

Mixed TRF LMs

Integrating Discrete and Neural Features via Mixed-Feature Trans-Dimensional Random Field Language Models

Silin Gao¹, Zhijian Ou¹, Wei Yang², Huifang Xu³

¹Speech Processing and Machine Intelligence (SPMI) Lab, Tsinghua University

²State Grid Customer Service Center

³China Electric Power Research Institute

http://oa.ee.tsinghua.edu.cn/ouzhijian/

Presented at International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2020

Content

1. Introduction

- Related Work
- Motivation

2. Mixed TRF LMs

- Definition
- Training

3. Experiments

- PTB
- Google one-billion word

4. Conclusions

Introduction

- Language Modeling
 - For the word sequence $\mathbf{x} \triangleq x_1 x_2 \cdots x_l$, determine the joint probability $p(\mathbf{x})$
- Directed Graphical Language Models
 - Self-normalized, modeling conditional probabilities
 - e.g. N-gram language models, Neural network (NN) based language models (e.g. RNN/LSTM LMs)

$$P(x_1, x_2, x_3, x_4) = P(x_1)P(x_2|x_1)P(x_3|x_2)P(x_4|x_1, x_3)$$

- Undirected Graphical Language Models
 - Involves the normalizing constant Z, potential function Φ
 - e.g. Trans-dimensional random field language models (TRF LMs)

$$P(x_1, x_2, x_3, x_4) = \frac{1}{Z} \Phi(x_1, x_2) \Phi(x_2, x_3) \Phi(x_3, x_4) \Phi(x_1, x_4)$$
 (x_4)

Related Work: N-gram LMs

N-gram Language Models

$$p(x_1, x_2, \cdots, x_l) = \prod_{i=1}^{l} p(x_i | x_1, \cdots, x_{i-1})$$

$$\approx \prod_{i=1}^{l} p(x_i | x_{i-n+1}, \cdots, x_{i-1})$$

$$p(x_1, x_2, \cdots, x_l) = \prod_{i=1}^{l} p(x_i | x_{i-n+1}, \cdots, x_{i-1})$$
N-order Markov Property

Back-off N-gram LMs with Kneser-Ney Smoothing¹ (KNn LMs)

$$p_{KN}(x_i|h) = (1 - \alpha_{KN}(h))\hat{p}(x_i|h) + \alpha_{KN}(h)p_{KN}(x_i|h')$$

$$h = x_{i-n+1} \cdots x_{i-1} = x_{i-n+1}h'$$

¹Stanley F Chen and Joshua Goodman, "An empirical study of smoothing techniques for language modeling," *Computer Speech & Language*, vol. 13, no. 4, pp. 359–394, 1999

Related Work: RNNs/LSTM LMs

• Recurrent Neural Nets (RNNs)/Long-Short Time Memory (LSTM) Language Models

3.1 High computational cost of the Softmax output layer e.g. $V = 10^4 \sim 10^6$, $w_k \in \mathbb{R}^{250 \sim 1024}$

¹Hochreiter S, Schmidhuber J. "Long Short-Term Memory", *Neural computation*, 1997, 9(8):1735-1780.

②.2 "Label bias" caused by the teacher-forcing training of the local conditional probabilities

Related Work: TRF LMs

- Trans-Dimensional Random Field (TRF) Language Models
 - lacktriangle Assume the sentences of length $m{l}$ are distributed as follows:

$$p_l(x^l;\eta) = \frac{1}{Z_l(\eta)} e^{V(x^l;\eta)}, x^l \triangleq x_1 x_2 \cdots x_l$$

$$x^l \triangleq x_1, x_2, \cdots, x_l \text{ is a word sequence with length } l;$$

$$V(x^l;\eta) \text{ is the potential function extracting the features of } x^l;$$

 η is the parameter of the potential function;

 $Z_l(\eta) = \sum_{x^l} e^{V(x^l;\eta)}$ is the normalization constant.

Needed to be estimated

Assume length \boldsymbol{l} is associated with prior probability $\boldsymbol{\pi_l}$.

Therefore the pair $(\boldsymbol{l}, \boldsymbol{x^l})$ is jointly distributed as: $p(l, x^l; \eta) = \boldsymbol{\pi_l} \cdot p_l(x^l; \eta)$

Related Work: TRF LMs

$$p(l, x^l; \eta) = \frac{\pi_l}{Z_l(\eta)} e^{V(x^l; \eta)}, x^l \triangleq x_1 x_2 \cdots x_l$$

©.1 Flexible: no acyclic and local normalization constraint

Discrete TRF:

Type	Features
W	$(w_{-3}w_{-2}w_{-1}w_0)(w_{-2}w_{-1}w_0)(w_{-1}w_0)(w_0)$
С	$(c_{-3}c_{-2}c_{-1}c_0)(c_{-2}c_{-1}c_0)(c_{-1}c_0)(c_0)$
WS	$(w_{-3}w_0)(w_{-3}w_{-2}w_0)(w_{-3}w_{-1}w_0)(w_{-2}w_0)$
cs	$(c_{-3}c_0)(c_{-3}c_{-2}c_0)(c_{-3}c_{-1}c_0)(c_{-2}c_0)$
wsh	$(w_{-4}w_0) (w_{-5}w_0)$
csh	$(c_{-4}c_0) (c_{-5}c_0)$
cpw	$(c_{-3}c_{-2}c_{-1}w_0)(c_{-2}c_{-1}w_0)(c_{-1}w_0)$
tied	$(c_{-9:-6},c_0) (w_{-9:-6},w_0)$

Discrete features

Neural TRF:

Bi-LSTM features

linear layer

CNN features

- ©.2 Avoid high computational cost of the Softmax and "label bias"
 - The state-of-the-art Neural TRF LMs perform as good as LSTM LMs, and are computationally more efficient in inference (computing sentence probabilities)

Related Work: TRF LMs

• The development of TRF LMs

ACL-2015 TPAMI-2018	 Discrete features Augmented stochastic approximation (AugSA) for model training
ASRU-2017	 Potential function as a deep CNN. Model training by AugSA plus JSA (joint stochastic approximation)
ICASSP-2018	 Use LSTM on top of CNN Noise Contrastive Estimation (NCE) is introduced to train TRF LMs
SLT-2018	 Simplify the potential definition by using only Bidirectional LSTM Propose Dynamic NCE for improved model training

Motivation

- Language models using discrete features (N-gram LMs, Discrete TRF LMs)
 - Mainly capture local lower-order interactions between words
 - Better suited to handling symbolic knowledges
- Language models using neural features (LSTM LMs, Neural TRF LMs)
 - Able to learn higher-order interactions between words
 - Good at learning smoothed regularities due to word embeddings
 - Interpolation of LMs^{1, 2}: usually achieves further improvement
 - Discrete and neural features have complementary strength. ©
 - Two-step model training is sub-optimal. ⊗

¹Xie Chen, Xunying Liu, Yu Wang, Anton Ragni, Jeremy HM Wong, and Mark JF Gales, "Exploiting future word contexts in neural network language models for speech recognition," *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, vol. 27, no. 9, pp. 1444–1454, 2019.

²Bin Wang, Zhijian Ou, Yong He, and Akinori Kawamura, "Model interpolation with trans-dimensional random field language models for speech recognition," arXiv preprint arXiv:1603.09170, 2016.

Motivation

TRF LMs:
$$p(l, x^l; \eta) = \frac{\pi_l}{Z_l(\eta)} e^{V(x^l, \eta)}, x^l \triangleq x_1 x_2 \cdots x_l$$

©.1 TRF LMs are flexible to support both discrete and neural features

Type	Features
W	$(w_{-3}w_{-2}w_{-1}w_0)(w_{-2}w_{-1}w_0)(w_{-1}w_0)(w_0)$
c	$(c_{-3}c_{-2}c_{-1}c_0)(c_{-2}c_{-1}c_0)(c_{-1}c_0)(c_0)$
WS	$(w_{-3}w_0)(w_{-3}w_{-2}w_0)(w_{-3}w_{-1}w_0)(w_{-2}w_0)$
cs	$(c_{-3}c_0)(c_{-3}c_{-2}c_0)(c_{-3}c_{-1}c_0)(c_{-2}c_0)$
wsh	$(w_{-4}w_0) (w_{-5}w_0)$
csh	$(c_{-4}c_0) (c_{-5}c_0)$
cpw	$(c_{-3}c_{-2}c_{-1}w_0)(c_{-2}c_{-1}w_0)(c_{-1}w_0)$
tied	$(c_{-9:-6},c_0)(w_{-9:-6},w_0)$

Achieve feature integration in an optimal single-step model construction!
(Mixed-feature TRF)

Discrete features

- ©.2 Lower the non-convexity
 - Speed up convergence and reduce training time
- ©.3 Complementary strength in language modeling
 - Further improve the performance of TRF LMs by using diversified features

Content

1. Introduction

- Related Work
- Motivation

2. Mixed TRF LMs

- Definition
- Training

3. Experiments

- PTB
- Google one-billion word

4. Conclusions

Mixed TRF LMs: Definition

Mixed TRF LMs:

$$p(l,x^l;\eta) = \frac{\pi_l}{Z_l(\eta)} e^{V(x^l,\eta)}, \quad V(x^l,\eta) = \underline{\lambda^T f(x^l)} + \underline{\phi(x^l;\theta)}, \quad \eta = (\lambda,\theta)$$

Discrete n-gram features, with parameter λ :

$$f(x^l) = (f_1(x^l), f_2(x^l), \cdots, f_N(x^l))$$

N: the total number of types of n-grams

$$f_k(x^l) = c$$

where c is the count of the kth n-gram type in x^{l}

 x^{l} = he is a teacher and he is also a good father.

$$f_{he\ is}(x^l) = \text{count of "he is" in } x^l = 2$$

$$f_{a \ teacher}(x^l) = \text{count of "} a \ teacher" \text{ in } x^l = 1$$

Neural network features, with parameter θ

$$\phi(x^{l};\theta) = \sum_{i=1}^{l-1} h_{f,i}^{T} e_{i+1} + \sum_{i=2}^{l} h_{b,i}^{T} e_{i-1}$$

Mixed TRF LMs: Training, Noise Contrastive Estimation

• Treat $\log Z_l(\eta)$ as a parameter ζ_l and rewrite

$$p(l,x^{l};\eta) = \frac{\pi_{l}}{Z_{l}(\eta)} e^{V(x^{l},\eta)} \longrightarrow p(x;\xi) = \pi_{l} e^{V(x^{l},\eta)-\zeta_{l}}, x = (l,x^{l}), \xi = (\eta,\zeta)$$

• Introduce a **noise distribution** $q_n(x)$, and consider a binary classification

Binary
$$c = 0$$

$$x \sim p_0$$
Binary
$$c = 1$$

$$P(C = 0 | x) = \frac{p(x; \xi)}{p(x; \xi) + \nu q_n(x)}, where \quad \nu = \frac{P(C = 1)}{P(C = 0)}$$

$$P(C = 1 | x) = 1 - P(C = 0 | x)$$

Noise Contrastive Estimation (NCE):

$$\max_{\xi} E_{x \sim p_0(x)}[\log P(C = 0|x)] + E_{x \sim q_n(x)}[\log P(C = 1|x)]$$

 $\ \ \, \otimes \ \,$ Reliable NCE needs a large $\nu \approx 20$; Overfitting.

Dynamic-NCE¹ in Wang & Ou, SLT 2018.

¹Bin Wang and Zhijian Ou, "Improved training of neural trans-dimensional random field language models with dynamic noise-contrastive estimation," in *2018 IEEE Spoken Language Technology Workshop (SLT)*. IEEE, 2018, pp. 70–76.

Content

1. Introduction

- Related Work
- Motivation

2. Mixed TRF LMs

- Definition
- Training

3. Experiments

- PTB
- Google one-billion word

4. Conclusions

Experiments: n-best list rescoring

- Two sets of experiments over two training datasets of different scales
 - Penn Treebank (PTB) dataset:

16K sentences, 10K vocabulary (after preprocessing)

■ Google one-billion-word dataset:

31M sentences, 568K vocabulary (after cutting off words counting less than 4)

- Test set for LM n-best list rescoring
 - Wall Street Journal (WSJ) '92 dataset:
 330 sentences, each corresponds to a 1000-best list
- Implemented with Tensorflow

Open-source: https://github.com/thu-spmi/SPMILM

Experiments: PTB dataset

Model	PPL	WER (%)	#param (M)	Training time	Inference time
KN5	141.2	8.78	2.3	22 seconds	0.06 seconds
LSTM- 2×1500	78.7	7.36	66.0 T	23.6 hours	9.09 seconds
Discrete TRF	~128	8.37	2.3	7.28 hours	0.11 seconds
Neural TRF	\sim 75	7.34	2.6	22.1 hours	0.08 seconds
Mixed TRF	~69	7.17	4.9	18.2 hours	0.12 seconds

- Compared to the LSTM-2×1500, Mixed TRF achieves a 2.6% relative reduction on word error rate (WER), with 77.1% training time and only 7.4% parameters.
- Mixed TRF is 76x faster in inference (rescoring sentences) than the LSTM-2×1500.
- Compared to the state-of-the-art Neural TRF, Mixed TRF achieves a 2.3% relative reduction on word error rate (WER), with 82.4% training time, and comparable parameter size and inference speed.

Experiments: PTB dataset

WER curves of the three TRF LMs during the first 100 training epochs:

- Mixed TRF converges faster than the state-of-the-art Neural TRF, using only 58% training epochs.
- The discrete features in Mixed TRF lower the non-convexity of the optimal problem, and reduce the amount of patterns for neural features to capture.

Experiments: PTB dataset

More rescoring results of various interpolated LMs:

Model	WER (%)
Mixed TRF	ر 7.17
$LSTM-2\times1500 + KN5$	7.47
Neural TRF + KN5	7.30
LSTM- 2×1500 + Discrete TRF	7.15
Neural TRF + Discrete TRF	7.17
LSTM-2×1500 + Neural TRF	ر 7.01
LSTM- 2×1500 + Neural TRF + KN5	6.89
LSTM- $2 \times 1500 + Mixed TRF$	6.83
LSTM- $2 \times 1500 + Mixed TRF + KN5$	6.82

"+" denotes the log-linear interpolation with equal weights

- Mixed TRF matches the best interpolated model combining a discrete-feature LM and a neural-feature LM together.
- Updating Neural TRF to Mixed TRF is beneficial in language model interpolations.

Experiments: Google one-billion-word dataset

Model	PPL	WER (%)	#param (M)	Training time	Inference time
KN5	94.5	6.13	133	2.48 hours	0.491 seconds
LSTM- 2×1024	72.7	5.55	191	144 hours	0.909 seconds
Discrete TRF	~86	6.04	102	131 hours	0.022 seconds
Neural TRF	\sim 72	5.47	114	r 336 hours	0.017 seconds
Mixed TRF	\sim 68	5.28	216	297 hours	0.024 seconds

Note: To reduce parameter size and speed up inference, we adopt a small-scale LSTM LM, and apply adaptive softmax strategy¹.

- Compared to the LSTM-2×1024 with adaptive softmax, Mixed TRF achieves a 4.9% relative reduction on word error rate (WER) and a 38x inference speed, though having a bit more parameters and longer training time.
- Compared to the state-of-the-art Neural TRF, Mixed TRF achieves a 3.5% relative reduction on word error rate
 (WER) with 88.4% training time.
- The LM interpolation results are similar to those on PTB.

Results of various interpolated LMs:

Model	WER (%)
Mixed TRF	5.28
LSTM-2×1024 + KN5	5.38
Neural TRF + KN5	5.51
LSTM- 2×1024 + Discrete TRF	5.31
Neural TRF + Discrete TRF	5.27
LSTM-2×1024 + Neural TRF	5 .25
LSTM- 2×1024 + Neural TRF + KN5	5.06
LSTM- $2 \times 1024 + Mixed TRF$	5.02
LSTM- $2 \times 1024 + Mixed TRF + KN5$	4.99

¹Edouard Grave, Armand Joulin, Moustapha Cissé, Hervé Jégou, et al., "Efficient softmax approximation for gpus," in *Proceedings of the 34th International Conference on Machine Learning-Volume 70*. JMLR. org, 2017, pp. 1302–1310.

Content

1. Introduction

- Related Work
- Motivation

2. Mixed TRF LMs

- Definition
- Training

3. Experiments

- PTB
- Google one-billion word

4. Conclusions

Conclusions

- We propose a mixed-feature TRF LM and demonstrate its advantage in integrating discrete and neural features.
- The Mixed TRF LMs trained on PTB and Google one-billion datasets achieve strong results in n-best list rescoring experiments for speech recognition.
 - Mixed TRF LMs outperform all the other single LMs, including N-gram LMs, LSTM LMs,
 Discrete TRF LMs and Neural TRF LMs;
 - The performance of Mixed TRF LMs matches the best interpolated model, and with simplified one-step training process and reduced training time;
 - Interpolating Mixed TRF LMs with LSTM LMs and N-gram LMs can further improve rescoring performance and achieve the lowest word error rate (WER).
- Next: Apply Mixed TRF LMs to one-pass ASR.

Thanks for your attention!

Silin Gao¹, Zhijian Ou¹, Wei Yang², Huifang Xu³

¹Speech Processing and Machine Intelligence (SPMI) Lab, Tsinghua University

²State Grid Customer Service Center

³China Electric Power Research Institute

http://oa.ee.tsinghua.edu.cn/ouzhijian/