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• Language Modeling

 For the word sequence 𝒙 ≜ 𝑥1𝑥2⋯𝑥𝑙, determine the joint probability 𝑝(𝒙)

𝑃 𝑥1, 𝑥2, 𝑥3, 𝑥4 = 𝑃 𝑥1 𝑃 𝑥2|𝑥1 𝑃 𝑥3|𝑥2 𝑃 𝑥4|𝑥1, 𝑥3

• Directed Graphical Language Models
 Self-normalized, modeling conditional probabilities

 e.g. N-gram language models, Neural network (NN) based 
language models (e.g. RNN/LSTM LMs)

• Undirected Graphical Language Models
 Involves the normalizing constant 𝑍, potential function Φ

 e.g. Trans-dimensional random field 

language models (TRF LMs)
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Related Work: N-gram LMs
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• N-gram Language Models

• Back-off N-gram LMs with Kneser-Ney Smoothing1 (KNn LMs)

 𝑝𝐾𝑁 𝑥𝑖 ℎ = 1 − 𝛼𝐾𝑁(ℎ) Ƹ𝑝 𝑥𝑖 ℎ + 𝛼𝐾𝑁 ℎ 𝑝𝐾𝑁 𝑥𝑖 ℎ
′

ℎ = 𝑥𝑖−𝑛+1⋯𝑥𝑖−1 = 𝑥𝑖−𝑛+1ℎ
′

𝑝 𝑥1, 𝑥2, ⋯ , 𝑥𝑙 =ෑ

𝑖=1

𝑙

𝑝 𝑥𝑖|𝑥1, ⋯ , 𝑥𝑖−1

≈ෑ

𝑖=1

𝑙

𝑝 𝑥𝑖|𝑥𝑖−𝑛+1, ⋯ , 𝑥𝑖−1

Current word All previous words/history

Previous 𝑛 − 1 words

N-order 
Markov Property

1Stanley F Chen and Joshua Goodman, “An empirical study of smoothing techniques for language modeling,” 
Computer Speech & Language, vol. 13, no. 4, pp. 359–394, 1999



Related Work: RNNs/LSTM LMs

5

• Recurrent Neural Nets (RNNs)/Long-Short Time Memory (LSTM) Language Models

LSTM Unit1

𝑝 𝑥𝑖|𝑥1, ⋯ , 𝑥𝑖−1 ≈ 𝑝 𝑥𝑖|ℎ𝑖−1 𝑥1, ⋯ , 𝑥𝑖−1 ≈
ℎ𝑖−1
𝑇 𝑤𝑘

σ𝑘=1
𝑉 ℎ𝑖−1

𝑇 𝑤𝑘

ℎ𝑖−1

𝑥𝑖−1

ℎ𝑖

𝑥𝑖 𝑥𝑖+1

ℎ𝑖+1

⋯

⋯

⋯

⋯

1Hochreiter S , Schmidhuber J . “Long 
Short-Term Memory”, Neural 
computation, 1997, 9(8):1735-1780.

Courtesy of 
Sundermeyer, 2012

.1 High computational cost of the Softmax output layer
e.g. 𝑉 = 104~106, 𝑤𝑘 ∈ ℝ250~1024

.2 “Label bias” caused by the teacher-forcing training of the local conditional probabilities
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• Trans-Dimensional Random Field (TRF) Language Models

𝑝𝑙 𝑥
𝑙; 𝜂 =

1

𝑍𝑙 𝜂
𝑒𝑉 𝑥𝑙; 𝜂 , 𝑥𝑙≜ 𝑥1𝑥2⋯𝑥𝑙

𝑥𝑙 ≜ 𝑥1, 𝑥2, ⋯ , 𝑥𝑙 is a word sequence with length 𝑙;

𝑉 𝑥𝑙; 𝜂 is the potential function extracting the features of 𝑥𝑙;

𝜂 is the parameter of the potential function;

𝑍𝑙 𝜂 = σ
𝑥𝑙 𝑒

𝑉 𝑥𝑙;𝜂 is the normalization constant. 

 Assume the sentences of length 𝒍 are distributed as follows:

 Assume length 𝒍 is associated with prior probability 𝝅𝒍.

Therefore the pair (𝒍, 𝒙𝒍) is jointly distributed as: 𝑝 𝑙, 𝑥𝑙; 𝜂 = 𝜋𝑙 ∙ 𝑝𝑙 𝑥
𝑙; 𝜂

Needed to 
be estimated
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𝑝 𝑙, 𝑥𝑙; 𝜂 =
𝜋𝑙

𝑍𝑙 𝜂
𝑒𝑉 𝑥𝑙; 𝜂 , 𝑥𝑙≜ 𝑥1𝑥2⋯𝑥𝑙

.1 Flexible: no acyclic and local normalization constraint

.2 Avoid high computational cost of the Softmax and “label bias” 

Discrete TRF: Neural TRF:

Discrete features Bi-LSTM features
CNN features

 The state-of-the-art Neural TRF LMs perform as good as LSTM LMs, and are 
computationally more efficient in inference (computing sentence probabilities)



Related Work: TRF LMs
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ACL-2015 
TPAMI-2018

• Discrete features 
• Augmented stochastic approximation (AugSA) for model training

ASRU-2017 • Potential function as a deep CNN. 
• Model training by AugSA plus JSA (joint stochastic approximation)

ICASSP-2018 • Use LSTM on top of CNN
• Noise Contrastive Estimation (NCE) is introduced to train TRF LMs

SLT-2018 • Simplify the potential definition by using only Bidirectional LSTM
• Propose Dynamic NCE for improved model training

• The development of TRF LMs
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• Language models using discrete features (N-gram LMs, Discrete TRF LMs)

 Mainly capture local lower−order interactions between words

 Better suited to handling symbolic knowledges

• Language models using neural features (LSTM LMs, Neural TRF LMs)

 Able to learn higher-order interactions between words

 Good at learning smoothed regularities due to word embeddings

• Interpolation of LMs1, 2: usually achieves further improvement

 Discrete and neural features have complementary strength.

 Two-step model training is sub-optimal.

1Xie Chen, Xunying Liu, Yu Wang, Anton Ragni, Jeremy HM Wong, and Mark JF Gales, “Exploiting future word contexts in neural network language 
models for speech recognition,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 27, no. 9, pp. 1444–1454, 2019.

2Bin Wang, Zhijian Ou, Yong He, and Akinori Kawamura, “Model interpolation with trans-dimensional random field language models for speech 
recognition,” arXiv preprint arXiv:1603.09170, 2016.
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𝑝 𝑙, 𝑥𝑙; 𝜂 =
𝜋𝑙

𝑍𝑙 𝜂
𝑒𝑉 𝑥𝑙,𝜂 , 𝑥𝑙≜ 𝑥1𝑥2⋯𝑥𝑙

.1 TRF LMs are flexible to support both discrete and neural features

.2 Lower the non-convexity

Discrete features Neural features

 Speed up convergence and 

reduce training time

TRF LMs:

Achieve feature integration 
in an optimal single-step 
model construction! 
(Mixed-feature TRF) 

.3 Complementary strength in language modeling

 Further improve the performance of TRF LMs 
by using diversified features 
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Mixed TRF LMs: Definition

12

• Mixed TRF LMs:

 𝑝 𝑙, 𝑥𝑙; 𝜂 =
𝜋𝑙

𝑍𝑙 𝜂
𝑒𝑉 𝑥𝑙,𝜂 , 𝑉 𝑥𝑙 , 𝜂 = 𝜆𝑇𝑓 𝑥𝑙 + 𝜙 𝑥𝑙; 𝜃 , 𝜂 = (𝜆, 𝜃)

Discrete n-gram features, with parameter 𝜆: Neural network features, with parameter 𝜃

𝑓 𝑥𝑙 = 𝑓1(𝑥
𝑙), 𝑓2(𝑥

𝑙),⋯ , 𝑓𝑁(𝑥
𝑙)

𝜙 𝑥𝑙; 𝜃 =෍

𝑖=1

𝑙−1

ℎ𝑓,𝑖
𝑇𝑒𝑖+1 +෍

𝑖=2

𝑙

ℎ𝑏,𝑖
𝑇𝑒𝑖−1

𝑓𝑘(𝑥
𝑙) = 𝑐

where 𝑐 is the count of the 𝑘th n-gram type in 𝑥𝑙

𝑁: the total number of types of n-grams

𝑥𝑙 = he is a teacher and he is also a good father.

𝑓ℎ𝑒 𝑖𝑠 𝑥𝑙 = count of “he is” in 𝑥𝑙 = 2

𝑓𝑎 𝑡𝑒𝑎𝑐ℎ𝑒𝑟 𝑥𝑙 = count of “a teacher” in 𝑥𝑙 = 1
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𝑝 𝑙, 𝑥𝑙; 𝜂 =
𝜋𝑙

𝑍𝑙 𝜂
𝑒𝑉 𝑥𝑙,𝜂

• Treat log𝑍𝑙 𝜂 as a parameter 𝜁𝑙 and rewrite

𝑝 𝑥; 𝜉 = 𝜋𝑙𝑒
𝑉 𝑥𝑙,𝜂 −𝜁𝑙 , 𝑥 = 𝑙, 𝑥𝑙 , 𝜉 = 𝜂, 𝜁

• Introduce a noise distribution 𝑞𝑛 𝑥 , and consider a binary classification

𝑃 𝐶 = 0|𝑥 =
𝑝 𝑥; 𝜉

𝑝 𝑥; 𝜉 + 𝜈𝑞𝑛 𝑥
, 𝑤ℎ𝑒𝑟𝑒 𝜈 =

𝑃 𝐶 = 1

𝑃 𝐶 = 0

𝑃 𝐶 = 1|𝑥 = 1 − 𝑃 𝐶 = 0|𝑥

max
𝜉

𝐸𝑥∼𝑝0 𝑥 log 𝑃 𝐶 = 0|𝑥 + 𝐸𝑥∼𝑞𝑛 𝑥 log 𝑃 𝐶 = 1|𝑥

• Noise Contrastive Estimation (NCE):

 Reliable NCE needs a large 𝜈 ≈ 20; Overfitting. 

𝑥 ∼ 𝑝0

𝑥 ∼ 𝑞𝑛

𝐶 = 0

𝐶 = 1

Binary 

discriminator

1Bin Wang and Zhijian Ou, “Improved training of neural 
trans-dimensional random field language models with 
dynamic noise-contrastive estimation,” in 2018 IEEE Spoken 
Language Technology Workshop (SLT). IEEE, 2018, pp. 70–76.

Dynamic-NCE1 in Wang & Ou, SLT 2018.
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Experiments: n-best list rescoring
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• Two sets of experiments over two training datasets of different scales
 Penn Treebank (PTB) dataset: 

16K sentences, 10K vocabulary (after preprocessing)

 Google one-billion-word dataset: 

31M sentences, 568K vocabulary (after cutting off words counting less than 4)

• Test set for LM n-best list rescoring
 Wall Street Journal (WSJ) ’92 dataset: 

330 sentences, each corresponds to a 1000-best list

• Implemented with Tensorflow

Open-source: https://github.com/thu-spmi/SPMILM

https://github.com/thu-spmi/SPMILM


Experiments: PTB dataset
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 Compared to the state-of-the-art Neural TRF, Mixed TRF achieves a 2.3% relative 
reduction on word error rate (WER), with 82.4% training time, and comparable 
parameter size and inference speed.

 Compared to the LSTM-2×1500, Mixed TRF achieves a 2.6% relative reduction on 
word error rate (WER), with 77.1% training time and only 7.4% parameters.

 Mixed TRF is 76x faster in inference (rescoring sentences) than the LSTM-2×1500.



Experiments: PTB dataset
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WER curves of the three TRF LMs during the first 100 training epochs:

 Mixed TRF converges faster than 
the state-of-the-art Neural TRF, 
using only 58% training epochs.

 The discrete features in Mixed 
TRF lower the non-convexity of 
the optimal problem, and reduce 
the amount of patterns for neural 
features to capture.



Experiments: PTB dataset

18

“+” denotes the log-linear interpolation 
with equal weights

More rescoring results of various interpolated LMs:

 Mixed TRF matches the best 
interpolated model combining 
a discrete-feature LM and a 
neural-feature LM together.

 Updating Neural TRF to Mixed 
TRF is beneficial in language 
model interpolations.



Experiments: Google one-billion-word dataset
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Note: To reduce parameter size and speed up inference, we adopt a small-scale LSTM LM, and apply adaptive softmax strategy1.

Results of various interpolated LMs:

1Edouard Grave, Armand Joulin, Moustapha Ciss ƴ𝑒, Herv ƴ𝑒 J ƴ𝑒gou, et al., “Efficient softmax approximation for gpus,” in Proceedings of the 34th 
International Conference on Machine Learning-Volume 70. JMLR. org, 2017, pp. 1302–1310.

 Compared to the LSTM-2×1024 with adaptive softmax, 
Mixed TRF achieves a 4.9% relative reduction on word 
error rate (WER) and a 38x inference speed, though 
having a bit more parameters and longer training time.

 Compared to the state-of-the-art Neural TRF, Mixed TRF 
achieves a 3.5% relative reduction on word error rate 
(WER) with 88.4% training time.

 The LM interpolation results are similar to those on PTB.
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• We propose a mixed-feature TRF LM and demonstrate its advantage in 
integrating discrete and neural features.

• The Mixed TRF LMs trained on PTB and Google one-billion datasets achieve 
strong results in n-best list rescoring experiments for speech recognition.

 Mixed TRF LMs outperform all the other single LMs, including N-gram LMs, LSTM LMs, 
Discrete TRF LMs and Neural TRF LMs;

 The performance of Mixed TRF LMs matches the best interpolated model, and with 
simplified one-step training process and reduced training time;

 Interpolating Mixed TRF LMs with LSTM LMs and N-gram LMs can further improve 
rescoring performance and achieve the lowest word error rate (WER).

• Next: Apply Mixed TRF LMs to one-pass ASR.
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Thanks for your attention !
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