Mixed TRF LMs

Integrating Discrete and Neural Features via Mixed-Feature Trans-Dimensional Random Field Language Models

Silin Gao¹, Zhijian Ou¹, Wei Yang², Huifang Xu³

¹Speech Processing and Machine Intelligence (SPMI) Lab, Tsinghua University
²State Grid Customer Service Center
³China Electric Power Research Institute

http://oa.ee.tsinghua.edu.cn/ouzhijian/

Presented at International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2020
1. Introduction
 - Related Work
 - Motivation

2. Mixed TRF LMs
 - Definition
 - Training

3. Experiments
 - PTB
 - Google one-billion word

4. Conclusions
Introduction

• Language Modeling
 ■ For the word sequence $\mathbf{x} \triangleq x_1 x_2 \cdots x_l$, determine the joint probability $p(\mathbf{x})$

• Directed Graphical Language Models
 ■ Self-normalized, modeling conditional probabilities
 ■ e.g. N-gram language models, Neural network (NN) based language models (e.g. RNN/LSTM LMs)
 $$P(x_1, x_2, x_3, x_4) = P(x_1)P(x_2|x_1)P(x_3|x_2)P(x_4|x_1, x_3)$$

• Undirected Graphical Language Models
 ■ Involves the normalizing constant Z, potential function Φ
 ■ e.g. Trans-dimensional random field language models (TRF LMs)
 $$P(x_1, x_2, x_3, x_4) = \frac{1}{Z} \Phi(x_1, x_2)\Phi(x_2, x_3)\Phi(x_3, x_4)\Phi(x_1, x_4)$$
Related Work: N-gram LMs

• N-gram Language Models

\[p(x_1, x_2, \ldots, x_l) = \prod_{i=1}^{l} p(x_i | x_1, \ldots, x_{i-1}) \]

\[\approx \prod_{i=1}^{l} p(x_i | x_{i-n+1}, \ldots, x_{i-1}) \]

• Back-off N-gram LMs with Kneser-Ney Smoothing\(^1\) (KNn LMs)

\[p_{KN}(x_i|h) = (1 - \alpha_{KN}(h))\hat{p}(x_i|h) + \alpha_{KN}(h)p_{KN}(x_i|h') \]

\[h = x_{i-n+1} \cdots x_{i-1} = x_{i-n+1}h' \]

Related Work: RNNs/LSTM LMs

- Recurrent Neural Nets (RNNs)/Long-Short Time Memory (LSTM) Language Models

\[
p(x_i | x_1, \cdots, x_{i-1}) \approx p(x_i | h_{i-1}(x_1, \cdots, x_{i-1})) \approx \frac{h_{i-1}^T w_k}{\sum_{k=1}^{V} h_{i-1}^T w_k}
\]

1. High computational cost of the Softmax output layer
 e.g. \(V = 10^4 \sim 10^6 \), \(w_k \in \mathbb{R}^{250 \sim 1024} \)

2. “Label bias” caused by the teacher-forcing training of the local conditional probabilities

"Label bias" caused by the teacher-forcing training of the local conditional probabilities

\[p(x_i | x_1, \cdots, x_{i-1}) \approx p(x_i | h_{i-1}(x_1, \cdots, x_{i-1})) \approx \frac{h_{i-1}^T w_k}{\sum_{k=1}^{V} h_{i-1}^T w_k} \]

- Sundermeyer, 2012
Related Work: TRF LMs

• Trans-Dimensional Random Field (TRF) Language Models

Assume the sentences of length l are distributed as follows:

$$p_l(x^l; \eta) = \frac{1}{Z_l(\eta)} e^{V(x^l; \eta)}, \quad x^l \triangleq x_1 x_2 \cdots x_l$$

$x^l \triangleq x_1, x_2, \ldots, x_l$ is a word sequence with length l;
$V(x^l; \eta)$ is the potential function extracting the features of x^l;
η is the parameter of the potential function;
$Z_l(\eta) = \sum_{x^l} e^{V(x^l; \eta)}$ is the normalization constant.

Assume length l is associated with prior probability π_l.

Therefore the pair (l, x^l) is jointly distributed as:

$$p(l, x^l; \eta) = \pi_l \cdot p_l(x^l; \eta)$$
Related Work: TRF LMs

\[p(l, x^l; \eta) = \frac{\pi_l}{Z_l(\eta)} e^{V(x^l; \eta)}, \ x^l \triangleq x_1 x_2 \cdots x_l \]

1. **Flexible**: no acyclic and local normalization constraint

Discrete TRF:

<table>
<thead>
<tr>
<th>Type</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>((w_{-3}w_{-2}w_{-1}w_0)(w_{-2}w_{-1}w_0)(w_{-1}w_0)(w_0))</td>
</tr>
<tr>
<td>c</td>
<td>((c_{-3}c_{-2}c_{-1}c_0)(c_{-2}c_{-1}c_0)(c_{-1}c_0)(c_0))</td>
</tr>
<tr>
<td>ws</td>
<td>((w_{-3}w_0)(w_{-3}w_{-2}w_0)(w_{-3}w_{-1}w_0)(w_{-2}w_0))</td>
</tr>
<tr>
<td>cs</td>
<td>((c_{-3}c_0)(c_{-3}c_{-2}c_0)(c_{-3}c_{-1}c_0)(c_{-2}c_0))</td>
</tr>
<tr>
<td>wsh</td>
<td>((w_{-4}w_0)(w_{-5}w_0))</td>
</tr>
<tr>
<td>csh</td>
<td>((c_{-4}c_0)(c_{-5}c_0))</td>
</tr>
<tr>
<td>cpw</td>
<td>((c_{-3}c_{-2}c_{-1}w_0)(c_{-2}c_{-1}w_0)(c_{-1}w_0))</td>
</tr>
<tr>
<td>tied</td>
<td>((c_{-9}; -6, c_0)(w_{-9}; -6, w_0))</td>
</tr>
</tbody>
</table>

2. **Avoid high computational cost of the Softmax and “label bias”**

- The state-of-the-art Neural TRF LMs perform as good as LSTM LMs, and are computationally more efficient in inference (computing sentence probabilities)
Related Work: TRF LMs

- The development of TRF LMs

<table>
<thead>
<tr>
<th>Year</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACL-2015</td>
<td>• Discrete features
• Augmented stochastic approximation (AugSA) for model training</td>
</tr>
<tr>
<td>TPAMI-2018</td>
<td>• Discrete features
• Augmented stochastic approximation (AugSA) for model training</td>
</tr>
<tr>
<td>ASRU-2017</td>
<td>• Potential function as a deep CNN.
• Model training by AugSA plus JSA (joint stochastic approximation)</td>
</tr>
<tr>
<td>ICASSP-2018</td>
<td>• Use LSTM on top of CNN
• Noise Contrastive Estimation (NCE) is introduced to train TRF LMs</td>
</tr>
<tr>
<td>SLT-2018</td>
<td>• Simplify the potential definition by using only Bidirectional LSTM
• Propose Dynamic NCE for improved model training</td>
</tr>
</tbody>
</table>
Motivation

- **Language models using discrete features (N-gram LMs, Discrete TRF LMs)**
 - Mainly capture local lower-order interactions between words
 - Better suited to handling symbolic knowledges

- **Language models using neural features (LSTM LMs, Neural TRF LMs)**
 - Able to learn higher-order interactions between words
 - Good at learning smoothed regularities due to word embeddings

- **Interpolation of LMs**\(^1,2\): usually achieves further improvement
 - Discrete and neural features have complementary strength. 😊
 - Two-step model training is sub-optimal. 😞

Motivation

TRF LMs: \[p(l,x^l; \eta) = \frac{\pi_l}{Z_l(\eta)} e^{V(x^l, \eta)}, \ x^l \triangleq x_1 x_2 \cdots x_l \]

1. TRF LMs are flexible to support both discrete and neural features

<table>
<thead>
<tr>
<th>Type</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>(w_{-3} w_{-2} w_{-1} w_0) (w_{-2} w_{-1} w_0) (w_{-1} w_0) (w_0)</td>
</tr>
<tr>
<td>c</td>
<td>(c_{-3} c_{-2} c_{-1} c_0) (c_{-2} c_{-1} c_0) (c_{-1} c_0) (c_0)</td>
</tr>
<tr>
<td>ws</td>
<td>(w_{-3} w_0) (w_{-2} w_{-1} w_0) (w_{-1} w_0) (w_{-2} w_0)</td>
</tr>
<tr>
<td>cs</td>
<td>(c_{-3} c_0) (c_{-3} c_{-2} c_0) (c_{-3} c_{-1} c_0) (c_{-2} c_0)</td>
</tr>
<tr>
<td>wsh</td>
<td>(w_{-4} w_0) (w_{-5} w_0)</td>
</tr>
<tr>
<td>csh</td>
<td>(c_{-4} c_0) (c_{-5} c_0)</td>
</tr>
<tr>
<td>cpw</td>
<td>(c_{-3} c_{-2} c_{-1} w_0) (c_{-2} c_{-1} w_0) (c_{-1} w_0)</td>
</tr>
<tr>
<td>tied</td>
<td>(c_{-9} c_{-6} c_0) (w_{-9} c_{-6} w_0)</td>
</tr>
</tbody>
</table>

Discrete features

Neural features

Achieve feature integration in an optimal single-step model construction! (Mixed-feature TRF)

2. Lower the non-convexity

- Speed up convergence and reduce training time

3. Complementary strength in language modeling

- Further improve the performance of TRF LMs by using diversified features
Content

1. Introduction
 - Related Work
 - Motivation

2. Mixed TRF LMs
 - Definition
 - Training

3. Experiments
 - PTB
 - Google one-billion word

4. Conclusions
Mixed TRF LMs: Definition

- Mixed TRF LMs:
 \[p(l, x^l; \eta) = \frac{\prod_{l} e^{V(x^l, \eta)}}{Z_l(\eta)}, \quad V(x^l, \eta) = \lambda^T f(x^l) + \phi(x^l; \theta), \quad \eta = (\lambda, \theta) \]

Discrete n-gram features, with parameter \(\lambda \):

\[f(x^l) = (f_1(x^l), f_2(x^l), \ldots, f_N(x^l)) \]

\(N \): the total number of types of n-grams

\[f_k(x^l) = c \]

where \(c \) is the count of the \(k \)th n-gram type in \(x^l \)

\[x^l = \text{he is a teacher and he is also a good father} \]

\[f_{he\ is}(x^l) = \text{count of “he is” in } x^l = 2 \]

\[f_{a\ teacher}(x^l) = \text{count of “a teacher” in } x^l = 1 \]

Neural network features, with parameter \(\theta \)

\[\phi(x^l; \theta) = \sum_{i=1}^{l-1} h_{f,i}^T e_{i+1} + \sum_{i=2}^{l} h_{b,i}^T e_{i-1} \]
Mixed TRF LMs: Training, Noise Contrastive Estimation

- Treat $\log Z_l(\eta)$ as a parameter ζ_l and rewrite

$$p(l, x^l; \eta) = \frac{\pi_l}{Z_l(\eta)} e^{V(x^l, \eta)}$$

$$p(x; \xi) = \pi_l e^{V(x^l, \eta) - \zeta_l}, x = (l, x^l), \xi = (\eta, \zeta_l)$$

- Introduce a **noise distribution** $q_n(x)$, and consider a binary classification

$$P(C = 0|x) = \frac{p(x; \xi)}{p(x; \xi) + \nu q_n(x)}$$, where $\nu = \frac{P(C = 1)}{P(C = 0)}$

$$P(C = 1|x) = 1 - P(C = 0|x)$$

- Noise Contrastive Estimation (NCE):

$$\max_{\xi} E_{x \sim p_0(x)}[\log P(C = 0|x)] + E_{x \sim q_n(x)}[\log P(C = 1|x)]$$

😊 Reliable NCE needs a large $\nu \approx 20$; Overfitting.

Dynamic-NCE\(^1\) in Wang & Ou, SLT 2018.

\(^1\)Bin Wang and Zhijian Ou, “Improved training of neural trans-dimensional random field language models with dynamic noise-contrastive estimation,” in *2018 IEEE Spoken Language Technology Workshop (SLT)*. IEEE, 2018, pp. 70–76.
Content

1. Introduction
 - Related Work
 - Motivation

2. Mixed TRF LMs
 - Definition
 - Training

3. Experiments
 - PTB
 - Google one-billion word

4. Conclusions
Experiments: n-best list rescoring

• Two sets of experiments over two training datasets of different scales
 - Penn Treebank (PTB) dataset:
 16K sentences, 10K vocabulary (after preprocessing)
 - Google one-billion-word dataset:
 31M sentences, 568K vocabulary (after cutting off words counting less than 4)

• Test set for LM n-best list rescoring
 - Wall Street Journal (WSJ) ’92 dataset:
 330 sentences, each corresponds to a 1000-best list

• Implemented with Tensorflow

Open-source: https://github.com/thu-spmi/SPMILM
Experiments: PTB dataset

<table>
<thead>
<tr>
<th>Model</th>
<th>PPL</th>
<th>WER (%)</th>
<th>#param (M)</th>
<th>Training time</th>
<th>Inference time</th>
</tr>
</thead>
<tbody>
<tr>
<td>KN5</td>
<td>141.2</td>
<td>8.78</td>
<td>2.3</td>
<td>22 seconds</td>
<td>0.06 seconds</td>
</tr>
<tr>
<td>LSTM-2×1500</td>
<td>78.7</td>
<td>7.36</td>
<td>66.0</td>
<td>23.6 hours</td>
<td>9.09 seconds</td>
</tr>
<tr>
<td>Discrete TRF</td>
<td>~128</td>
<td>8.37</td>
<td>2.3</td>
<td>7.28 hours</td>
<td>0.11 seconds</td>
</tr>
<tr>
<td>Neural TRF</td>
<td>~75</td>
<td>7.34</td>
<td>2.6</td>
<td>22.1 hours</td>
<td>0.08 seconds</td>
</tr>
<tr>
<td>Mixed TRF</td>
<td>~69</td>
<td>7.17</td>
<td>4.9</td>
<td>18.2 hours</td>
<td>0.12 seconds</td>
</tr>
</tbody>
</table>

- Compared to the LSTM-2×1500, Mixed TRF achieves a 2.6% relative reduction on word error rate (WER), with 77.1% training time and only 7.4% parameters.

- Mixed TRF is 76x faster in inference (rescoring sentences) than the LSTM-2×1500.

- Compared to the state-of-the-art Neural TRF, Mixed TRF achieves a 2.3% relative reduction on word error rate (WER), with 82.4% training time, and comparable parameter size and inference speed.
Experiments: PTB dataset

WER curves of the three TRF LMs during the first 100 training epochs:

- Mixed TRF converges faster than the state-of-the-art Neural TRF, using only 58% training epochs.

😊 The discrete features in Mixed TRF lower the non-convexity of the optimal problem, and reduce the amount of patterns for neural features to capture.
Experiments: PTB dataset

More rescoring results of various interpolated LMs:

<table>
<thead>
<tr>
<th>Model</th>
<th>WER (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed TRF</td>
<td>7.17</td>
</tr>
<tr>
<td>LSTM-2×1500 + KN5</td>
<td>7.47</td>
</tr>
<tr>
<td>Neural TRF + KN5</td>
<td>7.30</td>
</tr>
<tr>
<td>LSTM-2×1500 + Discrete TRF</td>
<td>7.15</td>
</tr>
<tr>
<td>Neural TRF + Discrete TRF</td>
<td>7.17</td>
</tr>
<tr>
<td>LSTM-2×1500 + Neural TRF</td>
<td>7.01</td>
</tr>
<tr>
<td>LSTM-2×1500 + Neural TRF + KN5</td>
<td>6.89</td>
</tr>
<tr>
<td>LSTM-2×1500 + Mixed TRF</td>
<td>6.83</td>
</tr>
<tr>
<td>LSTM-2×1500 + Mixed TRF + KN5</td>
<td>6.82</td>
</tr>
</tbody>
</table>

“+” denotes the log-linear interpolation with equal weights

- Mixed TRF matches the best interpolated model combining a discrete-feature LM and a neural-feature LM together.
- Updating Neural TRF to Mixed TRF is beneficial in language model interpolations.
Experiments: Google one-billion-word dataset

<table>
<thead>
<tr>
<th>Model</th>
<th>PPL</th>
<th>WER (%)</th>
<th>#param (M)</th>
<th>Training time</th>
<th>Inference time</th>
</tr>
</thead>
<tbody>
<tr>
<td>KN5</td>
<td>94.5</td>
<td>6.13</td>
<td>133</td>
<td>2.48 hours</td>
<td>0.491 seconds</td>
</tr>
<tr>
<td>LSTM-2×1024</td>
<td>72.7</td>
<td>5.55</td>
<td>191</td>
<td>144 hours</td>
<td>0.909 seconds</td>
</tr>
<tr>
<td>Discrete TRF</td>
<td>~86</td>
<td>6.04</td>
<td>102</td>
<td>131 hours</td>
<td>0.022 seconds</td>
</tr>
<tr>
<td>Neural TRF</td>
<td>~72</td>
<td>5.47</td>
<td>114</td>
<td>336 hours</td>
<td>0.017 seconds</td>
</tr>
<tr>
<td>Mixed TRF</td>
<td>~68</td>
<td>5.28</td>
<td>216</td>
<td>297 hours</td>
<td>0.024 seconds</td>
</tr>
</tbody>
</table>

Note: To reduce parameter size and speed up inference, we adopt a small-scale LSTM LM, and apply adaptive softmax strategy¹.

- Compared to the LSTM-2×1024 with adaptive softmax, Mixed TRF achieves a 4.9% relative reduction on word error rate (WER) and a 38x inference speed, though having a bit more parameters and longer training time.

- Compared to the state-of-the-art Neural TRF, Mixed TRF achieves a 3.5% relative reduction on word error rate (WER) with 88.4% training time.

- The LM interpolation results are similar to those on PTB.

Results of various interpolated LMs:

<table>
<thead>
<tr>
<th>Model</th>
<th>WER (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed TRF</td>
<td>5.28</td>
</tr>
<tr>
<td>LSTM-2×1024 + KN5</td>
<td>5.38</td>
</tr>
<tr>
<td>Neural TRF + KN5</td>
<td>5.51</td>
</tr>
<tr>
<td>LSTM-2×1024 + Discrete TRF</td>
<td>5.31</td>
</tr>
<tr>
<td>Neural TRF + Discrete TRF</td>
<td>5.27</td>
</tr>
<tr>
<td>LSTM-2×1024 + Neural TRF</td>
<td>5.25</td>
</tr>
<tr>
<td>LSTM-2×1024 + Neural TRF + KN5</td>
<td>5.06</td>
</tr>
<tr>
<td>LSTM-2×1024 + Mixed TRF</td>
<td>5.02</td>
</tr>
<tr>
<td>LSTM-2×1024 + Mixed TRF + KN5</td>
<td>4.99</td>
</tr>
</tbody>
</table>

1. Introduction
 ■ Related Work
 ■ Motivation

2. Mixed TRF LMs
 ■ Definition
 ■ Training

3. Experiments
 ■ PTB
 ■ Google one-billion word

4. Conclusions
Conclusions

• We propose a mixed-feature TRF LM and demonstrate its advantage in integrating discrete and neural features.

• The Mixed TRF LMs trained on PTB and Google one-billion datasets achieve strong results in n-best list rescoring experiments for speech recognition.
 ■ Mixed TRF LMs outperform all the other single LMs, including N-gram LMs, LSTM LMs, Discrete TRF LMs and Neural TRF LMs;
 ■ The performance of Mixed TRF LMs matches the best interpolated model, and with simplified one-step training process and reduced training time;
 ■ Interpolating Mixed TRF LMs with LSTM LMs and N-gram LMs can further improve rescoring performance and achieve the lowest word error rate (WER).

• Next: Apply Mixed TRF LMs to one-pass ASR.
Thanks for your attention!

Silin Gao1, Zhijian Ou1, Wei Yang2, Huifang Xu3

1Speech Processing and Machine Intelligence (SPMI) Lab, Tsinghua University
2State Grid Customer Service Center
3China Electric Power Research Institute

http://oa.ee.tsinghua.edu.cn/ouzhijian/