
A study of large vocabulary speech recognition

decoding using finite-state graphs1

Zhijian OU, Ji XIAO

Department of Electronic Engineering, Tsinghua University, Beijing

Corresponding email: ozj@tsinghua.edu.cn

Abstract—The use of weighted finite-state transducers (WFSTs)

has become an attractive technique for building large vocabulary

continuous speech recognition decoders. Conventionally, the

compiled search network is represented as a standard WFST,

which is then directly fed into a Viterbi decoder. In this work, we

use the standard WFST representations and operations during

compiling the search network. The compiled WFST is then

equivalently converted to a new graphical representation, which

we call finite-state graph (FSG). The resulting FSG is more

tailored to Viterbi decoding for speech recognition and more

compact in memory. This paper presents our effort to build a

state-of-the-art WFST-based speech recognition system, which

we call GrpDecoder. Benchmarking of GrpDecoder is carried out

separately on two languages - English and Mandarin. The test

results show that GrpDecoder which uses the new FSG

representation in searching is superior to HTK’s HDecode and

IDIAP’s Juicer for both languages, achieving lower error rates

for a given recognition speed.

Keywords—WFST; finite-state graph; grpdecoder

I. INTRODUCTION
1

Since the pioneering works at AT&T [1], the use of
weighted finite-state transducers (WFST) has become an
attractive technique for building large vocabulary continuous
speech recognition (LVCSR) decoders. Basically, the task of
decoding is to find the most likely state sequence in a search
network constrained by various knowledge sources, such as
language model, lexicon, phonetic context-dependency, and
acoustic HMMs. Various decoding techniques mainly differ in
two aspects - the search network expansion (static versus
dynamic) and the search algorithm itself (time-synchronous
versus asynchronous) [2]. The WFST approach has been
shown to yield better performance when compared with
traditional decoders using dynamic network expansion [3].
This is mainly attributed to (1) the separation of compiling the
search network and doing the search itself, and (2) doing the
compilation to fully optimize the search network to reduce its
redundancy, through the powerful WFST operations of
composition, determinization and minimization. The
compilation, namely the static network expansion and
optimization, is often executed offline before decoding. The
final search network is represented as a single transducer that
maps sequences of HMM states to sequences of words, which
can be directly used in a Viterbi decoder.

1 This work is supported by NSFC (61075020) and 863

(2006AA01Z149).

As we know, running a WFST decoder consists of two
stages, compiling the search network and performing the actual
search. Previous works about the WFST approach are mainly
concerned with the first stage. Mohri et al. [1] first introduces
how to represent various knowledge sources as WFSTs and
how to compile them through the standard WFST operations.
Chen [4] proposes memory-efficient implementation of
composition and determinization for using large-context
phonetic decision trees. Recently, there are some studies that
propose interaction between these two stages. Some algorithms
that perform on-the-fly composition and optimization are
studied [5][6]. These algorithms can be used either to reduce
the memory burden during recognition, or to accommodate the
use of dynamic knowledge sources.

This paper is concerned with the second stage.
Conventionally, the compiled search network is represented as
a standard WFST, which is then directly fed into a Viterbi
decoder. In this work, we use the standard WFST
representations and operations during compiling the search
network. The compiled WFST is then equivalently converted
to a new graphical representation, which we call finite-state
graph (FSG). The resulting FSG is more tailored to Viterbi
decoding for speech recognition and more compact in memory.
The advantage of memory efficiency is due to the fact that the
FSG representation exploits a special property of the final
compiled WFST used in speech recognition, when compared to
general WFSTs. After a background introduction to the
standard WFST-based speech recognition in section II, we will
detail the new FSG representation in section III.

In recent years, there have emerged a number of speech
recognition systems that use the WFST approach, for example,
those developed at AT&T [1], IBM [7], IDIAP (Juicer) [8],
Titech (T3) [6], etc. This paper presents our effort to build a
state-of-the-art WFST-based speech recognition system, which
we call GrpDecoder (as the abbreviation of graphical decoder).
Benchmarking of GrpDecoder is carried out separately on two
languages - English and Mandarin. The comparison systems
are HDecode as part of HTK [9] (an excellent decoder using
dynamic network expansion) and Juicer [8] (a standard WFST-
based decoder), both of which are publicly available. The test
results show that GrpDecoder which uses the new FSG
representation in searching is superior to HDecode and Juicer
for both languages, achieving lower error rates for a given
recognition speed. The English and Mandarin benchmarking
test are described in section IV.

ISBN 978-1-4244-6245-2/10/$26.00 ©2010 IEEE 123

II. REVIEW OF THE WFST APPROACH TO SPEECH

RECOGNTION

In this section, we give a background introduction to the
standard WFST-based speech recognition. For a more in depth
description, the reader is referred to [1].

A. Weighted finite-state transducers (WFSTs)

Formally, a transducer T is defined as the 8-tuple:

 !, , , , , , ,T A X Q I F E " #$, where

% A is a finite input alphabet;

% X is a finite output alphabet;

% Q is a finite set of states;

% I is the set of initial states;

% F is the set of final states;

% & ' ! & ' !E Q A X Q(() * + * + * *K is a finite set of

transitions. Each transition is specified by a five-tuple - the
source state, the input symbol, the output symbol, the weight
from a semiring K (e.g. the set of real numbers), and the
destination state;

% : I" K is the initial state weight assignment;

% : F# K is the final state weight assignment.

Theoretically, a WFST represents a weighted relation
between sequences of input symbols and sequences of output
symbols. The WFST can be easily understood by plotting it as
a directed graph, where the nodes represent the states and the
arcs represent the transitions. Fig.1 is a WFST example.

B. Application to speech recognition

The power of the WFST approach is that various
knowledge sources used in speech recognition can all be
consistently represented as WFSTs, and then can be combined
and optimized, using the general WFST operations of
composition, determinization, and minimization.

Specifically, separate transducers are first constructed for
the four main knowledge sources - the language model G , the

lexicon L , the phonetic context-dependency C , and the

acoustic HMMs H . Using the composition operation (denoted
as !), the determinization operation (det), and the

minimization operation (min), the four transducers are then

composed and optimized into a single integrated transducer,

 ! ! ! !N min det H det C det L G$! ! ! (1)

that maps sequences of acoustic HMM states to sequences of
words, and is known as the H-level transducer. As we can see
in (1), the optimization operations are applied in intermediate
steps in compiling the final transducer, which helps to improve
the efficiency of composition and to reduce the intermediate
transducer size.

The final integrated transducer N can be directly used in a

Viterbi decoder. Note that the HMM state self-loops are not

explicitly represented in N , they are simulated in the run-time

decoder.

III. FINITE-STATE GRAPH REPRESENTATION OF THE SEARCH

NETWORK

As described in section II-B, when applying the WFST
approach to speech recognition, the final compiled search
network is represented as a standard WFST, which is then
directly fed into the Viterbi decoder. While it is justified to use
the WFST representation during compilation due to the fact
that the powerful composition and optimization operations are
well developed for WFSTs, it seems to take it for granted in
previous studies that the representation of the search network
during Viterbi searching remains to be the standard WFST.

In this work, we use the standard WFST representations
and operations during compiling the search network. The
compiled WFST is then equivalently converted to a new
graphical representation, which we call finite-state graph (FSG)
and is described as follows. The resulting FSG is more tailored
to Viterbi searching for speech recognition and more compact
in memory. The advantage of memory efficiency is due to the
fact that the FSG representation exploits a special property of
the final compiled WFST used in speech recognition, when
compared to general WFSTs.

A. Finite-state graphs (FSGs)

One of the design considerations for FSGs is to make the
representation of the search network in decoding more tailored
to the Viterbi algorithm. The Viterbi algorithm is to find the

0

8

1

2

3

4

5

6
11

7

10 12

9
13

0.1
0.1

0.1
0.1

0.2
0.2

0.6
0.6

a:y
a:y

a:x
a:x

b:x
b:x

b:y
b:y

0.1
0.1

0.2
0.2

0.3
0.3

0.4
0.4

a:x
a:x

b:x
b:x

a:y
a:y

a:y
a:y

a:x
a:x

b:x
b:x

a:y
a:y

0.7
0.7

0.2
0.2

0.5
0.5

0.8
0.8

ExitNode

EntryNode

Figure 2. A FSG example. Content-nodes and virtual nodes are plotted as

squares and circles respectively. The node content symbol a and the link

record symbol x are marked above the corresponding node by a:x. The

weight 0.1 is marked on the corresponding arc. Zero weights can be

omitted for plotting.

5

1

2

3

4

6

7

0

a:y/0.1

a:x/0.1

b:x/0.2

b:y/0.6

a:x/0.1

b:x/0.2

a:y/0.3

a:y/0.4

a:y/0.7

a:x/0.5

b:x/0.2

a:y/0.8

8

Figure 1. A WFST example. The initial states and final state are plotted as

bold circles and double circles respectively. The input symbol a, output

symbol x and weight 0.1 are marked on the corresponding arc by a:x/0.1.

124

most likely state sequence for the given observation sequence
in a HMM. Note that the recognition transducer N essentially

represents the state-space of a large flattened HMM, which is
created by successive expanding the hierarchical knowledge
sources - language model, lexicon, phonetic context-
dependency, and acoustic HMMs 2 . So compared with the
WFST, the proposed FSG is designed to be closer to the classic
state-transition graph used in HMM studies [10].

Formally, a finite-state graph R is defined as the 6-tuple:

 !, , , , ,R V NodeContentSet LinkRecordSet EntryNode ExitNode E$

, where

% V is a finite set of nodes. Each node has a node content

symbol & 'a NodeContentSet () + and a link record symbol

& 'x LinkRecordSet () + .

% NodeContentSet is a finite alphabet for node content;

% LinkRecordSet is a finite alphabet for link record;

% EntryNode is the unique entry node;

% ExitNode is the unique exit node;

% E V V) * *R is a finite set of arcs. Each arc is specified

by a triple - the source node, the weight in real numbers, and
the destination node.

It is straightforward to plot a FSG as a directed graph. Fig.2
is a FSG example. A node is called a content-node and plotted
as a square node, if the node content symbol is not the null
symbol (, otherwise the node is called a virtual-node and

plotted as a circle node.

B. Conversions between WFSTs and FSGs

It is worthwhile to compare the FSG and the WFST
representations. First, there is a common property for both
FSGs and WFSTs. Theoretically, a FSG also represents a
weighted relation between two sequences of symbols. Any path
from the EntryNode to the ExitNode in a FSG is also

associated with two sequences of symbols - the sequence of
node content symbols and the sequence of link record symbols.
This is much like a path from the initial states to the final states
in a WFST, which is also associated with two sequences of
symbols. In this analog, the node content symbols and the link
record symbols in the FSG correspond to the input symbols and
output symbols in the WFST respectively. The difference is
that the symbols are associated with the nodes in FSGs, while
in WFSTs, the symbols are associated with the arcs.

Second, note that it is always possible to convert a FSG to
an equivalent3 WFST by moving the symbols associated with
each node either forward to every outgoing arcs, or backward
to every incoming arcs. It is also possible to convert a WFST to

2 This expansion is equivalent to the WFST composition of creating

the recognition transducer N .
3 A FSG and a WFST are equivalent if the weighted relations they

represent are the same.

an equivalent FSG, which, however, may require the
introduction of extra nodes.

Consider the following symbol pushing operation in
converting a WFST to a FSG, which is to push the symbols
associated with each WFST-arc forward to the destination node,
using the WFST-arc’s input symbol and output symbol to be
the FSG-node’s content symbol and the link record symbol
respectively. We cannot directly do the symbol pushing
operation for converting a WFST to a FSG, since arcs with
different pairs of input symbols and output symbols may point
to the same destination node in the WFST. An example is to
consider the four arcs pointing to node 5 in Fig.1, where there
are three different pairs of input symbols and output symbols,

 !:a x , !:b x , and !:a y . In this case, we introduce the

following extra node generating operation. Several extra nodes
are generated, each having incoming arcs labeled by the same
pair of input symbol and output symbol. After applying the
extra node generating operation, we can use the symbol
pushing operation to create a valid FSG. Using the operations
of extra node generating and symbol pushing, the equivalent
FSG for the example WFST in Fig.1 can be created, as shown
in Fig.2.

Recall that in the recognition transducer N , the input

alphabet A is the set of all acoustic HMM-states, and the
output alphabet X is the set of all possible words (i.e. the
vocabulary). In our work, after we create the recognition

transducer N , it is converted to an equivalent FSG fsgN , in

which the NodeContentSet and the LinkRecordSet are

correspondingly the set of all acoustic HMM-states and the set
of all possible words.

C. GrpDecoder description

Our GrpDecoder is a general-purpose, time-synchronous
Viterbi beam search decoder, using the FSG representation of
the search network. It can decode not only using H-level

recognition FSG fsgN , but also using the C-level FSG fsg

CLevelN ,

which is converted from the C-level transducer
CLevelN

 ! !CLevelN C min det L G$! !
4 (2)

In the latter case, the FSG-nodes corresponding to the context-
dependent phones are dynamically expanded as the
corresponding chain of the acoustic-HMM states. In both cases,
the HMM state self-loops are simulated internally in the run-
time decoder.

The decoder’s search algorithm maintains a list of active
states. At a high level, the search is a token passing algorithm
[11], holding a token for each active state. It can be basically
written as a loop over time frames and an inner loop over sets
of active states. Every time we leave a node labeled by a non-
null link record symbol, we create a new link record structure,

4 It is also possible to do further minimization like in

 ! ! ! !min det C min det L G! ! , but this leads to a larger

transducer and slower decoding speed in our experiments. There is

similar result reported in [12].

125

containing the link record symbol, the end time for that symbol,
and a backpointer to the previous link record structure. This is
much similar to create the word link record structure in the
classic token passing algorithm, except the definition of the
link symbols is more flexible in the GrpDecoder. The link
symbols in the GrpDecoder could be the words, the HMM
states, or whatever desirable symbols for the user. After
processing the last frame of the observation sequence, the best
matching sequence of link record symbols can be obtained by
backtracking from the token contained in the ExitNode .

Two types of pruning are currently supported in the
GrpDecoder, the beam pruning and histogram pruning. The
beam pruning is to retain only those tokens with a score close
to the best token using a threshold called the beam-width. The
histogram pruning is to limit the number of surviving tokens to
a maximum number.

D. Advantages of using the FSGs

Now it is ready to explain the advantages of using the FSG
representation of the search network during Viterbi searching
over using the WFST representation.

First, note that the HMM-states which are matched against
the observation sequence in Viterbi decoding, are contained in
the nodes in FSGs, while they are contained in the arcs in
WFSTs. Therefore, the Viterbi decoder using WFSTs has to
maintain a list of active nodes and a list of active arcs. The
Viterbi decoder using FSGs (like GrpDecoder) only needs to
maintain a list of active nodes. This makes the token
propagation in the GrpDecoder much simpler and more
efficient. That is why we say that the FSG representation is
more tailored to Viterbi searching for speech recognition.

Second, using the FSG representation reduces the memory
storage of the search network for speech recognition. At first
thought, in converting a WFST to an equivalent FSG, the
number of nodes and arcs in the equivalent FSG (denoted as

equiv-FSG-nodes and equiv-FSG-arcs) are increased

compared with the number of nodes and arcs in the original
WFST (denoted as WFST-nodes and WFST-arcs), due to the

extra node generating operations. However, we find that the
extra node generating operations are not frequently applied in
practice. In the following experiments of converting the H-
level and C-level WFSTs for two languages - English and
Mandarin, it is observed that equiv-FSG-nodes and

equiv-FSG-arcs are about 1.12 ~ 1.58 and 1.06 ~ 1.20 times of

WFST-nodes and WFST-arcs respectively. This means that

the percentage of the nodes in the final compiled WFST which
have incoming arcs labeled by the same pair of input symbol
and output symbol is pretty large, especially for the H-level
WFST. This property is special for the final compiled WFST
used in speech recognition, when compared to general WFSTs.
In the following, we will explain how the FSG representation
of the search network is more compact in memory than the
WFST representation, due to this special property.

Typically, the main data structure for a WFST [13] is a
linear array of all the arcs, sorted by source node. Each arc is a
5-tuple, containing the source node, the destination node, the

input symbol, the output symbol, and the weight (20 bytes/arc).
Each node has a pointer to the beginning of the outgoing arcs
for that node (4 byte/node). Thus the memory required by a
WFST is 4 WFST-nodes 20 WFST-arcs* , * . Note that the

source node is not necessarily stored for each arc. Thus the
memory storage for a WFST can be further reduced to

4 WFST-nodes 16 WFST-arcs* , * . (3)

We use a similar data structure for a FSG. First, there is a
linear array for all the arcs, sorted by source node. Each arc is
represented by the destination node and the weight (8
bytes/arc). Second, there is a linear array for all the nodes.
Each node contains the node content symbol, the link record
symbol, and a pointer to the first arc leaving that node (12
bytes/node). Thus the memory required by an equivalent FSG
to a WFST is

12 equiv-FSG-nodes 8 equiv-FSG-arcs* , * . (4)

If we use (3) and (4) as the measures of the memory size for
the WFST and FSG, it can be seen from Table I that using the
FSG representation reduces the memory storage for the search
network by 6.98% ~ 14.31%.

Finally, it is worthwhile to compare the FSG representation
with some related researches. In [13], a new compact
representation for WFSTs is proposed, which uses a variable
length encoding for arcs and a two-level index for nodes.
Similar techniques can also be applied to the representation of
FSGs to further reduce the in-memory size. The work in [7]
uses the weighted acceptor to represent the search network. A
phenomenon similar to the above mentioned special property
of the final compiled WFST is also observed for that acceptor
representation. The state splitting used there is similar to our
extra node generating operation. Despite these, the new FSG
representation is essentially different from the weighted
acceptor representation in [7].

IV. BENCHMARKING EXPERIMENTS

In this section, we present the performance evaluations of
the three decoders, HDecode in HTK3.4 [9], Juicer-0.11.0 [8]
and our own GrpDecoder on two languages - English and
Mandarin. HDecode is an excellent decoder using dynamic
network expansion. Juicer is a WFST-based decoder recently
developed at IDIAP, which currently can only operate on C-
level recognition transducers.

All the three decoders use the same acoustic models and
language models as described below, and all are in single-
threaded execution. The experiments are conducted on a
2.4GHz Intel Core2 machines with 2GB of memory.

A. Experimental setup for English

The benchmarking experiments on English are carried out
using the WSJ0 continuous speech recognition corpus. The
training data contain 7138 utterances. The test data are the
November 1992 ARPA WSJ test set (Nov’92) which contains
330 sentences. The acoustic feature is 39-dimensional, formed
by 12 Mel-frequency cepstral coefficients (MFCCs) with
normalized log-energy and their first and second order

126

differentials. Cepstral mean normalization (CMN) is applied
for each utterance.

The phone set consists of 39 phones defined in the CMU
pronunciation dictionary, augmented by a 3-state silence model
and a single-state short pause model. The acoustic model is
trained using HTK3.4, and is based on cross-word triphones
modeled by 3-state left-to-right HMMs. A decision-tree based
state tying is applied resulting in a total of 2011 triphone states.
The state output densities are 16-component Gaussian mixture
models with diagonal covariances. Nov’92 data is evaluated
using the WSJ 5K closed vocabulary (non-verbalized
punctuation). The language model is the WSJ 5K standard
closed bigram. The perplexity of this bigram on Nov’92 data is
129.67.

B. Experimental setup for Mandarin

The benchmarking experiments on Mandarin are carried
out using male speech data. The training data are a total of
around 90 hours from 250 male speakers, including 863
database and data collected by our lab. A total of 600
utterances (0.9 hours) from other 5 male speakers are used for
testing. In the front-end, a 45-dimensional feature vector is first
extracted, including 14-dimensional MFCCs with normalized
log-energy and their first and second order differentials.
Considering that Mandarin is a tonal language, a 3-dimensional
tone feature vector is appended to the spectral features,
resulting in a final feature vector of 49-dimension. Cepstral
mean and variance normalization (CVN) is applied for each
utterance.

Considering the special syllable structure of Mandarin, the
basic Mandarin phonetic units in our system are 100 consonant
units each with 2 states (called initials), 164 vowel units each
with 4 states (called finals), plus one single-state silence model.
Using Mandarin phonetic classification for state tying, context-
dependent triphones are created from the above basic phonetic
units [14], resulting in a total of 2862 triphone states. The state
output densities are 32-component Gaussian mixture models
with diagonal covariances.

The modified Kneser-Ney smoothed bigram language
model is trained from the People’s Daily newspaper corpus
(1994-2003). The perplexity of this bigram on the Mandarin
test data (600 utterances) is 619.34.

Both the acoustic model and the language model in
Mandarin experiments are trained using our own toolbox.

C. Sizes of search networks

In the experiments, we use the AT&T FSM library for
WFST construction. Both C-level and H-level transducers are
compiled using the above mentioned knowledge sources - the
language model G , the lexicon L , the phonetic context-

dependency C , and the acoustic HMMs H .

Table I gives the comparison of different representations of
the search networks using the WFSTs and the equivalent FSGs
separately for English and Mandarin. It can be seen from Table
I that using the FSG representation consistently reduces the
memory storage for the search networks for both languages.
The memory reduction is more obvious for H-level networks
than for C-level networks.

D. Decoding performance comparison for English

Fig.3 shows the performance curves of word error rates
(WERs) versus real-time factors (RTFs) for English, using
HDecode, Juicer, GrpDecoder operating on C-level and H-
level networks.

It can be seen from Fig. 3 that the performances of
HDecode and Juicer are close to each other. The GrpDecoder
operating on the C-level network consistently achieves lower
WER for a given RTF, when compared with HDecode and
Juicer. This is a fair comparison between GrpDecoder and
Juicer, since both decoders are tested operating on the same C-
level network and using the same acoustic-HMM models in
this comparison. The recognition performance can be further
improved when using the GrpDecoder operating on the H-level
network, which clearly shows the benefit of the fully
optimization of the search network.

Finally, it is worthwhile to remark the run-time memory
usage for different decoders. For the experiments above, Juicer
requires 150MBs ~ 200MBs of memory during decoding,
HDecode requires 50MBs ~ 100MBs of memory, C-level
GrpDecoder requires 120MBs ~ 150MBs of memory, and H-
level GrpDecoder requires only 90MBs ~ 110MBs of memory.

E. Decoding performance comparison for Mandarin

Fig.4 gives the performance curves of character error rates
(CERs) versus real-time factors (RTFs) for Mandarin, using
Juicer, GrpDecoder operating over C-level and H-level
networks. Note that the Mandarin triphones used in our system
is created using Mandarin phonetic classification for state tying,
which is different from the decision-tree based state tying
commonly used in HTK. So the triphone HMMs trained using
our own toolbox are not compatible with the requirement of
HDecode. Therefore, HDecode is not tested for Mandarin
speech recognition.

The same observations can be drawn from Fig.4 as from
Fig. 3. The performance advantages of C-level GrpDecoder
over Juicer and H-level GrpDecoder over C-level GrpDecoder
are clear for both English and Mandarin. The performance
advantage of C-level GrpDecoder over Juicer in the Mandarin
experiments appears to be more obvious than in the English
experiments. Presumably this is because that the search
networks in the Mandarin experiments are much larger and
thus much heavier burden is placed on the run-time decoder. At
this time, the power of the GrpDecoder which uses the more
compact FSG representation and more tailored to Viterbi
decoding, is fully demonstrated.

V. CONCLUSION AND FUTURE WORKS

This paper presents our effort to build a state-of-the-art
WFST-based speech recognition system - GrpDecoder. We use
the standard WFST representations and operations during
compiling the search network. The compiled WFST is then
equivalently converted to a new graphical representation -
finite-state graph (FSG). The resulting FSG is more tailored to
Viterbi decoding for speech recognition and more compact in
memory.

Benchmarking of GrpDecoder is carried out separately on
two languages - English and Mandarin. The test results show

127

TABLE I. Comparison of different representations of the search networks using the WFSTs and the equivalent FSGs for English and Mandarin.

The columns “ WFST-size ” and “ equiv-FSG-size ” are the memory sizes for the WFSTs and FSGs respectively, measured using Equ. (3) and (4).

The last column is the relative size reduction by using the FSG respresentation. The C-level and H-level search networks are defined in Equ. (1) and

Equ. (2). The numbers in the parentheses in the column “ equiv-FSG-nodes ” and “ equiv-FSG-arcs ” are the ratios

equiv-FSG-nodes / WFST-nodes and equiv-FSG-arcs / WFST-arcs respectively.

Networks WFST-nodes WFST-arcs equiv-FSG-nodes equiv-FSG-arcs WFST-size equiv-FSG-size Size
reduction

C-level 804,497 2,450,496 1,272,322 (1.58) 2,918,319 (1.19) 42,425,924 38,614,416 8.98%
English

H-level 1,933,412 3,726,900 2,168,732 (1.12) 3,962,221 (1.06) 67,364,048 57,722,552 14.31%

C-level 1,810,354 5,037,233 2,794,761 (1.54) 6,021,640 (1.20) 87,837,144 81,710,252 6.98%
Mandarin

H-level 4,931,736 9,382,167 5,692,914 (1.15) 10,143,345 (1.08) 169,841,616 149,461,728 12.00%

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
8

9

10

11

12

13

14

15

16

17

RTF

W
E

R
(%

)

HDecode

Juicer

C-Level GrpDecoder

H-Level GrpDecoder

Figure 3. The performance curves of WERs versus RTFs for English using

different decoders.

0.5 1 1.5 2 2.5 3
5

10

15

20

25

30

35

40

RTF

C
E

R
(%

)

Juicer

C-Level GrpDecoder

H-Level GrpDecoder

Figure 4. The performance curves of CERs versus RTFs for Mandarin using

different decoders.

that GrpDecoder which uses the new FSG representation in
searching is superior to HDecode and Juicer for both languages,
achieving lower error rates for a given recognition speed. In the
future, we plan to augment GrpDecoder with the functionality
of on-the-fly composition and optimization.

REFERENCES

[1] M. Mohri, F. Pereira, and M. Riley, “Speech Recognition with Weighted
Finite-State Transducers,” Handbook on Speech Processing and Speech
Communication, Part E: Speech recognition, 2008.

[2] X. L. Aubert, “A Brief Overview of Decoding Techniques for Large
Vocabulary Continuous Speech Recognition,” In ISCA Automatic
Speech Recognition workshop 2000, pp.91-97, Paris, France, September
2000.

[3] S. Kanthak, H. Ney, M. Riley, and M. Mohri, “A comparison of two
LVR search optimization techniques,” in Proc. ICSLP, 2002.

[4] S. Chen, "Compiling large-context phonetic decision trees into finite-
state transducers". In Proc. Eurospeech 2003.

[5] D. A. Caseiro, I. Trancoso, "A specialized on-the-fly algorithm for
lexicon and language model composition. IEEE Transactions on Audio,
Speech, and Language rocessing, 14(4):1281-1291, 2006.

[6] Paul R.Dixon, Tasku Oonishi, Koji Iwano, Sadaoki Furui, "Recent
Development of WFST-Based Speech Recognition Decoder" in APSIPA
Annual Summit and Conference 2009.

[7] G. Saon, D. Povey, G. Zweig, "Anatomy of an extremely fast LVCSR
decoder", in Proc. Interspeech 2005.

[8] D. Moore, J. Dines, M.M. Doss, J. Vepa, O. Cheng and T. Hain, “Juicer:
A weighted finite-state transducer speech decoder,” In Processings of
the 3rd Joint WorkShop on Multimodal Interaction and Related Machine
Learning Algorithms, 2006.

[9] S.J. Young et al., “The HTK Book (for HTK Versinon 3.4)”, Cambridge
University Engineering Department, March 2009.

[10] L. Rabiner, “A tutorial on hidden Markov models and selected
applications in speech recognition”, Proceedings of the IEEE, 1989.

[11] S.J. Young, N.H. Russell, and J.H.S. Thornton, “Token passing: A
simple conceptual model for connected speech recognition systems,”
Tech. Rep., Cambridge University Engineering Department, 1989.

[12] P. Garner, "Silence models in weighted finite-state transducers", in Proc.
Interspeech 2008.

[13] D. Caseiro and I. Trancoso, “Using dynamic WFST composition for
recognizing broadcast news”, in Proc. ICSLP 2002.

[14] Chun Li, Zuoying Wang, “Phonetic classification-based triphone for
continuous mandarin speech recognition,” Journal of Tsinghua
University, 2003, 43(1):16-19.

128

