of symbols. Any path 
from the EntryNode  to the ExitNode  in a FSG is also 

associated with two sequences of symbols - the sequence of 
node content symbols and the sequence of link record symbols. 
This is much like a path from the initial states to the final states 
in a WFST, which is also associated with two sequences of 
symbols. In this analog, the node content symbols and the link 
record symbols in the FSG correspond to the input symbols and 
output symbols in the WFST respectively. The difference is 
that the symbols are associated with the nodes in FSGs, while 
in WFSTs, the symbols are associated with the arcs.   

Second, note that it is always possible to convert a FSG to 
an equivalent3 WFST by moving the symbols associated with 
each node either forward to every outgoing arcs, or backward 
to every incoming arcs. It is also possible to convert a WFST to 

                                                           
2 This expansion is equivalent to the WFST composition of  creating 

the recognition transducer N . 
3 A FSG and a WFST are equivalent if the weighted relations they 

represent are the same. 

an equivalent FSG, which, however, may require the 
introduction of extra nodes.  

Consider the following symbol pushing operation in 
converting a WFST to a FSG, which is to push the symbols 
associated with each WFST-arc forward to the destination node, 
using the WFST-arc’s input symbol and output symbol to be 
the FSG-node’s content symbol and the link record symbol 
respectively. We cannot directly do the symbol pushing 
operation for converting a WFST to a FSG, since arcs with 
different pairs of input symbols and output symbols may point 
to the same destination node in the WFST.  An example is to 
consider the four arcs pointing to node 5 in Fig.1, where there 
are three different pairs of input symbols and output symbols, 

 !:a x ,  !:b x , and  !:a y . In this case, we introduce the 

following extra node generating operation. Several extra nodes 
are generated, each having incoming arcs labeled by the same 
pair of input symbol and output symbol. After applying the 
extra node generating operation, we can use the symbol 
pushing operation to create a valid FSG. Using the operations 
of extra node generating and symbol pushing, the equivalent 
FSG for the example WFST in Fig.1 can be created, as shown 
in Fig.2. 

Recall that in the recognition transducer N , the input 

alphabet A  is the set of all acoustic HMM-states, and the 
output alphabet X  is the set of all possible words (i.e. the 
vocabulary). In our work, after we create the recognition 

transducer N , it is converted to an equivalent FSG fsgN , in 

which the NodeContentSet  and the LinkRecordSet  are 

correspondingly the set of all acoustic HMM-states and the set 
of all possible words. 

C. GrpDecoder description 

Our GrpDecoder is a general-purpose, time-synchronous 
Viterbi beam search decoder, using the FSG representation of 
the search network. It can decode not only using H-level 

recognition FSG fsgN , but also using the C-level FSG fsg

CLevelN , 

which is converted from the C-level transducer 
CLevelN  

 ! !CLevelN C min det L G$ ! !
4                                         (2) 

In the latter case, the FSG-nodes corresponding to the context-
dependent phones are dynamically expanded as the 
corresponding chain of the acoustic-HMM states. In both cases, 
the HMM state self-loops are simulated internally in the run-
time decoder. 

The decoder’s search algorithm maintains a list of active 
states. At a high level, the search is a token passing algorithm 
[11], holding a token for each active state. It can be basically 
written as a loop over time frames and an inner loop over sets 
of active states. Every time we leave a node labeled by a non-
null link record symbol, we create a new link record structure, 

                                                           
4  It is also possible to do further minimization like in 

 ! ! ! !min det C min det L G! ! , but this leads to a larger 

transducer and slower decoding speed in our experiments. There is 

similar result reported in [12]. 
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containing the link record symbol, the end time for that symbol, 
and a backpointer to the previous link record structure. This is 
much similar to create the word link record structure in the 
classic token passing algorithm, except the definition of the 
link symbols is more flexible in the GrpDecoder. The link 
symbols in the GrpDecoder could be the words, the HMM 
states, or whatever desirable symbols for the user. After 
processing the last frame of the observation sequence, the best 
matching sequence of link record symbols can be obtained by 
backtracking from the token contained in the ExitNode . 

Two types of pruning are currently supported in the 
GrpDecoder, the beam pruning and histogram pruning. The 
beam pruning is to retain only those tokens with a score close 
to the best token using a threshold called the beam-width. The 
histogram pruning is to limit the number of surviving tokens to 
a maximum number. 

D. Advantages of using the FSGs 

Now it is ready to explain the advantages of using the FSG 
representation of the search network during Viterbi searching 
over using the WFST representation. 

First, note that the HMM-states which are matched against 
the observation sequence in Viterbi decoding, are contained in 
the nodes in FSGs, while they are contained in the arcs in 
WFSTs. Therefore, the Viterbi decoder using WFSTs has to 
maintain a list of active nodes and a list of active arcs. The 
Viterbi decoder using FSGs (like GrpDecoder) only needs to 
maintain a list of active nodes. This makes the token 
propagation in the GrpDecoder much simpler and more 
efficient. That is why we say that the FSG representation is 
more tailored to Viterbi searching for speech recognition. 

Second, using the FSG representation reduces the memory 
storage of the search network for speech recognition. At first 
thought, in converting a WFST to an equivalent FSG, the 
number of nodes and arcs in the equivalent FSG (denoted as 

equiv-FSG-nodes   and equiv-FSG-arcs ) are increased 

compared with the number of nodes and arcs in the original 
WFST (denoted as WFST-nodes  and WFST-arcs ), due to the 

extra node generating operations. However, we find that the 
extra node generating operations are not frequently applied in 
practice. In the following experiments of converting the H-
level and C-level WFSTs for two languages - English and 
Mandarin, it is observed that equiv-FSG-nodes  and 

equiv-FSG-arcs  are about 1.12 ~ 1.58 and 1.06 ~ 1.20 times of 

WFST-nodes  and WFST-arcs  respectively. This means that 

the percentage of the nodes in the final compiled WFST which 
have incoming arcs labeled by the same pair of input symbol 
and output symbol is pretty large, especially for the H-level 
WFST. This property is special for the final compiled WFST 
used in speech recognition, when compared to general WFSTs. 
In the following, we will explain how the FSG representation 
of the search network is more compact in memory than the 
WFST representation, due to this special property. 

Typically, the main data structure for a WFST [13] is a 
linear array of all the arcs, sorted by source node. Each arc is a 
5-tuple, containing the source node, the destination node, the 

input symbol, the output symbol, and the weight (20 bytes/arc). 
Each node has a pointer to the beginning of the outgoing arcs 
for that node (4 byte/node). Thus the memory required by a 
WFST is 4 WFST-nodes 20 WFST-arcs* , * . Note that the 

source node is not necessarily stored for each arc. Thus the 
memory storage for a WFST can be further reduced to  

4 WFST-nodes 16 WFST-arcs* , * .                                 (3) 

We use a similar data structure for a FSG. First, there is a 
linear array for all the arcs, sorted by source node. Each arc is 
represented by the destination node and the weight (8 
bytes/arc). Second, there is a linear array for all the nodes. 
Each node contains the node content symbol, the link record 
symbol, and a pointer to the first arc leaving that node (12 
bytes/node). Thus the memory required by an equivalent FSG 
to a WFST is 

12 equiv-FSG-nodes 8 equiv-FSG-arcs* , * .                   (4) 

If we use (3) and (4) as the measures of the memory size for 
the WFST and FSG, it can be seen from Table I that using the 
FSG representation reduces the memory storage for the search 
network by 6.98% ~ 14.31%. 

Finally, it is worthwhile to compare the FSG representation 
with some related researches. In [13], a new compact 
representation for WFSTs is proposed, which uses a variable 
length encoding for arcs and a two-level index for nodes. 
Similar techniques can also be applied to the representation of 
FSGs to further reduce the in-memory size. The work in [7] 
uses the weighted acceptor to represent the search network. A 
phenomenon similar to the above mentioned special property 
of the final compiled WFST is also observed for that acceptor 
representation. The state splitting used there is similar to our 
extra node generating operation. Despite these, the new FSG 
representation is essentially different from the weighted 
acceptor representation in [7]. 

IV. BENCHMARKING EXPERIMENTS 

In this section, we present the performance evaluations of 
the three decoders, HDecode in HTK3.4 [9], Juicer-0.11.0 [8] 
and our own GrpDecoder on two languages - English and 
Mandarin. HDecode is an excellent decoder using dynamic 
network expansion. Juicer is a WFST-based decoder recently 
developed at IDIAP, which currently can only operate on C-
level recognition transducers.  

All the three decoders use the same acoustic models and 
language models as described below, and all are in single-
threaded execution. The experiments are conducted on a 
2.4GHz Intel Core2 machines with 2GB of memory. 

A. Experimental setup for English 

The benchmarking experiments on English are carried out 
using the WSJ0 continuous speech recognition corpus. The 
training data contain 7138 utterances. The test data are the 
November 1992 ARPA WSJ test set (Nov’92) which contains 
330 sentences. The acoustic feature is 39-dimensional, formed 
by 12 Mel-frequency cepstral coefficients (MFCCs) with 
normalized log-energy and their first and second order 
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differentials. Cepstral mean normalization (CMN) is applied 
for each utterance. 

The phone set consists of 39 phones defined in the CMU 
pronunciation dictionary, augmented by a 3-state silence model 
and a single-state short pause model. The acoustic model is 
trained using HTK3.4, and is based on cross-word triphones 
modeled by 3-state left-to-right HMMs. A decision-tree based 
state tying is applied resulting in a total of 2011 triphone states. 
The state output densities are 16-component Gaussian mixture 
models with diagonal covariances. Nov’92 data is evaluated 
using the WSJ 5K closed vocabulary (non-verbalized 
punctuation). The language model is the WSJ 5K standard 
closed bigram. The perplexity of this bigram on Nov’92 data is 
129.67.  

B. Experimental setup for Mandarin 

The benchmarking experiments on Mandarin are carried 
out using male speech data. The training data are a total of 
around 90 hours from 250 male speakers, including 863 
database and data collected by our lab. A total of 600 
utterances (0.9 hours) from other 5 male speakers are used for 
testing. In the front-end, a 45-dimensional feature vector is first 
extracted, including 14-dimensional MFCCs with normalized 
log-energy and their first and second order differentials. 
Considering that Mandarin is a tonal language, a 3-dimensional 
tone feature vector is appended to the spectral features, 
resulting in a final feature vector of 49-dimension. Cepstral 
mean and variance normalization (CVN) is applied for each 
utterance. 

Considering the special syllable structure of Mandarin, the 
basic Mandarin phonetic units in our system are 100 consonant 
units each with 2 states (called initials), 164 vowel units each 
with 4 states (called finals), plus one single-state silence model.  
Using Mandarin phonetic classification for state tying, context-
dependent triphones are created from the above basic phonetic 
units [14], resulting in a total of 2862 triphone states. The state 
output densities are 32-component Gaussian mixture models 
with diagonal covariances. 

The modified Kneser-Ney smoothed bigram language 
model is trained from the People’s Daily newspaper corpus 
(1994-2003). The perplexity of this bigram on the Mandarin 
test data (600 utterances) is 619.34. 

Both the acoustic model and the language model in 
Mandarin experiments are trained using our own toolbox. 

C. Sizes of search networks 

In the experiments, we use the AT&T FSM library for 
WFST construction. Both C-level and H-level transducers are 
compiled using the above mentioned knowledge sources - the 
language model G , the lexicon L , the phonetic context-

dependency C , and the acoustic HMMs H . 

Table I gives the comparison of different representations of 
the search networks using the WFSTs and the equivalent FSGs 
separately for English and Mandarin. It can be seen from Table 
I that using the FSG representation consistently reduces the 
memory storage for the search networks for both languages. 
The memory reduction is more obvious for H-level networks 
than for C-level networks.  

D. Decoding performance comparison for English 

Fig.3 shows the performance curves of word error rates 
(WERs) versus real-time factors (RTFs) for English, using 
HDecode, Juicer, GrpDecoder operating on C-level and H-
level networks.  

It can be seen from Fig. 3 that the performances of 
HDecode and Juicer are close to each other. The GrpDecoder 
operating on the C-level network consistently achieves lower 
WER for a given RTF, when compared with HDecode and 
Juicer. This is a fair comparison between GrpDecoder and 
Juicer, since both decoders are tested operating on the same C-
level network and using the same acoustic-HMM models in 
this comparison. The recognition performance can be further 
improved when using the GrpDecoder operating on the H-level 
network, which clearly shows the benefit of the fully 
optimization of the search network. 

Finally, it is worthwhile to remark the run-time memory 
usage for different decoders. For the experiments above, Juicer 
requires 150MBs ~ 200MBs of memory during decoding, 
HDecode requires 50MBs ~ 100MBs of memory, C-level 
GrpDecoder requires 120MBs ~ 150MBs of memory, and H-
level GrpDecoder requires only 90MBs ~ 110MBs of memory. 

E. Decoding performance comparison for Mandarin 

Fig.4 gives the performance curves of character error rates 
(CERs) versus real-time factors (RTFs) for Mandarin, using 
Juicer, GrpDecoder operating over C-level and H-level 
networks. Note that the Mandarin triphones used in our system 
is created using Mandarin phonetic classification for state tying, 
which is different from the decision-tree based state tying 
commonly used in HTK. So the triphone HMMs trained using 
our own toolbox are not compatible with the requirement of 
HDecode. Therefore, HDecode is not tested for Mandarin 
speech recognition. 

The same observations can be drawn from Fig.4 as from 
Fig. 3. The performance advantages of C-level GrpDecoder 
over Juicer and H-level GrpDecoder over C-level GrpDecoder 
are clear for both English and Mandarin. The performance 
advantage of C-level GrpDecoder over Juicer in the Mandarin 
experiments appears to be more obvious than in the English 
experiments. Presumably this is because that the search 
networks in the Mandarin experiments are much larger and 
thus much heavier burden is placed on the run-time decoder. At 
this time, the power of the GrpDecoder which uses the more 
compact FSG representation and more tailored to Viterbi 
decoding, is fully demonstrated. 

V. CONCLUSION AND FUTURE WORKS 

This paper presents our effort to build a state-of-the-art 
WFST-based speech recognition system - GrpDecoder. We use 
the standard WFST representations and operations during 
compiling the search network. The compiled WFST is then 
equivalently converted to a new graphical representation - 
finite-state graph (FSG). The resulting FSG is more tailored to 
Viterbi decoding for speech recognition and more compact in 
memory.  

Benchmarking of GrpDecoder is carried out separately on 
two languages - English and Mandarin. The test results show

127



TABLE I.  Comparison of different representations of the search networks using the WFSTs and the equivalent FSGs for English and Mandarin. 

The columns “ WFST-size ” and “ equiv-FSG-size ” are the memory sizes for the WFSTs and FSGs respectively, measured using Equ. (3) and (4). 

The last column is the relative size reduction by using the FSG respresentation. The C-level and H-level search networks are defined in Equ. (1) and 

Equ. (2). The numbers in the parentheses in the column “ equiv-FSG-nodes ” and “ equiv-FSG-arcs ” are the ratios 

equiv-FSG-nodes / WFST-nodes  and equiv-FSG-arcs / WFST-arcs  respectively. 

Networks WFST-nodes WFST-arcs  equiv-FSG-nodes equiv-FSG-arcs WFST-size  equiv-FSG-size Size 
reduction

C-level 804,497 2,450,496 1,272,322 (1.58) 2,918,319 (1.19) 42,425,924 38,614,416 8.98%
English 

H-level 1,933,412 3,726,900 2,168,732 (1.12) 3,962,221 (1.06) 67,364,048 57,722,552 14.31%

C-level 1,810,354 5,037,233 2,794,761 (1.54) 6,021,640 (1.20) 87,837,144 81,710,252 6.98%
Mandarin 

H-level 4,931,736 9,382,167 5,692,914 (1.15) 10,143,345 (1.08) 169,841,616 149,461,728 12.00%
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Figure 3.  The performance curves of WERs versus RTFs for English using 

different decoders. 
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Figure 4.  The performance curves of CERs versus RTFs for Mandarin using 

different decoders. 

 
 

that GrpDecoder which uses the new FSG representation in 
searching is superior to HDecode and Juicer for both languages, 
achieving lower error rates for a given recognition speed. In the 
future, we plan to augment GrpDecoder with the functionality 
of on-the-fly composition and optimization. 
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